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Abstract
This  paper provides  the development of empirical  closed-form analytical  expressions for  local 
buckling of cold-formed steel lipped-channels under four conditions: pure compression, major axis 
bending, minor axis bending with lips in tension, and minor axis bending with lips in compression. 
A  series  of  finite  strip analyses are conducted  and  the  local  plate  buckling  coefficients  for  the 
cross-section are determined from  these numerical results. Empirical closed-form equations  are 
developed by curve-fitting  to  the numerically determined local plate buckling  coefficients. The 
plate  buckling coefficients  are  expressed  in  a  manner  for  convenient  use  in  cold-formed  steel 
design specifications such as AISI S100. The relationships between the plate buckling coefficients 
and the following ratios are explored: web depth to flange width, lip length to flange width, and 
web  depth  to  lip  length. The  developed  equations  provide  a  simpler  alternative  to  performing 
simulations when  developing  the  local  buckling strength of  lipped  channels. Ongoing  work 
considers closed-form local buckling expressions for additional cold-formed steel shapes, such as
zee sections and hat sections.

1. Introduction
Local buckling, which is the buckling of plates forming a steel member cross section, occurs when 
a sufficiently slender element is subjected to sufficient compressive stress. Engineers must account 
for this phenomenon when designing beam and column cross sections, in order to ensure structural 
safety. Cold-formed steel structural shapes may be readily formed and, as a result, a number of 
unique cross-sectional shapes are used in industry for various applications. This paper focuses on 
the  critical  local  buckling  stress  of  one  such  shape: the  lipped  channel.  A  lipped  channel  is 
composed of two lips, two flanges, and a web, as depicted in Figure 1. The lipped channel is one 
of  the  most ubiquitous cross-section  types  in  the  cold-formed  steel  industry.  It  is  primarily 
implemented  as  wall  studs  and  floor  joists  in  buildings,  for  both  structural  and  non-structural 
purposes. In the U.S. dimensions of lipped channels are standardized by organizations such as the 
Steel Framing Industry Association (SFIA).
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This paper presents a numerical parametric study on the critical elastic local buckling stress of 

cold-formed steel lipped channels. Empirical closed-form equations for the local buckling of cold-

formed steel lipped channels under the following four conditions are developed: pure compression, 

major axis bending, minor axis bending with the lips in tension, and minor axis bending with the 

lips in compression. The finite strip method (FSM) is used to determine the critical local buckling 

stress, Fcrℓ, of lipped-channels. The calculated Fcrℓ is then converted into plate buckling 

coefficients for the web plate 𝑘𝐻, the flange plate 𝑘𝐵 , and the lip plate 𝑘𝐷 . Curves of best fit are 

applied to these coefficients in order to determine closed-form equations. It is intended that the 

proposed closed-form equations will present a simple and accurate alternative for calculating the 

plate buckling coefficients of cold-formed steel lipped channels.  

 

 
Figure 1: Lipped channel cross section. The web depth H, flange width B, and lip length 𝐷 are all out-to-out 

dimensions as drawn. The thickness t is uniform throughout. The corners have inner radius r. 

 

  

 

 

 

   

 

   

 

  

 

2. Current Methods to Determine Critical Local Buckling Stress
The critical local buckling stress is an important input for the cold-formed steel member design 
method  such  as  the  direct  strength  method  (DSM).  The  critical  local  buckling  stress  is  used  to 
compute the critical local buckling actions which can be directly fed into the DSM design curves. 
Per American Iron and Steel Institute (AISI) North American Specification for the Design of Cold- 
Formed Structural Steel Members (2016), i.e. AISI S100-16, the local buckling force Pcrℓ may be
calculated per AISI Appendix section 2.3.2.1 as:

Pcrℓ = AgFcrℓ (1)

where Ag is the gross cross-sectional area and Fcrℓ is the minimum local buckling stress of the 
web, flange, and lip at the extreme compression fiber.
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Similarly, the local buckling moment Mcrℓ per AISI Appendix section 2.3.2.2 is: 

 

 Mcrℓ = SfcFcrℓ (2) 

 

where Sfc is the gross section modulus referenced to the extreme compression fiber. 

