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Abstract 

This paper investigates the kinematics and mechanics involved in the lateral-distortional buckling 

(LDB) behavior in I-section steel beams elastically restrained by concrete slabs (involving web single 

or double curvature), and uses the findings obtained to develop and illustrate the application of analytical 

formulae to calculate LDB moments of steel-concrete composite beams. The study is based on a 

Generalized Beam Theory (GBT) approach to perform buckling analyses that is based on constrained 

deformation modes, which incorporate the displacement/rotation restraints due to the slab, thus making 

it possible to obtain accurate buckling results with only a few deformation modes. The solution of the 

equilibrium equation for the LDB of simply supported I-section steel beams, restrained by a concrete slab 

and under uniform negative (hogging) bending, is derived analytically in the context of the above GBT 

formulation. In order to illustrate the capabilities and potential of the derived formulae, several buckling 

moments are determined, discussed and compared with values calculated by other formulae available in 

the literature. For validation and assessment purposes, the results obtained are also compared with 

values provided by conventional GBT, finite strip and/or ANSYS shell finite element analyses. 

 

 

1. Introduction 

Steel-concrete composite beams are extensively used in the building construction industry – their 

structural advantages are well known and stem from the fact that combine a steel profile (often I-

section) and a concrete slab working together, due to use of shear connectors at the steel-concrete 

interface  see Fig. 1(a). The influence of the concrete slab on the steel I-section beams are commonly 

simulated by means of longitudinally continuous (i) full or partial rotational restraints and (ii) full 

lateral restraints at the level of the beam (connected) top flange  the former is modelled by an 

elastic spring with stiffness kr (e.g., Bradford 1998 and Goltermann & Svensson 1988), as shown 

in Fig. 1(b). The value of kr is usually obtained from either experimental tests, numerical simulations 

or equations based on simplified structural models (e.g., Calenzani et al. 2012, Johnson & Fan 

1991) – the latter approach is adopted in the current European Standard (CEN 2004). 
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(a) (b) (c) (d) (e) 

Figure 1: (a) Steel-concrete composite beam, (b) longitudinally continuous spring modelling the rotational restraint provided 

by the slab, (c) web local buckling and (d) single and (e) web double curvature lateral-distortional buckling 
 
While the concrete slab provides full restraint against lateral-torsional buckling to the I-section beam 

spans under positive (sagging) bending moments, the same is not true for the regions under negative 

(hogging) bending moments. In the latter, buckling may occur in either a web local mode, illustrated 

in Fig. 1(c), or a lateral-distortional mode, combining (i) a lateral motion of the (unrestrained) 

compressed flange and (ii) web transverse bending in single or double curvature, as shown in 

Figs. 1(d)-(e) (e.g., Bradford 1992, Silvestre 2010). The possible occurrence of lateral-distortional 

buckling stems from the (partial) restraint provided by the concrete slab to the I-section, 

responsible for changing the buckling mode nature from lateral-torsional to lateral-distortional. 
 
Since the 1980s, several investigations were devoted to the development of numerical methods and 

simplified formulations to determine the lateral-distortional buckling (LDB) behavior of I-section steel 

beams restrained by concrete slab – among them, it is worth noting the works of (i) Bradford (1986, 

1988a,b) who developed energy-based models and one-dimensional finite element formulations, (ii) 

Hanswille et al. (1998), Zhou et al. (2016) and Dias et al. (2019), who proposed calculation 

procedures to estimate the critical LDB moments, (iii) Zhou and Yan (2017), who used refined 

non-linear finite element models capable of accounting for various effects influencing the composite 

beam behavior, such as initial geometrical imperfections, residual stresses or the interface slip, and (iv) 

Gonçalves & Camotim (2010) and Henriques et al. (2016, 2020), who developed an enhanced finite 

element based on Generalized Beam Theory (GBT) to handle shear lag, concrete cracking and shear 

connection flexibility effects. 
 
Concerning the approaches to estimate LDB moments of I-section steel beams restrained by concrete 

slabs, it is worth mentioning that Hanswille et al. (1998) and Dias et al. (2019) proposed energy 

methods based on the well-known inverted U-frame model, which account for the concrete slab in 

the calculation of the rotational spring stiffness – however, this model is limited to web single 

curvature LDB. On the other hand, Zhou et al. (2016) proposed a methodology that can also handle 

web double curvature LDB – nevertheless, it was derived under the assumption of null rotation 

of the (connected) top flange, i.e., an infinite torsional stiffness provided by the concrete slab. 
 
It is still worth noting that consensus has not yet been reached concerning the kinematics and 

mechanics underlying LDB  indeed, there are discrepancies between the critical moments LDB 

yielded by the various approaches. These discrepancies stem from the different kinematic 

assumptions adopted by each approach (e.g., Rossi et al. 2020). Therefore, it is fair to argue say 

that the kinematics and mechanics of this instability phenomenon in elastically restrained I-

section beams are not yet fully understood. This explains (at least partially) why the analytical 

formulae available concern almost exclusively web transverse bending in single curvature web 

and fully fixed (connected) top flanges (e.g., Silvestre 2010). 
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Mechanical models based on conventional GBT, taking advantage of its unique modal features, have 

been successfully employed (i) to acquire deep insight on the distortional buckling behavior of 

unrestrained cold-formed steel members with open “unbranched” cross-sections, namely, zed-section, 

lipped channel and rack-section members, and also (ii) to develop analytical and semi-analytical 

formulae to determine approximate (but accurate) distortional buckling loads and moments of such 

members (e.g., Silvestre & Camotim 2004a,b,c). Very recently, the authors extended the domain of 

application of the above approach to derive analytical and semi-analytical buckling formulae for 

restrained zed-section and lipped channel members (Araujo et al. 2021). This extension required 

the direct incorporation of the restraints in the conventional GBT cross-section analysis (procedure 

leading to the determination of the deformation modes and associated modal mechanical properties)  

the output of the ensuing “modified GBT cross-section analysis” was a set of constrained 

deformation modes reflecting accurately the mechanics of the restrained member under scrutiny, 

thus making it possible to obtain accurate buckling results with only a few (often one or two) 

deformation modes. In order to further extend the domain of application of the above approach, 

so that it can handle the LDB kinematics and mechanics in I-section steel beams restrained by 

concrete slabs, it is indispensable to incorporate the restraints provided by slab directly in the 

GBT cross-section analysis of open “branched” cross-sections (such as the I-section)  recall that 

the previous works dealt exclusively with members with open “unbranched” cross-sections. 

 

Therefore, the purpose of this work is to use a modified/improved GBT-based approach to shed fresh 

light on the kinematics and mechanics of (web) single and double curvature LDB in I-section 

steel beams restrained by concrete slabs, namely by identifying the cross-section properties relevant 

for this buckling phenomenon. Moreover, the GBT constrained deformation modes incorporating 

the displacement/rotation restraints due to the slabs are employed to derive approximate (but 

accurate) analytical formulae to calculate LDB moments. Several numerical examples are presented 

to illustrate the application and assess the performance of these formulae, namely by comparing 

the LDB moments they provide with those either yielded by other formulae available in the literature or 

obtained from shell finite element analyses (SFEA). 

 

The outline of the paper is as follows. First, the main concepts and numerical procedures involved in 

determining the GBT constrained deformation modes of open “branched” cross-sections are presented 

in Section 2. Then, Section 3 addresses the main mechanical features of single and double curvature 

LDB in elastically restrained I-sections, and also presents and discusses the kinematical assumptions 

generally adopted in the context of this buckling phenomenon – these assumptions are used to develop 

a simple procedure to build the web flexural and lateral displacement fields of elastically restrained I-

sections. Next, in Section 4, the modified GBT formulation is used to derive and analytically solve 

the LDB equilibrium equation for simply supported I-section steel beams restrained by concrete slabs 

under uniform hogging bending moments – moreover, a set of LDB moments provided by the derived 

analytical formulae are presented, discussed and compared with values obtained from other formulae 

available in the literature. For validation and assessment purposes, the LDB moments determined in 

this work are also compared with values either yielded by the programs GBTUL2.0 (Bebiano et al. 