 

The critical local buckling stress, Fcrℓ, of a steel section may be estimated from the minimum of 

the plate buckling stress of each individual element in the cross section, where the theoretical 

critical local buckling stress, Fcrℓ,  of any element (𝐻, 𝐵, or 𝐷) is established from (Eqs. 3-6): 

 

 
Fcrℓ,H = 𝑘𝐻

𝜋2𝐸
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Fcrℓ = min (Fcrℓ H, Fcrℓ B, Fcrℓ D) (6), , ,

where 𝑘𝐻, 𝑘𝐵, 𝑘𝐷 ,  are the  plate  buckling  coefficient  for  the  web (𝐻),  flange (𝐵), and lip (𝐷)

respectively, E is the modulus of elasticity, t is the thickness, 𝜇 is Poisson’s ratio, and H is the web 
depth, 𝐵 is the flange width, and 𝐷 is the lip length. It is worth noting that for convenience of use, 
Eqs. 3-6 are written in terms of the out-to-out width as opposed to the flat width used in the AISI 
S100. Based on Eqs. 3-6 two  methods for predicting the cross-section local buckling stress are 
reviewed  in  this  section: (1)  the “element  method”,  which assumes  simply  supported  edge 
boundary conditions for the elements as prescribed in AISI S100 Appendix 2 today, and (2) the

upper bound of the element method, as detailed herein.

2.1. Element Method in AISI S100
The  element  method  is  codified in  AISI  S100  Appendix  2. This  approach  assumes  that  each 
element is simply supported and has no influence on adjacent elements. If the minimum element 
local  buckling  stress  is  utilized  as  the  cross-section  local  buckling  stress  this  is  generally 
considered to be conservative (sometimes unduly so). Figure 2 depicts the separation of the cross- 
section into simply supported elements for a lipped channel section.
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Figure 2: Elements in the simply supported lipped Channel member 

 

For uniform compression the element plate buckling coefficient is a constant, but for sections in 

bending the elements may be under a stress gradient and this influences 𝑘. For a simply supported 

plate under a stress gradient AISI S100 Appendix 1 Section 1.1.2 defines the element plate local 

buckling coefficient as: 

 

 𝑘𝜓 = 4 + 2(1 − Ψ)3 + (1 −  Ψ)  (7) 

 

where 𝑘𝜓 is the local plate buckling coefficient, Ψ = F2/F1 is the stress ratio and −1 ≤ Ψ ≤ 1, 

F1 and F2 are the stresses at either end of element, see Figure 3, note F1 is either the larger 

compressive stress value or the compression stress value.  
 

 
(a)     (b) 

Figure 3: Elements under linear stress gradients (note tension is negative) 
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Table 1 summarizes the plate buckling coefficients for the element method assuming simply 

supported boundary conditions. The buckling stress, Fcrℓ, for the plates can be found using Eqs. 

3-6 with the values listed in Table 1. 

 
Table 1: Plate buckling coefficients for element method assuming simply supported boundary conditions 

Plate 

Buckling 

Coefficient 

Compression Major-Axis Minor-Axis 

Lips in Tension 

Minor-Axis 

Lips in Compression 

𝑘𝐻 4 24  4 - 

𝑘𝐵 4 4 Eq. 7 Eq. 7 

𝑘𝐷 0.425 Eq. 7 - 0.425 
  

 

    

 

  

“-“ indicates element in tension, so no buckling stress, Use of Eq. 7 depends on neutral axis and resulting F1, F2.

2.2. Approximate Upper Bounds for Element Method
A  straightforward  upper  bound  approximation  for  local  buckling  is  to  assume  fixed  edge 
conditions for the elements. Figure 4 depicts the separation of the cross-section into elements with 
fixed supports for the lipped channel section.

 

 

 
Figure 4: Fixed supported lipped Channel with elements 

 

For elements under pure compression the plate buckling coefficient with fixed edge conditions 

have been previously derived; however, simple expressions such as Eq. 7 for elements under stress 

gradients are not readily available for fixed end conditions so approximations are employed. Table 

2 summarizes the plate buckling coefficients for approximate upper bounds of the element method 

assuming fixed edge conditions per Chajes’ (1974) and an assumed extension to Eq. 7. 

 
Table 2 : Plate buckling coefficients for element method assuming fixed edge boundary conditions 

Plate 

Buckling 

Coefficient 

Compression Major-Axis Minor-Axis 

Lips in Tension 

Minor-Axis 

Lips in Compression 

𝑘𝐻 6.97 40 6.97 - 

𝑘𝐵 6.97 6.97 40* 40* 

𝑘𝐷 1.28 1.28** - 1.28 
-  indicates element in tension, so no buckling stress 

 *       analytical solution not provided, approximate by neutral axis in the center of the flange 

 **     analytical solution not provided, approximate by uniform compression 
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3. Parametric Study by Finite Strip Analysis
A  parametric  study across  a  family  of lipped  channels and  applied  actions is  conducted  using

CUFSM, Thin-walled  Structures  Group (2020).  The  critical  local  buckling  stress, Fcrℓ, is 
determined  for  each  analysis,  which  is then later  used  for  developing empirical closed-form

equations for the plate buckling coefficients 𝑘𝐻 , 𝑘𝐵 , and 𝑘𝐷 .

3.1. SFIA Lipped Channel Sections
Standard  cold-formed  steel  lipped channel  sections  come  in a  variety  of dimensions. Table 3 
contains  statistical summaries of  the  lipped  channel  sections’  dimensions  according  to  SFIA
(2018), where the range of web depth (H), flange width (B) and lip length (D) are listed. The mean, 
the  median and  the  mode  of  the  available  lipped  channel  dimensions  are  likewise  listed. In 
addition, statistical values of the ratios: H/t, H/B, and D/B are listed in Table 3. The large variety 
of lipped-channel sections are illustrated in Figure 5 with histograms of the ratios of the cross- 
section dimensions. Based on the dimensions found in SFIA, a parametric study is conducted on

lipped channels with H/B ratio ranging from 0.25 to 12, and D/B ratio in the range of 0.1 to 0.4.

Table 3: Statistical analysis of SFIA lipped-channel shape dimensions

 

Dimension mean std min max median mode 

 (in)  (in) (in) (in) (in) (in) 

H 8.09  
(200 mm) 

4  
(100 mm) 

2.5  
(63 mm) 

16  
(400 mm) 

8 
(200 mm) 

6 
 (150 mm) 

B 2.31 
 (58 mm) 

0.68  
(18 mm) 

1.38 
(35 mm) 

3.5 
(88 mm) 

2 
(50 mm) 

2  
(50 mm) 

D 
 

0.62  
(15 mm) 

0.16  
(4 mm) 

0.38 
 (10 mm) 

1 
 (25 mm) 

0.63 
(15 mm) 

0.63  
(15 mm) 

t 0.079 
(2mm) 

0.0277 
(0.75 mm) 

0.035       
(1 mm) 

0.124  
(3 mm) 

0.071 
(1.8 mm) 

0.071  
(1.8 mm) 

H/t 108.84  54.89 34.42  247.35  98.33 59  
H/B 3.6  1.71  1.21  8  3.33 4  

D/B 0.28  0.04  0.21  0.31  0.29 0.31 

  

 
(a)                                                         (b)                                                       (c)  

Figure 5: Histograms of the SFIA lip-section structural elements for different dimensions. (a) Web-Depth-to-

Thickness ratio (H/t), (b) Web-Depth-to-Flange-Width ratio (H/B), (c) Lip-Length-to-Flange-Width ratio (D/B). 
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3.2. Finite Strip Model
A finite strip model is created for each combination of H/B and D/B ratios. For all the models, 
flange width B is fixed at 50.8 mm and 𝑡 is fixed at 1.4376 mm. H varies from 12.7 mm to 609 
mm, while D varies from 5.08 mm to 20.32 mm, resulting in ratios of the cross-section dimensions:

𝐻/𝐵 ∈ [ 0.25, 12], 𝐷/𝐵 ∈ [ 0.10,0.40 ].

An inner corner radius 𝑟 = 2𝑡 is used in all the models. All the models assume constant material 
properties with the Young’s modulus 𝐸= 203,500 MPa and Poisson’s ratio 𝜇 = 0.3. End boundary 
conditions are assumed simply-supported for all models.

Four lipped channel loading conditions, as depicted in Figure 6 are considered in the parametric 
study: (a) pure compression, (b) major axis bending, (c) minor axis bending with the lips in tension, 
and (d) minor axis bending with the lips in compression.