2018, conventional GBT) and CUFSM (Li & Schafer 2010, Finite Strip Method – FSM), or obtained 

by ANSYS SFEA (SAS 2013). The paper closes, in Section 5, with a few concluding remarks. 

 

It should be noted that, in the derivations and equations presented throughout the paper, (i) all 

scalar quantities, including the matrix components, are denoted by italic letters, (ii) a virtual 



 4 

variation is denoted by , (iii) tensor notation is employed, (iv) a subscript preceded by a comma 

indicates differentiation (e.g., (),x≡d(.)/dx) and (v) Einstein’s summation convention is adopted. 

Matrix and vector components are identified by square ([ ]) and curly ({ }) brackets, respectively 

– however, when specifying components is not necessary, matrices and vectors are identified by 

normal bold and italic bold symbols, respectively. 

 

2. Proposed GBT Approach 

Consider the arbitrary prismatic thin-walled open cross-section member schematically displayed 

in Fig. 2, which is deemed (i) formed by n walls (plate elements), each divided into various segments 

with width bi, and (ii) restrained by continuous translational (normal and tangential  stiffness 

values KTN and KTG, respectively) and rotational (stiffness KR) elastic springs located at arbitrary 

points SP. Also shown in Fig. 2 are the wall/local coordinate axes x, s and z, respectively along 

the member axis, cross-section mid-line and wall thickness (t). In order to obtain a displacement 

field representation compatible with the classical beam theory, each displacement component 

u(x, s), v(x, s) and w(x, s) at any given cross-section mid-line point must be expressed as a 

combination of orthogonal functions. Therefore, one has 
 
 ,( , ) ( ) ( )i i xu x s u s x  ( , ) ( ) ( )i iv x s v s x  ( , ) ( ) ( )i iw x s w s x  ,   (1) 
 
where (i) ui (s), vi (s), wi (s) are shape functions used to approximate the cross-section displacement 

field and (ii) i (x) are non-dimensional amplitude functions defined along the member length – 

information on the derivation of these expressions can be found in the works of Schardt (1989) 

and Silvestre & Camotim (2002). 

 

The equations providing the member buckling behavior, taking into account the presence of elastic 

constraints (springs), are obtained by imposing the stationarity of the total potential energy functional 
 

  
21 1

2 2
ij ij r

L

V d K dx


      (2) 

 
in the close vicinity of the member fundamental equilibrium path (adjacent equilibrium). Note that 

(i) is the member volume (n walls), (ii) ij and ij are the second Piola-Kirchhoff stress and 

Green-Lagrange strain tensors, respectively, both including pre-buckling and bifurcated components, 

(iii) L is the member length, (iv) K is the stiffness of a longitudinally distributed continuous (along an 

axis r) spring and (v) Δ is the corresponding spring generalized displacement (translation or rotation)  

the summation convention applies to subscripts i and j. Then, the equilibrium equations defining the 

member buckling eigenvalue problem are obtained by (i) linearising the first variation of the total 

 

 
Figure 2: Arbitrary continuously restrained open-section thin-walled member and wall/local coordinate axes 
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potential energy functional, at the fundamental equilibrium path, and (ii) discarding the pre-

buckling strains, thus yielding 
 

  

T T T

, , , ,

T T 0 T

, , , ,

0
xx xx x x

L xx k xx j x j x

V dx
  


    

   
  

   


C B D

E E X

     

     W
 ,   (3) 

 

with 
 

   f s
B B B  ,   (4) 

 
where (i)  is the load parameter, (ii)  is a vector containing the longitudinal amplitude functions of 

the cross-section shape functions, (iii) 0
jW  is a vector whose components are the normal stress resultant 

profiles associated with uniform internal forces and bending moments j, (iv) Bs is a matrix associated 

with the elastic strain energy stored in the translational and rotational springs, (v) jX  is a geometric 

stiffness matrix associated with the pre-buckling longitudinal normal stresses and (vi) C, Bf, D and E 

are linear stiffness matrices, associated with several cross-section mechanical properties, namely 

(vi1) primary/secondary warping, (vi2) transverse extension/flexure, (vi3) plate shear distortion/torsion and 

(vi4) membrane/flexural Poisson effects – the various matrix components are given by the expressions 
 

  
2

3

)12(1

M F

ik ik ik i k i k

b b

E t
C C C E t u u ds w w ds


   

   (5) 

 

 
f

, , , ,2 2

3

1 12(1 )

M F

ik ik ik i s k s i ss k ss

b b

E t E t
B B B v v ds w w ds

 
   

    (6) 

 

 

3

, , , ,( )( )
3

M F

ik ik ik i s i k s k i s k s

b b

Gt
D D D Gt u v u v ds w w ds        (7) 

 

 

3

, ,2 21 12(1 )

M F

ik ik ik i k s i k ss

b b

Et Et
E E E u v ds w w ds

 

 
   

    (8) 

 

  ( )jik j i k i k

jj b

E t
X u v v w w ds

C
   ,   (9) 

 
with Cjj related to 0

jW  by means of 
 

  
0 0

,j jj j xxW C   ,   (10) 
 

where (i) superscripts ( )M and ( )F denote membrane and flexural terms, (ii) E,  and G are the steel 

Young’s modulus, Poisson’s ratio and shear modulus, (vi) b is the cross-section mid-line overall width 

and (vii) 
0
,j j xxu   stands for the pre-buckling axial displacement field. 

 

The presence of elastic constraints is taken into account through matrix Bs, which is given by 
 

  
T T T

,

0 0 0

( ) ( ) ( ) ( ) ( ) ( )
TN TG R

P P P P s P ,s Ps s s s s s
  

  

    

    s

TN TG RB w K w v K v w K w  ,   (11) 
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where (i) matrices v(SP), w(SP) and w,s(SP) contain the transverse membrane and flexural displacements 

and flexural rotations at point SP, where the displacement/rotation restraint  is located 

( ( ) /P i P iS s s b ), (ii) TNK , TGK  and RK  are diagonal matrices whose non-null components correspond 

to the translational and rotational spring stiffness values of the restrained wall segments (KTN, KTG, KR), 

(iii) TN, TG and R are the total numbers of translational (normal and tangential) and rotational 

springs. Since, in Eq. (11), the generalized forces associated with springs are calculated by means of 

the shape functions, this approach is more accurate than that recently proposed by Araujo et al. (2021), 

who adopted wall segment in-plane rigid-body translations and rotations to determine Bs. 

 

Because the cross-section displacement field is expressed as a linear combination of structurally 

meaningful deformation modes, GBT analyses involve solving equilibrium equation systems written 

in a very convenient modal form, which leads to solutions providing in-depth insight on the member 

structural response under consideration. The performance of a buckling analysis of a restrained member 

involves (i) a (modified) cross-section analysis, to obtain the constrained deformation modes and 

corresponding mechanical properties, and (ii) a member analysis, i.e., the solution of the buckling 

eigenvalue problem followed by the (modal) interpretation of the results determined (critical 

loads and buckling mode shapes). 

 

2.1 Cross-section Analysis 

Although the conventional cross-section analysis (no restraints) is by now trivial (e.g., Schardt 1989, 

Silvestre & Camotim 2002, Dinis et al. 2006, Bebiano et al. 2015), its extension to restrained members 

with open cross-sections exhibiting branching nodes (those dealt with in this work, namely I-section 

steel beams restrained by concrete slabs) poses some difficulty. In order to overcome this difficulty, one 

must (i) identify and separate the node-based elementary deformation mode families of the 

unrestrained cross-section, which constitute the building blocks for the determination of the final 

(structurally meaningful) deformation modes, as proposed by Bebiano et al. (2015), (ii) incorporate 

the restraints (elastic springs) in matrix B, which stems from wall bending, and (iii) determine and 

characterize the constrained deformation modes, as described by Araujo et al. (2021)5. 

 

The cross-section analysis procedure starts with a cross-section discretization involving natural 

and intermediate nodes. While the former are mandatory and located at all wall mid-line intersections 

and free edges, the later are discretionary (intended to refine the cross-section discretization) and 

located within the wall mid-lines (subdividing the walls into wall segments). Four degrees of freedom 

(three associated with the translations along the x, s and z axes, and one rotation about the x axis) are 

assigned to each node, and an initial deformation mode basis is generated by using (i) linear functions 

for the displacements along x and y, and (ii) cubic Hermite polynomials for the displacements along z. 

This procedure, whose concepts and operations are described and illustrated in detail by Bebiano et al. 

(2015), subdivides the whole deformation mode set into various subsets (or “families”), according to 

the nature of the deformations involved. Initially, elementary deformation modes, associated with the 

imposition of single unit nodal DOFs, are determined, using the appropriate shape functions 

mentioned earlier and viewing the cross-section as an adequately restrained plane frame model. 

These elementary deformation modes must be combined and organized according to their distinct 

                                                 
5 The choice of the procedure developed by Bebiano et al. (2015) is due to the fact that it (i) can be numerically implemented 

in a systematic and straightforward fashion, and (ii) provides a rational set of elementary deformation modes hierarchically 

organized into several families, each exhibiting well defined mechanical characteristics. 
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mechanical natures, which are directly related to the particular combination of node and imposed unit 

displacement/rotation types – namely (i) Vlasov modes (deformation modes complying with Vlasov’s 

assumptions of null membrane shear strains and transverse extensions), (ii) Shear modes (non-Vlasov 

deformation modes with null transverse extensions) and (iii) Transverse Extension modes (non-

Vlasov deformation modes with membrane transverse extensions). 
 

Once the cross-section shape functions (ui(s), vi(s) and wi(s)) of the elementary deformation 

modes that satisfy Vlasov’s hypothesis are known6, it becomes possible to calculate matrices B, 

C, D (linear matrices) and 1X  (geometric matrix associated with uniform compression)7  recall 

that the elastic strain energy stored in the springs is accounted for by matrix 
s

B  (Eqs. (4) and (11)). 

Fully populated matrices (highly coupled equilibrium equations) are obtained, whose components 

have no obvious/clear structural meaning. 
 

Lastly, as done for the identification of the cross-section deformation modes (final shape functions), 

( )ku s , ( )kv s , ( )kw s , and for the calculation of the associated cross-section modal mechanical and 

geometrical properties ( ikC , ikB , ikD , ikE , jikX ), the methodology adopted in this work is that recently 

proposed by Araujo et al. (2021) for restrained cross-sections. It requires (i) solving one, two or three 

auxiliary eigenvalue problems, involving matrices B, C, D and 1X  (all calculated with the shape 

functions of the Vlasov’s elementary deformation modes) and (ii) performing “cross-section 

rotation analysis procedures” for some eigenvectors obtained from the first auxiliary eigenvalue 

problem  recall that the conventional GBT cross-section analysis procedure (e.g., Schardt 1989, 

Silvestre & Camotim 2002, Dinis et al. 2006, Bebiano et al. 2015) involves solving three auxiliary 

eigenvalue problems whose eigenvectors are the standard/unconstrained deformation modes. 

 

In order to illustrate the unique features of the procedure described, consider the steel (E=200GPa and 

=0.3) branched open cross-section shown in Fig. 3(a) – its dimensions and GBT discretization are 

also depicted. For the discretization shown, the GBT cross-section analysis leads to set of 18 deformation 

modes. As for Fig. 3(b), it provides the unrestrained (R0) and restrained (R1 and R2) cross-sections, as 

well as the spring stiffness values. For each of them, Fig. 4 (i) shows the in-plane shapes of the first 

eight deformation modes and (ii) provide the corresponding kkC , kkB , kkD  and kkE  (diagonal) matrix 

components – the observation of the results displayed in this figure leads to the following remarks: 

(i) It is possible to assess very clearly the influence of the constraints on the deformation mode shapes 

and corresponding mechanical properties. 

(ii) The kkB  values concerning the constrained rigid-body deformation modes are either null (like 

their unconstrained counterparts) or positive, depending on whether they involve or not spring 

deformations. For instance, 22B  of cross-section R1 and 44B  of cross-section R2 stem from the 

elastic strain energy stored in the translational and rotational springs, respectively. 

                                                 
6 Note that the initial shape functions are determined before the elastic restraints are taken into account, which involves a 

simple and well-known numerical implementation that requires a low computational effort. 
7 Naturally, it is also possible to include the elementary shear and transverse extension deformation modes and calculate 

the mechanical properties of these modes for the restrained cross-sections. However, since their cross-section analysis is more 

complex and these deformation modes do not come into play in buckling analysis of members subjected to uniform 

internal forces and moments (i.e., they have no bearing on the work reported in this paper), it was decided to consider 

here only the Vlasov’s modes (see, for instance, Basaglia & Camotim 2013 and Bebiano et al. 2015). Restrained members 

under arbitrary loadings will be addressed in the future. 
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 (a) (b) 

Figure 3: (a) Cross-section mid-line dimensions and GBT discretisation, and (b) schematic representations of the 

unrestrained (R0) and restrained (R1 and R2) cross-sections 

 

R0 

 
 

  
 

R1 

 
 

  
 

R2 
 

 

 

Figure 4: Eight most relevant deformation modes and their components kkC , kkB , kkD  and kkE  for the unrestrained (R0) and 

restrained (R1 and R1) cross-sections – dimensions in cm, Young and shear moduli in kN/cm2 
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(iii) Because cross-section R1 contains constraints that partially restrain torsion and minor-axis 

bending, its deformation modes 3 and 4 (global deformation modes in unconstrained cross-

sections) deformation combine global, distortional and local deformations. 

(iv) While the cross-section R2 constraints do not restrain major and minor-axis bending (modes 2 and 

3) and torsion (mode 4 on an elastic foundation), the cross-section R1 constraint only does not 

restrain major-axis bending (mode 2 on an elastic foundation) – thus, C22, C33 and D44 are 

practically identical for cross-sections R0 and R2, and C22 is equal for cross-sections R0 and R1. 

 

2.2 Member Analysis 

After performing the cross-section analysis, one obtains the member GBT system of adjacent 

equilibrium equations, which (i) is expressed in modal form as 
 

  0

, , , ,
( ) 0ik k xxxx ik ki ik k xx ik k jik j k x x

C D E E B X W              (12) 

 

and, together with the adequate end support conditions, (ii) defines the buckling eigenvalue problem 

to be solved. It is worth mentioning that all the GBT buckling results presented in this paper concern 

simply supported members (end cross-sections locally/globally pinned and able to warp freely) and 

were obtained through the application of Galerkin’s method with sinusoidal approximation functions 

(as done in Araujo et al. 2021). In order to be able to perform this same task for members with 

arbitrary support conditions, it is necessary to resort to GBT-based beam finite elements, such as 

that developed in Silvestre & Camotim (2003). 