 

 

 
 

 
Figure 6: Stress distribution in lipped channel members. (a) compression, (b) major axis bending, (c) minor with lips  

in tension, and (d) minor with lips in compression. 

 

CUFSM determines Fcrℓ as the maximum compressive stress in the cross-section, which for the 

case of pure compression, the entire cross-section experiences F crℓ. In the case of major axis 

bending, only the compression flange experiences a maximum stress of Fcrℓ. Under minor axis 

bending with the lips in tension, the web experiences Fcrℓ, while minor axis bending with the lips 
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in compression, the lips experience a compression stress equal Fcrℓ. It is worth also noting that in 
CUFSM, Fcrℓ is determined in the mid-thickness of the element, which is a distance t/2 from the 
extreme fiber.

To avoid local minima corresponding to distortional buckling, the two-step method proposed by 
Li and Schafer (2010) is used throughout the analyses. This method utilizes a sharp corner version 
of the target model to determine the critical local buckling half wavelength Lcrℓ. This is followed

by determining the critical buckling stress Fcrℓ of the target model at Lcrℓ.

3.3. Critical Local Buckling Coefficients
The critical local buckling stress, Fcrℓ, determined from FSM analysis is converted  to the plate 
buckling  coefficients 𝑘𝐻, 𝑘𝐵, and 𝑘𝐷 per Eqs. 3-5. Curves  of  best  fit  for  the  plate  buckling 
coefficients  are  then  calculated.  Depending  on  the  considered  loading  condition,  a  power

regression, power series or polynomial equation is applied to the curve fit to determine the 𝑘𝐻, 𝑘𝐵, 
and 𝑘𝐷 closed-form equations.

As discussed before, the FSM solution is referenced to the maximum compressive stress, which is 
aligned  with the maximum stress  on  one  (or  more)  elements.  Conversion  between  the  plate 
buckling coefficients is readily completed using Eqs. 3-5 at points where the elements have the 
same stress. For example, consider the case where the critical local buckling stresses for the flange

FcrℓB and the lip FcrℓD are equal:

  FcrℓB = FcrℓD (8)

Thus, based on Eq. 4 and Eq. 5, the relationship between 𝑘𝐵 and 𝑘𝐷 is established from:
 

 

 
𝑘𝐵

𝜋2𝐸

(12 − 𝑣2)
(

𝑡

𝐵
)

2

= 𝑘𝐷

𝜋2𝐸

(12 − 𝑣2)
(

𝑡

𝐷
)

2

 
 (9) 

 

 
𝑘𝐵 (

𝑡

𝐵
)

2

= 𝑘𝐷 (
𝑡

𝐷
)

2

 
 (10) 

 

 
𝑘𝐵 = 𝑘𝐷 (

𝐵

𝐷
)

2

 
 (11) 

 

 

 

  

 

  

Similar expressions may be derived for the relationship to 𝑘𝐻.

4. Results
Through a parametric analysis, the local buckling stress of a wide variety of lipped channel sections 
with four different loading conditions is determined in CUFSM. In the following section, the local 
buckling coefficients 𝑘𝐻, 𝑘𝐵 , and 𝑘𝐷 for the different sections are presented alongside curves of,

the proposed  equations for the local buckling coefficients.  The buckling stresses from CUFSM

 

serves  as  baseline  comparison  for  the  proposed  equations  to  determine  the  local  buckling
coefficient.
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4.1. Pure Compression
The developed closed-form equation for the pure compression case is presented in Eq. 12:

  

 

 
𝑘𝐻= min (4.5 (

𝐻

𝐵
)

2
, 4[0.73 (

𝐷

𝐵
)

0.36
+ 1]) 

 (12) 

 

where 0 ≤ 𝐻/𝐵 ≤ 12 and  0 ≤ 𝐷/𝐵 ≤ 1.  

 

Figure 7 compares the element method and proposed closed-form solution (Eq. 12) to the results 

from FSM of the plate buckling coefficients for the pure compression case. The 7 red and black 

curves shown in Figure 7(b) correspond to the 7 different D/B ratios used in the parametric study. 