 

One of the main features of GBT-based buckling analysis is the possibility of obtaining modal 

participation diagrams, which enable the assessment and quantification of the contributions of 

each deformation mode to the member buckling modes. It should be noted that the participation 

factor of deformation mode k to a member buckling mode is obtained as the ratio between (i) the 

strain energy associated with the contribution of this deformation mode and (ii) the sum of such 

strain energies associated with all the deformation modes participating in the buckling mode  

this is the approach adopted in the program GBTUL (Bebiano et al. 2018). In previous works 

(e.g., Camotim & Basaglia 2013), the participation factor of deformation mode k was obtained as 

the ratio between (i) the area under the ( )k x plot and (ii) the sum of such areas under the plots 

concerning all the deformation modes participating in the buckling mode. 

 

In order to validate and illustrate the application and potential of the GBT-base buckling analysis 

based on constrained deformation modes, numerical results are presented and discussed next. 

They concern the buckling behavior of an uniformly compressed column and a beam subjected 

to hogging bending moments, both (ii) exhibiting the branched open cross-section whose 

geometry, dimensions and GBT discretization are given in Fig. 3(a), (iii) made of steel 

(E=200GPa and =0.3) and (iv) with pinned end sections that can warp freely  while the 

column is restrained by constraint R3, the beam is braced by constraint R4 (see Fig. 5(a). The 

validation of the GBT-based buckling results (critical buckling loadings and mode shapes) is 

made through the comparison with values yielded by the programs GBTUL2.0 (conventional 

GBT, Bebiano et al. 2018) and CUFSM (Finite Strip Method, Li & Schafer 2010). Note that 

program GBTUL 2.0 performs standard cross-section analyses (no restraints considered), which 

means that the deformation modes determined concern the unrestrained member cross-section – 

https://www.sciencedirect.com/science/article/pii/S0263823117310194#bib3
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the influence of the restraints (elastic springs) is incorporated only at the member analysis stage 

(as constraint equations – see Camotim et al. 2008). 

 

For the R3 and R4 restrained cross-sections, Fig. 5 (b) displays the 9 first constrained deformation 

modes obtained by means of the proposed cross-section analysis procedure (mode 1 stands for axial 

extension)  for comparison purposes, note that Fig. 4 depicted the (conventional) deformation modes 

of the unrestrained cross-section R0. Using a single half-wave sinusoidal function to approximate 

the mode amplitude functions ( )k x  and performing buckling analyses for a wide range of 

lengths (L) leads to the column and beam signature curves shown in Figs. 6 and 7, respectively. 

These curves provide the variation of the critical buckling load (Pcr) and moment (Mcr) with the 

member length L (logarithmic scale), concerning the unrestrained (dashed curve) and restrained 

(solid curves) members, which can be compared with values yielded by the programs GBTUL 

(solid circles) and CUFSM (symbols +). The local minima of the signature curves correspond to 

critical loads/moments associated with either local, distortional or lateral-distortional buckling 

(no local minimum exists associated with global buckling). Figs. 6 and 7 also show member 

modal participation diagrams, based on both the constrained (top) and unconstrained (bottom) 

deformation modes. Concerning these buckling results, it is worth pointing out that: 

(i) First of all, the buckling loads and moments yielded by the FSM and the two GBT buckling 

analyses (including all deformation modes) virtually coincide – all differences are below 2.8%.  

(ii) The signature curves of the restrained members exhibit local minima corresponding to 

critical buckling loads/moments associated with local (L), distortional (D) and lateral-distortional 

(LD) modes, (i) at LL=11 cm, LD=129 cm and LLD=683 cm, for the column, and (ii) at LL=9 cm, 

LD=101 cm and LLD=574 cm, for the beam. 

(iii) While the local minima concerning L and D buckling virtually coincide for the unrestrained 

and restrained members (column and beam), those concerning LD buckling mode do not occur in  

 

 
 

 
 (a) (b) 

Figure 5: (a) Schematic representations of the restrained R3 and R4 cross-sections and (b) configurations of the 

corresponding 9 first constrained deformation modes 
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 the unrestrained members  in the column and beam, constraints R3 and R4 change the buckling 

mode nature from lateral-flexural (LF) and lateral-torsional (LT) to lateral-distortional. 

(iv) The L (both members) and D (beam) buckling behaviours are not affected by the restraints. On the 

other hand, constraint R3 provides restraint against distortional buckling in the column – in fact, 

the distortional critical buckling load increases by about 30%. 

(v) The modal participation diagrams shown in Figs. 10 and 11 readily show that the constrained 

deformed modes are much more efficient than their unconstrained/conventional counterparts in 

assessing the column and beam buckling behaviours. Indeed, it is possible to obtain 

accurate member buckling results by including in the GBT buckling analyses just one or 

two constrained deformation modes, regardless of whether buckling occurs in distortional 

or lateral-distortional modes. 
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Figure 6: Signature curves Pcr vs. L of columns R0 and R3, modal participation diagrams of column R3, based on 

constrained and unconstrained GBT deformation modes, and critical buckling mode shapes. 
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Figure 7: Signature curves Mcr vs. L of beams R0 and R4, modal participation diagrams of beam R4, based on constrained and 

unconstrained deformation modes, and critical buckling mode shapes. 

 

3. Restrained I-sections: GBT-Based Buckling Analysis and Kinematics 

Although the current Eurocode 4 (CEN 2004) does not prescribe any expression to determine elastic 

LDB moments (Mcr) of steel-concrete composite beams, it recommends their calculation on the basis 

of the so-called “inverted U-frame” mechanism, consisting of two or more parallel steel profiles plus 

the overlapping concrete slab (e.g., CEN 2004). In this case, as shown in Fig. 8, the buckling behaviour 

of the I-section steel member is influenced by the slab flexural stiffness (related to rotation 1), shear 

connection flexibility (related to rotation 3) and, especially, web bending (related to displacement 

2). Since routine design approaches require simple procedures, the current European specification 

includes a simplified model of the U-frame mechanism: an elastically restrained I-section steel beam 

with the diaphragm restraints and rotational stiffness, provided by the concrete slab to the steel 

member, comprising continuous translational (kt) and rotational (kr) springs at the top flange-web corner 

(see Fig. 1(b)). As described in Dietrich et al. (2019), it is assumed that the slab fully restrains the  
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Figure 8: Deformations associated with lateral-distortional buckling 

 

top flange lateral displacement (i.e., kt = ∞), whereas kr is the joint stiffness of three springs connected in 

series and representing the cracked concrete flexural stiffness (k1), steel web flexural stiffness (k2) and 

shear connection stiffness (k3) – Eurocode 4 (CEN 2004) neglects the last one in sections with plane 

unstiffened webs (k3 is much higher than k1 and k2) (Amaral et al. 2018). Therefore, the steel beam 

rotational stiffness kr per unit length is given by the expression 
 

 

1

1 2

1 1
rk

k k



 
  
 

 .   (13) 

 

3.1 GBT-based Buckling Analysis 

In the context of GBT-based buckling analysis of steel-concrete composite beams using the simplified 

model previously mentioned (with springs), the web deformation is already taken into account by the 

formulation unique modal features  the rotational stiffness kr, taken as the concrete slab flexural 

stiffness (k1), is obtained from 
 

 
1

( )cs
r

EI
k k

a


   ,   (14) 

 

where (i) 𝛼 is a coefficient accounting for the position of the beam in the floor system, (ii) (𝐸𝐼)cs 
is the cracked flexural stiffness per unit width of the concrete slab and (iii) 𝑎 is the spacing 

between parallel beams. 

 

When the steel-concrete composite beam is under hogging bending moments, the concrete slab is 

acted by tensile stresses and, therefore, must be deemed cracked  its strength stems only from 

the steel rebars. The presence of the steel rebars (with total area As) under tension shifts the cracked 

cross-section neutral axis from the I-section centroid to a position closer to the slab (Gc), the 

increasing the web compressed width and reducing the bottom flange compressive stress. Neglecting 

shear lag effects and shear connection slip, the elastic longitudinal normal stress distribution 

acting on the composite beam steel I-section can be recovered by adding uniform compressive 

stresses to the stresses acting on the isolated steel cross-section of the simplified model (instead 

of considering the steel rebars), as shown Fig. 9 (e.g., Calenzani 2012, Hanswille et al. 1998, 

Dias et al. 2019, Amaral et al. 2018). Therefore, to achieve the pre-buckling stress equivalence 

in the simplified method adopted in the constrained-mode GBT analysis considered in this work,  
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Figure 9: Equivalence between the stress distributions acting in (i) the composite cross-section (with the concrete slab 

cracked) and (ii) the simplified model (steel I-section restrained by springs). 

 

the elastic bending moment Mz and longitudinal compression Nx must be included as 0

2W  and 
0

1W  in (12)  they are calculated from the expressions 
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where (i) Mc is the moment acting on the composite cross-section, (ii) Iz,a is the second moment of 

area of the steel I-section, about its z axis, (iii) ,z cI   is the second moment of area of the composite 

cross-section at the hogging moment region (taking into account the steel I-section and concrete 

slab rebars), about the z´ axis, (iv) Aa is the steel I-section area and (v) y  is the distance between 

the neutral axes of the steel I-section and the composite cross-section. 

 

In order to clarify some behavioral features associated with the LDB of I-section steel beams elastically 

restrained by concrete slabs, constrained-mode GBT buckling analyses of simply supported beams 

(end cross-sections locally/globally pinned and free to warp) under uniform hogging bending moments 

were performed. The corresponding results, concerning E=200GPa and =0.3, are presented and 

discussed below  the relevant geometrical properties and rotational stiffness values are presented in 

Table 1. Note that two cross-section dimensions are considered (differing only in the flange thickness  

tf =12.5, 45 mm), as well two rotational stiffness values (kr =108, 5440 kNcm/rad/cm – values 

reported in Calenzani et al. (2012) and obtained for typical concrete slabs) – the cross-section 

dimensions were carefully selected to ensure a high susceptibility to both web single and double 

curvature lateral-distortional deformations. At this stage, it is worth noting that the effects stemming 

from non-uniform bending, point of load application (transverse loads are usually applied on top of the 

concrete slab), shear lag, concrete creep or crack propagation are neglected in this work  considering 

them requires more realistic models, such as those proposed in Henriques et al. (2016, 2020), which 

include pre-buckling states due to non-uniform bending, visco-elasticity and strain decomposition  
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Table 1: Rotational stiffness values and geometrical properties of the concrete slabs and restrained steel I-sections. 

Model 
bw 

(mm) 

bf 

(mm) 

tw 

(mm) 

tf  

(mm) 

Iz,a 

(cm4) 

Aa 

(cm2) 

As 

(cm2/m) 

y  

(cm) 
,z cI   

(cm4) 

kr 

(kNcm/rad/cm) 

B-108-1.25 

800 300 8 

12.5 

152568 138 

4.07 2.279 166809 108 (a) 

B-5440-1.25 12.5 13.75 8.108 206985 5440 (b) 

B-108-4.5 45 

461147 330.4 

4.07 1.016 476890 108 (a) 

B-5440-4.5 45 13.75 3.876 525510 5440 (b) 

(a) Fully concrete slab with spacing between beams and slab height equal to 4000 mm and 100 mm, respectively. 
(b) Composite slab with spacing between beams and slab height equal to 2000 mm and 200 mm, respectively. 

 
procedures. Such features were not considered in this work, since its main purpose is to use 

constrained GBT deformation modes (i) to shed fresh light on the LDB kinematics and mechanics, 

and (ii) to obtain reasonably accurate LDB moments with a reduced computational effort. 

 

Through a GBT discretization involving 9 intermediate nodes (2 on each flange and 5 on the web), 

17 constrained deformation modes are obtained – Figs. 10 to 13 display the 10 first constrained 

deformation modes (mode 1 is the axial extension). In particular, it is observed that the constrained 

deformation modes provide valuable information about the restrained I-section buckling behavior 

prior to performing any its analysis. For instance, the lack of torsion and lateral-flexural deformations 

modes implies that LDB is to be expected  this is the case of all the beams analyzed in this section. 

 

 
Figure 10: Constrained deformation modes 2-10 of the restrained beam B-108-1.25.  

 

 
Figure 11: Constrained deformation modes 2-10 of the restrained beam B-5440-1.25. 
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Figure 12: Constrained deformation modes 2-10 of the restrained beam B-108-4.5.  

 

 
Figure 13: Constrained deformation modes 2-10 of the restrained beam B-5440-4.5.  

 

Figs. 14 and 15 make it possible to compare the signature curves Mcr vs. L (logarithmic scale) concerning 

the unrestrained (kt = ∞ and kr = 0) and restrained (kt = ∞ and kr =108, 5440 kNcm/rad/cm) beams 

with tf =12.5 mm and tf = 45 mm, respectively. Moreover, the buckled mid-span cross-sections of 

beam with lengths corresponding to either (i) signature curve local minima or (ii) selected values 

(when no local minimum exists), as well as the restrained beam modal participation diagrams (based 

on the constrained deformation modes), are also displayed. In order to validate the proposed approach, 

based on GBT constrained deformation modes, Figs. 14 and 15 also include Mcr values yielded by the 

programs GBTUL and CUFSM. Concerning these buckling results, it is worth pointing out that: 

(i) Once again, there is an excellent agreement between the critical moments provided by the 

FSM and two GBT buckling analyses  the maximum difference between the three Mcr 

value sets is 2.6%. 

(ii) The signature curves of the beam pairs with tf = 12.5 mm (B-108-1.25 and B-5440-1.25) and 

tf = 45 mm (B-108-4.5 and B-5440-4.5) exhibit local minima, associated with web local 

buckling, at L=63 and 60 cm, and L=39 and 42 cm, respectively. The compressed flange 

rotates in the first beam pair, which does not happen in the second beam pair – all buckling 

mode shapes involve participations from at least three constrained deformation modes. 

(iii) The restrained beam local critical buckling moments are visibly smaller than their unrestrained 

beam counterparts. The critical buckling moment drop is around 3.8% in beams B-108-1.25 

and B-108-4.5, and more pronounced in beams B-5440-1.25 and B-5440-4.5 (around 13.2%) – 

these drops, which are due to the presence of the rebars under tension (thus increasing the 

web compressed width), are also reflected in the decrease in the amount web bending 

appearing in the buckling mode shapes. 
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Figure 14: Signature curves Mcr vs. L , critical buckling mode shapes and modal participation diagrams (based on constrained 

deformation modes) of beams B-108-1.25 and B-5440-1.25. 

 

(iv) In the restrained beams, the constraints due to the concrete slab change the buckling mode nature 

from lateral-torsional to lateral-distortional – the corresponding local minima occur for 

L=1056 and 1001 cm (beams B-108-1.25 and B-108-4.5  web single curvature), and for L=1272 

and 1206 cm (beams B-5440-1.25 and B-5440-4.5  web double curvature). 

(v) Concrete slabs provide a rotational restraint that is beneficial with respect to LDB. Indeed, the 

GBT-based (with constrained deformation modes) critical buckling moment increases by 81% (B-

108-1.25), 135% (B-5440-1.25), 39% (B-108-4.5) and 50% (B-5440-4.5) – note that the increase 

is larger when web single curvature is involved. 