Figure 7(a) shows that the current AISI element method does not follow the FSM results and, in 

fact, is overly conservative as it is bounded by a maximum value of 𝑘𝐻=4. This is confirmed 

statistically with the mean difference between the element method and the FSM results: 

𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ =1.41. In contrast, Figure 7(b), where the proposed equations are plotted against 

the FSM data, demonstrates the accuracy of the proposed closed-form solution, which closely 

match the FSM baseline. This is confirmed with the mean difference between the proposed 

equation and the FSM results: 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.00. Further statistical comparisons are shown in 

Table 4 which tabulates the ratios of the element method solution to the FSM results 

(𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ ) and the proposed closed-form solution to the FSM results (𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ ).  
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(a)                                (b) 

Figure 7: Web plate buckling coefficient as a function of the web-to-flange ratio for (a) the element method and the 

approximate upper bound (dashed lines) and (b) the proposed closed-form solution compared to the FSM baseline 

results. The gray rectangle represents the SFIA range for web-to-flange values. 

 

  

 

 

 

 

4.2. Major Axis Bending
The developed closed-form equation for the major axis bending case is:

𝑘𝐵= max (0.3 (
𝐻

𝐵
)+5.2,−0.4 (

𝐻

𝐵
)+5.9)

  (13) 

 

where 0 ≤ 𝐻/𝐵 ≤ 1 and  0.15 ≤ 𝐷/𝐵 ≤ 0.4.  

 

 
𝑘𝐵= min (-0.4 (

𝐻

𝐵
)+5.9, 22.3 (

𝐻

𝐵
)

−1.8
) 

 (14) 

 

where 1< 𝐻/𝐵 ≤ 12 and  0.15 < 𝐷/𝐵 ≤ 0.4. 

 

Figure 8 compares the proposed closed-form solution (Eq. 13 and Eq. 14) to the FSM results of 

the plate buckling coefficients for the major axis bending case. The proposed red curve shown in 

Figure 8(b) corresponds to all the FSM solutions, as different D/B ratios do not cause major 

variations in the plate buckling coefficient. Similar to the pure compression case, Figure 8(a) 
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shows that the element method does not closely follow the FSM results and is overly conservative 

(𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ =1.33) because it has a maximum value of 𝑘𝐵=4. In contrast, Figure 8(b) 

demonstrates the accuracy of the proposed closed-form solution with a mean difference of 

𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =0.96, which closely match the FSM baseline. However, it is worth noting that 

𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄  for the entire data set indicates overestimation of the plate buckling coefficient. 

This is because at smaller H/B ratios, there are greater differences in the FSM solutions for 

disparate D/B ratios. The proposed solution is chosen despite being non-conservative, because it 

is able to closely mimic the FSM solutions within the SFIA range. This is confirmed statistically 

with mean 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.02 among the data set inside the SFIA range. Further statistical 

comparisons between the element method solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ ) and the 

proposed closed-form solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ ) can be found in Table 4.  

 

 
(a)                                (b) 

Figure 8: Flange plate buckling coefficient as a function of the web-to-flange ratio for (a) the element method and 

the approximate upper bound (dashed lines) and (b) the proposed closed-form solution compared to the FSM 

baseline results. The gray rectangle represents the SFIA range for web-to-flange values. 

 

   

    
4.3. Minor Axis Bending with Lips in Tension
The developed closed-form equation for minor axis bending with the lips in tension is:  

 
 

𝑘𝐻= min (5.62, 24 (
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𝐵
)

2
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 (15) 
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where 0 ≤ 𝐻/𝐵 ≤ 12 and  0 ≤ 𝐷/𝐵 ≤ 0.4.  
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Figure 9 compares the element method and proposed closed-form solution (Eq. 15) to the FSM 

results of the plate buckling coefficients for the case of minor axis bending with lips in tension. 

Similar to the major axis bending case, the proposed red curve shown in Figure 9(b) corresponds 

to all D/B ratios. Like previous cases, the element method, with its maximum value of 𝑘𝐻=4, does 

not follow the FSM results and is overly conservative (𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ =1.41) as can be observed 

in Figure 9(a). In contrast, as shown in Figure 9(b), the closed-form, which generally match the 

FSM results solution, demonstrates great accuracy in predicting the critical local buckling 

coefficient. The proposed method is found have 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.01. However, it is worth 

noting that the proposed closed-form solution does not perfectly follow the FSM solutions because 

there is only one proposed curve solution for all D/B ratios. As a result, the proposed closed-form 

solution is unconservative for D/B=0.10-0.20 and conservative for D/B=0.25-0.40. This explains 

why the 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.02 for the SFIA range is greater and, thus, more conservative than the 

𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.01 for the non-SFIA range. Please reference Table 4 to see further statistical 

comparisons between the element method solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ ) and the 

proposed closed-form solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ ). 