(vi) By looking at the modal participation diagrams, it can be readily concluded that it is possible to 

obtain accurate critical LDB moments by including in the GBT buckling analyses either just one 

(buckling involving web single curvature  mode 3 in beams B-108-1.25 and B-5440-1.25) or 

two (buckling involving web double curvature  modes 3 + 4 in beams B-108-4.5 and B-108-4.5)  
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Figure 15: Signature curves Mcr vs. L , critical buckling mode shapes and modal participation diagrams (based on constrained 

deformation modes) of beams B-108-4.5 and B-5440-4.5. 

 

constrained deformation modes. This feature plays a pivotal role in the development of analytical 

buckling formulae to calculate critical LDB moments, which is addressed in Section 4. 

 

3.2 Lateral-distortional Kinematics 

For illustrative purposes, consider the LDB behaviors of beams B-108-1.25 and B-108-4.5, which 

involve web single (S-LDB) or double (D-LDB) curvature, respectively. Figs. 16 and 17 show 

how the modal participations make it possible to quantify the contribution of each GBT cross-

section deformation mode to the beam LDB modes. This GBT feature is crucial to enable an 

accurate determination of the lateral-distortional deformations, as well as to acquire an in-depth 

understand of the associated kinematics. It is worth noting that: 

 

 



 19 

 
Figure 16: Beam B-108-1.25: in-plane and warping displacements, and GBT modal decomposition of the S-LDB. 

 

 
Figure 17: Beam B-108-4.5: in-plane and warping displacements, and GBT modal decomposition of the D-LDB. 

 

(i) The single curvature lateral-distortional deformation is characterised by the simultaneous 

occurrence of (i1) a rigid-body rotation of the bottom flange about the top web-flange 

junction, due to a non-negligible linear variation of the warping displacements, and (i2) the 

transverse bending of the web, due to the wall kinematic compatibility at the web-flange 

junctions. These transverse and warping displacements are captured almost exclusively by the 

GBT constrained deformation mode 3. 

(ii) The web double curvature lateral-distortional deformation combines two GBT constrained 

deformation modes, namely a dominant lateral-distortional mode 3 and a constrained local 

mode 4 – the latter involves (ii1) web transverse bending, (ii2) no in-plane displacements of the 

web-flange junctions (natural internal nodes) and (ii3) null warping displacements. 

(iii) By looking at the constrained deformation modes 3 and 4, it is possible to clearly identify the 

key degrees of freedom governing the lateral-distortional deformation  (iii1) the lateral 

displacement of the (unconnected) bottom flange and (iii2) the flange rotations. 

 

As done by Silvestre & Camotim (2010), in the context of unrestrained lipped channel cross-sections 

and to enable a better understanding of the distortion mechanics, a set of kinematical assumptions is 

also adopted in this work. They simplify both (i) the procedure to determine lateral-distortional 

displacements in restrained I-sections and (ii) the final solution, with little impact on its accuracy. 

Such kinematical assumptions are: 

(i) Null transverse extension (ss=0) in each cross-section wall, which implies / 0v s   . 

Then, it becomes possible to conclude that the transverse v-displacement must be uniform 

within each wall, i.e., and does not vary with the mid-line coordinate s. 
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(ii) Null shear strain (xs=0) in each cross-section wall mid-plane, which implies / /u s v x     . 

This assumption leads, straightforwardly, to 
 

 u vds   .   (17) 
 
(iii) The walls exhibiting significant warping displacements u(s) do not bend transversely, i.e., undergo 

only rigid-body motions  their transverse bending curvatures are null ( 2 2/ 0w s   ). 

(iv) The total warping is primary (secondary warping is neglected) and deemed uniform along the 

wall thickness (z direction). 

 

The above first two assumptions mentioned concern the wall membrane behaviour and are widely 

adopted in the context of FSM (e.g., Li & Schafer 2010) and GBT (e.g., Schardt 1989, Silvestre & 

Camotim 2002 and Dinis et al. 2006) analyses. Moreover, since (i) the lateral/flexural and torsional 

stiffness values provided by the concrete slab are visibly larger than those provided by the (connected) 

top flange, and (ii) the shear connection deformation is neglected, it can be assumed that transverse 

bending does not occur on the top flange  it rigidly “follows” the slab rotation (e.g., Zhou et al. 2016 

and Bradford 1998). 

 

In order to obtain simplified (but accurate) expressions to determine the lateral-distortional 

displacement field, it is necessary to separate the key degrees of freedom (DOFs) characterising the 

GBT constrained deformation modes 3 (lateral-distortional) and 4 (local), through the imposition of 

unit displacements and/or rotations. This is done by first looking at the simplest possible GBT cross-

section analysis, which involves the six natural nodes (two internal and four end) and a total of 24 

DOFs (4 per node – see Fig. 18(a)) and realising that this number is clearly excessive for a 

simplified model. However, on the basis of the (i) adopted kinematical assumptions (described above) 

and (ii) observation of the GBT constrained deformation mode shapes displayed in Figs. 16 and 17, it 

is possible to obtain a simplified characterisation of the displacement fields involved without 

performing a GBT cross-section analysis. It requires imposing localised displacement restraints 

on a plane frame finite element model formed by the three cross-section walls, with local coordinate 

axes xi, si, zi and displacement components ui, vi, wi, as described next: 

 

 
 (a) (b) (c) 

Figure 18: (a) Degrees of freedom assigned to each node in a GBT discretization and cross-section plane frame models used 

to characterize the (b) lateral-distortional and (c) local deformations. 
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(i) Characterize the lateral-distortional deformation through three nodal DOFs: (i1) lateral 

displacement of the (unconstrained) bottom flange (1LD), (i2) rotation of the bottom flange-web 

junction (1LD) and (i3) rotation at the top flange-web junction (2LD) – in addition, as shown 

in Fig. 18(b), three in-plane transverse displacements are fully restrained. 

(ii) Characterize the local deformation through two nodal DOFs: (ii1) rotation of the bottom flange-

web junction (1L) and (ii2) rotation of the top flange-web junction (2L) – in addition, as shown 

in Fig. 18(c), four in-plane transverse displacements are fully restrained. 

 

On the basis of the previous remarks, the following procedure can be adopted to determine the key 

DOFs defining the lateral-distortional and local displacement fields: 

(i) Using one 2-node element with two DOFs per node and adopting Hermite cubic 

polynomials to approximate the web flexural displacement function (see Fig. 19), determine the 

web elementary stiffness matrix [ ]wK , given by 
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(ii) Assemble the system of linear equilibrium equations (cast in matrix form) partitioned with respect 

to the sets of specified and unspecified displacements and/or rotations (e.g., Reddy 2006), i.e., 

 

 
Figure 19: Degrees of freedom associated with flexural displacement function of the web approximated through Hermite 

cubic polynomials 
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 1{ } [ ] ({ } [ ]{ })uu urU K F K d   ,   (20) 
 
 where (ii1) {d} is the displacement vector of specified (known) variables, (ii2) {U} is the 

displacement vector of unspecified (unknown) variables, (ii3) {F} is the vector of applied 

forces, (ii4) [Kuu] is the (symmetric) condensed stiffness matrix and (ii5) [Kur] is a matrix 

containing cross-stiffness terms associated with the specified displacements/rotations. 

(iii) For lateral-distortional deformation: by imposing the boundary conditions shown in Fig. 18(b), 

with displacement 1LD = 1, in system (20), the rotations 1LD and 2LD are obtained as 
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 ,   (21) 

 
 where F2 = F4 = 0, d1 = 1LD = 1 and d3 = 0. 

(iv) For local deformation: by imposing the boundary conditions shown in Fig. 18(c), with 

displacement 1L = 1, in system (20), the rotation 2L is obtained as 
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 ,   (22) 

 
 where F4 = 0, d1 = d3 = 0 and d2 = 1L = 1. 

 

After defining the key DOF values, the next step is to derive the displacement and rotation functions 

along the cross-section mid-line. Since the I-section is doubly symmetric, it is easily concluded 

that, in the lateral-distortional deformation, the bottom flange warping displacement profile 
3 ( )LDu s  is anti-symmetric and varies linearly with the mid-line coordinate s – thus, the membrane 

transverse displacement ( 3

LDv ) is constant in this wall. On the other hand, the transverse flexural 

displacements w(s) can be approximated by means of (i) linear functions 1 ( )kw s  and 3 ( )kw s , 

respectively for the top (connected) and bottom (unconnected) flanges (recall the rigid-body 

motion assumption), and (ii) an Hermite cubic polynomial 2 ( )kw s , for the web. Then, the 

displacement profiles are given by (0  s  bw, for the web, and 0  s  bf, for the flanges) 

(i) For lateral-distortional deformation (with 1LD = 1): 
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 Note that, when kr  0 in (25), the lateral-torsional (LT) deformation, associated with a 

centre of rotation located at the top flange-web junction, is characterised by 
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(ii) For local deformation (with 1L = 1): 
 

 1 2 3 0L L Lu u u    (30) 
 

 1 2 3 0L L Lv v v    (31) 
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4. Analytical Formulae 

Denoting (i) the bifurcation stress parameter of the restrained steel I-section beam bifurcation by b and 

(ii) the corresponding compressive load and bending moment reference values by Nx and Mz, bifurcation 
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occurs when the applied stress resultants reach the values Na,b = bNx and Ma,b = bMz. Note that, if a 

unit Mc value is imposed in Eqs. (15) and (16), b provides the bifurcation moment acting on the 

composite cross-section (Mc,b). Then, the GBT equation subsystem concerning the lateral-distortional 

(LD) and local (L) deformation modes, defined in Section 3, reads 
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 ,   (33) 

 
where (i) 

1[X ] and 
2[X ] are geometric stiffness matrices, (ii) [C], [D], [E] and [B] are linear stiffness 

matrices and (iii) Nx and Mz are positive for axial compression and hogging bending moments. 

Adopting the geometrical parameters 
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the determination of cross-section modal mechanical properties and cross-section geometric stiffness 

components leads to 

(i) Matrix [C] – related to warping displacements: 
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 where, as mentioned above, 
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 the secondary warping involved in lateral-distortional deformation is neglected (flexural term in 

Eq. (5)) and it is recalled that local deformation involves no primary warping (membrane 

term in Eq. (5)). 

(ii) Matrix [D] – related to torsional deformation: 
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 and it should be noted that the membrane shear distortion is deemed null (first term in Eq. (7)). 

(iii) Matrix [E] – related to flexural Poisson effects: 
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 where 
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 and it is readily observed that Vlasov’s null transverse extension assumption is adopted 

(i.e., the membrane term in Eq. (8) is null) and the transverse bending Poisson effects 

involved in the lateral-distortional deformation are neglected (flexural term in Eq. (8)), as 

admitted in Silvestre (2010). 

(iv) Matrix [B] – related to transverse bending of the walls and to the elastic spring stiffness: 
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 and it should be noted, once again, that the null transverse extension assumption is adopted. 

(v) Matrix 
1[X ] – associated with the pre-buckling uniform longitudinal stresses: 
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(vi) Matrix 

2[X ] – associated with the pre-buckling bending stresses: 
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Once functions ( )LD x  and ( )L x  are known, it is possible to obtain the formulae providing 

bifurcation stress estimates – such functions can be cast in the form 
 
 ( )LD LDd x   ( )L Ld x   ,   (47) 
 
where (i) LDd  and Ld  are deformation mode amplitudes and (ii) (x) is a unit shape function 

describing (exactly or approximately) their longitudinal variation. Introducing Eq. (47) in Eq. 

(33) and applying Galerkin’s method, with sinusoidal approximation functions, one is led to an 

eigenvalue problem for simply supported beams (end cross-sections locally/globally pinned and 

free to warp), expressed as 
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where  is the number of longitudinal half-waves exhibited by deformation mode. 

 

Solving analytically the eigenvalue problem defined by Eq. (48) leads to the web single/double 

curvature lateral-distortional bifurcation moment Mc.b (i.e., the lowest positive value of b if a unit 

pre-bifurcation value Mc is imposed), for a given L, 
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When lateral-distortional bifurcation involves exclusively web single curvature ( . .

S

c b c bM M ) the 

dimension of the eigenvalue problem (Eq. (48) is reduced to 1 and, therefore, the estimate of .

S

c bM  

is given by 
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Moreover, the critical length S

crL , associated with the minimum single curvature lateral-

distortional bifurcation moment . .min
S
c bM , is readily obtained by finding the relevant root of 

. / 0S
c bdM dL  , which is provided by the formula (for = 1) 
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On the other hand, the critical length ( crL ) corresponding to a minimum b (b.min. or . .minc bM , for 

a unit Mc value) associated with either LD + L deformations (i.e., web double curvature – D
crL ) or 

dominant (but not exclusive) LD deformations (i.e., web single curvature – S
crL ), is also the 

relevant root of / 0bd dL  . However, because Eq. (48) has dimension 2, function b(L) is highly 

non-linear (see Eq. (51)) and the exact value of this root cannot be determined analytically. In order to 

overcome this difficulty, an approximate and somewhat empirical procedure was adopted, in which the 

determination of the single or double curvature LDB moment must be preceded by an estimate of the 

longitudinal half-wave number () associated with the beam length L. This procedure is based on (i) the 

observation, for a rather large number of cases, that the difference between D
crL  and S

crL rarely exceeds 

15%, and (ii) the fact that S
crL  can be calculated/estimated analytically (using Eq. (54)). Its first step 

consists of finding the two positive integer numbers adjacent to the ratio / S
crL L   they are denoted 1 

and 2. Then, insert 1 and 2 in Eq. (49) and solve the two ensuing eigenvalue problems to obtain the 

corresponding bifurcation parameters b.1 and b.2, respectively. Finally, use the lowest value 

between b.1 and b.2 to estimate the lateral-distortional buckling moment. 

 

The eigenvector associated with b provides the participations of the LD and L deformation modes in the 

beam buckling mode, given by the strain energy percentages associated with each of the two modes, i.e.,  
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It is still worth noting that the GBT-based formulae incorporate genuine folded-plate theory, a feature 

that (i) ensures their accuracy and universality and (ii) makes it possible to overcome the limitations 

exhibited by the lateral-distortional buckling formulae currently available in the literature. While some 

of them are based on the assumption of fully fixed (connected) top flanges (e.g., Silvestre 2010 and 

Zhou et al. 2016), others do not cover the web double curvature case (e.g., Hanswille et al. 1998 

and Dias et al. 2019). Moreover, the decomposition of the GBT-based buckling solution into constrained 

lateral-distortional and local deformation modes provides in-depth insight into the mechanics 

involved. The elegance and usefulness of the approach proposed in this work stems from the fact that a 

single easy-to-use analytical formula enables researchers and engineers to obtain lateral-torsional (for 

0rk  ) and lateral-distortional (involving web single or double curvature) buckling moments of 

elastically restrained I-section beams, namely those appearing in composite steel-concrete beams. 