 

 
(a)                                (b) 

Figure 9: Web plate buckling coefficient as a function of the web-to-flange ratio for (a) the element method and the 

approximate upper bound (dashed lines) and (b) the proposed closed-form solution compared to the FSM baseline 

results. The gray rectangle represents the SFIA range for web-to-flange values. 
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4.4. Minor Axis Bending with Lips in Compression
For the minor axis bending with lips in compression case, two types of equations are proposed, a 
power fit and the one modified from the existing AISI element method. The power fit is empirically 
derived  while  the  modified  element  method  follows  a  more  classical  plate  buckling  theoretical
derivation.

4.4.1. Minor Axis Bending with Lips in Compression- Power Fit
The developed closed-form equation for the minor axis bending with lips in compression case is:

 

 

 
𝑘𝐷= [-16.41(

𝐷

𝐵
)

2
+10.41(

𝐷

𝐵
)-0.5581] (

𝐻

𝐷
)

[0.8769(
𝐷

𝐵
)−0.3558]

 
 (16) 

 

where for 0 ≤ 𝐻/𝐷 ≤ 50 and  0.1 ≤ 𝐷/𝐵 ≤ 0.4. 

 

The element method and proposed closed-form solution (Eq. 16) are compared to the FSM results 

of the plate buckling coefficients in Figure 10 for the case with minor axis bending with lips in 

compression. Similar to the pure compression case, the 7 red and black curves shown in Figure 

10(b) correspond to the 7 different D/B ratios in the parametric study. Figure 10(a) shows the 

inaccuracy of the element method, especially for D/B≥0.20, when  𝑘𝐷=0.425 controls the design 

for all D/B≥0.20. This is confirmed statistically with 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.63. In contrast, Figure 

10(b) demonstrates the accuracy of the closed-form solution, which closely match the FSM 

baseline. This is confirmed statistically with 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =0.96. However, it is worth noting 

that the total 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄  for all data points is non-conservative. This is because the proposed 

solution overestimates the FSM solutions for D/B=0.10-0.20. The proposed solution is chosen 

despite being a non-conservative estimate, because it is able to follow the FSM solutions within 

the SFIA range. This is confirmed with the mean difference of the data inside the SFIA range of 

𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.01. Please reference Table 4 to see further statistical comparisons between the 

element method solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ ) and the proposed closed-form 

solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ ). 
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(a)                                (b) 

Figure 10: Lip plate buckling coefficient as a function of the web-to-lip ratio for (a) the element method and the 

approximate upper bound (dashed lines) and (b) the proposed closed-form solution compared to the FSM baseline 

results. The gray rectangle represents the SFIA range for web-to-flange values. 

 

    

 

 

     

 

4.4.2. Minor Axis Bending with Lips in Compression- Modified Element Method
A simpler closed-form equation for the minor axis bending with lips in compression case is also 
proposed in Eq. 17 by modifying the existing element method equation with a fixed upper bound
of 𝑘𝐷=0.89 for the lip buckling (and still considering that the flange could also drive the buckling, 
second expression):

 

 
𝑘𝐷= min (0.89, [4 + (1 + Ψ)3 + (1 +  Ψ)] (

𝐷

𝐵
)

2
) 

 (17) 

 

where Ψ = F2/F1 is the stress ratio, 0 ≤ Ψ ≤ 1, and 0.1 ≤ 𝐷/𝐵 ≤ 0.4. This equation modifies 

the existing element method equation by setting an empirical approximation for lip local buckling 

𝑘𝐷  between the simplty supported (0.425) and fixed (1.28) values. 

 

Figure 11 compares the element method and proposed closed-form solution (Eq. 17) to the FSM 

results of the plate buckling coefficients for the minor axis bending with lips in compression case. 

Figure 11(a) is a duplicate of Figure 10(a). Figure 11(b) demonstrates the accuracy of the closed-

form solution, which matches the FSM baseline much more closely than the element method does, 

as is supported statistically with 𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.06 for the closed-form solution and 
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𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.64 for the element method. It is worth noting that the proposed solution 

overestimates the FSM solution for D/B=0.10 and D/B=0.15, while it underestimates for 

D/B=0.30-0.40. Overall, the closed-form solution is accurate within the SFIA range with 

𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ =1.00. Please reference Table 4 to see further statistical comparisons between the 

element method solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄ ) and the proposed closed-form 

solution to the FSM solutions (𝑘𝐹𝑆𝑀 𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄ ). 

 

 
(a)                                (b) 

Figure 11: Lip plate buckling coefficient as a function of the web-to-lip ratio for (a) the element method and the 

approximate upper bound (dashed lines) and (b) the proposed closed-form solution compared to the FSM baseline 

results. The gray rectangle represents the SFIA range for web-to-flange values. 

 

  

 

  

    

 

 

 

4.5. Statistical Comparison of Closed-Form Equations to FSM
Table 4 presents a statistical  comparison of  the plate buckling  coefficients calculated using the 
element  method 𝒌𝑬𝒍𝒆𝒎𝒆𝒏𝒕 and  the closed-form  equations 𝒌𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅 and the FSM results 𝒌𝑭𝑺𝑴. 
These results include the mean, coefficient of variation, and number of trials for 𝒌𝑭𝑺𝑴⁄𝒌𝑬𝒍𝒆𝒎𝒆𝒏𝒕

and 𝒌𝑭𝑺𝑴⁄𝒌𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅. As shown in Table 4,  compared to  the  current AISI element  method, the 
proposed method shows superior performance in predicting the critical local buckling coefficient. 
For the four considered loading conditions, the  mean values, which are  all within 0.05 of 1.00, 
reflect  the  accuracy  of  the  closed-form  equations  within  and  beyond  the  SFIA  range while  the 
element method consistently underestimates the buckling coefficients.
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Table 4: Comparison of the Proposed and Finite Strip Method Plate Buckling Coefficients 

    𝐾𝐹𝑆𝑀 𝐾𝐸𝑙𝑒𝑚𝑒𝑛𝑡⁄  𝐾𝐹𝑆𝑀 𝐾𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑⁄   

  Mean CoV Mean CoV n 

Compression 

All  1.4116 0.0097 1.0019 0.0022 665 

Inside SFIA bounds 1.4671 0.0016 1.0062 0.0007 92 

Outside SFIA bounds 1.4026 0.0105 1.0012 0.0024 573 

Major-Axis  

All  1.3266 0.0222 0.9589 0.0091 570 

Inside SFIA bounds 1.3301 0.0040 1.0173 0.0009 92 

Outside SFIA bounds 1.3079 0.0251 0.9223 0.0126 478 

Minor Axis-Lips in 

Tension 

All  1.4135 0.0031 1.0119 0.0021 665 

Inside SFIA bounds 1.4364 0.0004 1.0224 0.0002 92 

Outside SFIA bounds 1.4098 0.0034 1.0103 0.0024 573 

Minor Axis- Lips in 

Compression- Power 

Fit 

All 1.6329 0.2611 0.9639 0.0067 665 

Inside SFIA bounds 1.8617 0.0393 1.0085 0.0002 92 

Outside SFIA bounds 1.5962 0.2871 0.9568 0.0074 573 

Minor Axis- Lips in 

Compression- Modified 

Element Method  

All 1.6329 0.2611 1.0565 0.0108 665 

Inside SFIA bounds 1.8617 0.0393 1.0012 0.0033 92 

Outside SFIA bounds 1.5962 0.2871 1.0654 0.0115 573 

 

  

 

  

       

 

   

 

 

 

 

 

 

 

 

 

 

 
    

 

  

 

 

   

  

 

  

5. Conclusions
This  paper provides  a  simple  and  accurate semi-empirical alternative  for  calculating  the  plate 
buckling coefficients of cold-formed steel lipped channels. Four loading conditions are considered:
pure compression, major axis bending, minor axis bending with the lips in tension web, and minor 
axis with the lips in compression. The provided closed-form equations enable accurate design of 
lipped channel shapes even beyond the rand of commercially available cold-formed steel lipped 
channels. In ongoing work, closed-form equations for major axis bending, minor axis bending with 
the lips in tension, and minor axis bending with the lips in compression of zee sections and hat
sections will be generated.
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