 

4.1 Illustration, Validation and Accuracy 

In order to illustrate the application, validate and assess the accuracy of the derived constrained-mode 

GBT-based formulae to estimate beam lateral-distortional buckling moments, they are applied next 
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to the restrained beams described in Table 1 and also an unrestrained beam with tf =12.5 mm (kt=∞ and 

0rk   – B-0-1.25), all with several lengths. Fig. 20 shows the variations of the buckling moment 

Mcr with the length L (logarithmic scale) provided by the analytical formulae (solid curves  with 

≥1 in Eq. (51))  the buckling mode half-wave numbers are given inside brackets. Besides the values 

yielded by the analytical formulae, Fig. 20 also includes, for validation and comparison purposes, solid 

circles corresponding to critical buckling moments obtained from GBT-based analyses (≥1) 

including all (non-constrained) deformation modes and performed in the GBTUL program. As for 

Fig. 21, it displays some beam buckled mid-span cross-sections (shapes and modal participations), 

together with their respective buckling moments, which (i) correspond to either critical lengths (local 

minima of the signature curves) or selected beam lengths (when no such minima exist), and (ii) are 

obtained by means of either the analytical formulae or conventional GBT buckling analyses. The 

observation of this set of results prompts the following remarks: 

(i) The critical buckling moment estimates are provided by the lower portions of the various individual 

bifurcation curves (associated with =1, =2, …), located between their intersection points. 

(ii) The GBT-based formulae yield accurate (ii1) lateral-torsional and lateral-distortional 

(involving web single or double curvature) buckling moments, and (ii2) associated critical 

lengths  the errors never exceed 1.0%. 

(iii) There is also very close agreement between the buckling mode shapes provided by the analytical 

procedure and those obtained through conventional GBT analyses. 

(iv) By looking at the modal participations, it is possible to obtain meaningful information about 

the lateral-distortional mechanics – indeed, it is possible to conclude that web double 

curvature plays a more relevant role in the buckling behaviour beam B-5440-4.5, since its 

buckling mode shape exhibits a larger contribution from local deformation (MPL = 21.2%). 
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Figure 20: Lateral-distortional buckling moment signature curves yielded by the analytical formulae and GBT analyses. 
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Figure 21: Critically buckled mid-span cross-sections based on analytical formulae and GBTUL deformation modes. 

 

Finally, an assessment of the LDB behavior of simply supported I-section steel beams with 

dimensions bw = 600 mm, bf = 200 mm, tw = 12.5 mm and tf = 16, 25, 45, 50 mm, and length L = 700 

cm, is presented next 8 . The steel beams are acted by uniform negative (hogging) bending 

moments and restrained by concrete slabs with (i) height 200 mm and (ii) top and bottom steel 

rebar areas of 11.25 cm2/m or 7.20 cm2/m  note that the influence of the steel rebars on the LDB 

behavior is also assessed. Moreover, three realistic rotational stiffness values are adopted, 

namely kr = 250, 500, 2500 kNcm/rad/cm. Table 2 shows the beam critical moment estimates, 

together with the respective longitudinal half-wave numbers and the modal participations of the 

associated LDB mode (LD and L deformation modes), provided by the GBT-based analytical 

formulae. The B-*-* beam models take into account the presence of the steel rebars, which are 

neglected by their B0-*-* counterparts. Table 2 also includes critical moment estimates provided 

by the formulae due to Silvestre (2010), Hanswille et al. (1998), Zhou et al. (2017) and Dias et 

al. (2019)9. For validation purposes, the buckling moment estimates obtained in this work are 

                                                 
8 Note that the I-sections differ only in the flange thickness. In steel-concrete composite bridges, steel I-girders with 

a flange thickness much larger than its web counterpart are not rare (e.g., Vayas & Iliopoulos 2014). 
9 The presence of the steel rebar is disregarded in the analytical models developed by Silvestre (2010). 
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also compared with values yielded by ANSYS (SAS 2013) SFEA10. Fig. 22 displays several 

critical buckling mode shapes obtained from either the proposed analytical formulae or the 

ANSYS SFEA. A close observation of this set of results prompts the following remarks: 

(i) There is an excellent agreement between the critical moments provided by the proposed 

analytical formulae and shell buckling analyses. Indeed, the average difference between the 

two sets of Mcr values is 1.8% (standard deviation of 0.012), with a maximum of 4.9% 

occurring for beam B0-250-5.0 –the small discrepancies probably arise from the thin-walled 

plate assumptions considered, leading to slightly different warping distributions in thick 

flanges, such as those exhibited by some of the beams analysed (tf = 45 and 50 mm). 

(ii) The buckling mode shapes obtained from the proposed analytical formulae and ANSYS 

analyses, shown in Fig. 22, are remarkably similar. Moreover, the modal participations 

yielded by GBT-based formulae provide insight on the web curvature behaviour – indeed, 

the LDB mode shapes with web single and double curvature exhibit very different L 

deformation mode contributions  about 1% in S-LDB and 13% in D-LDB. 

(iii) While the LDB mode shapes of the beams with tf = 16 and 25 mm (tf/tw = 1.28 and 2) exhibit 

web single curvature, those of beams with tf = 45 and 50 mm (tf/tw = 3.6 and 4) have web 

double curvature. 

(iv) The additional strength stemming from the presence of the steel rebars, and ensuing 

compressive stress reduction in the bottom flange, leads to an LDB moment increase value 

ranging from 5.7% (beam B-250-5.0) to 14.1% (beam B-2500-1.6). 

(v) As expected, the largest differences between the results provided by the SFEA and 

Silvestre’s model (Silvestre 2010), varying between 24% and 60%, are due to the fact that 

this model assumes a fully restrained top flange (i.e., 
r tk k  ) and web single curvature 

bending – therefore, it does not capture the buckling mode shapes of beams B0-250-1.6 and 

B0-2500-4.5, displayed in Fig. 22. 

(vi) Although Zhou’s model (Zhou et al. 2016) is able to capture S-LDB and D-LDB (e.g., 

beams B-2500-2.5 and B-2500-5.0 in Fig. 22), it also assumes a fully restrained top flange. 

Thus, errors below 10% are only achieved in beams buckling in LDB mode with very small 

(almost null) top flange rotation – thus, it does not capture the buckling mode shapes of beams B-

250-2.5 and B-500-4.5, shown in Fig. 22. 

(vii) The buckling moments yielded by the SFEA and the Hanswille’s (Hanswille et al. 1998) and 

Dias’ (Dias et al. 2019) models virtually coincide for the beams exhibiting S-LDB 

(differences below 3.5% – e.g., beams B-250-2.5 and B-2500-2.5). Conversely, the buckling 

moments of beams exhibiting D-LDB differ considerably, since errors range from 15% 

(beam B-500-4.5) to 30% (beam B-2500-5.0). 

(viii) Although the presence of web double curvature in the buckling mode shape may be barely 

perceptible to the naked eye (see Fig. 22), neglecting it can lead to unsafe designs of I-section 

steel beams restrained by concrete slabs, even for cross-sections with tf /tw  4.

                                                 
10 In the ANSYS SFEA, the beams are discretised by means of refined meshes of SHELL181 elements (ANSYS nomenclature: 

isoparametric 4-node shell elements), employed with the “full integration” option – 32 elements were considered along 

the cross-section mid-line (16 in the web and 8 per flange) and previous convergence studies showed that an element 

length-to-width ratio comprised between 1.0 and 2.0 leads to accurate results. 



 

Table 2: Restrained I-section beams (bw =600mm, bf =200mm, tw = 12.5mm) with L=7 m: LDB moments obtained by GBT-based formulae, ANSYS and other analytical formulae 
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ANSYS SFEA 

      
      

Figure 22: Critical buckling mode shapes obtained by GBT-based analytical formulae and ANSYS SFEA 

 

5. Conclusion 

This paper dealt with the derivation of an improved constrained-mode GBT-based approach, 

intended (i) to shed fresh light on the kinematics and mechanics of (web) single and double 

curvature LDB in I-section steel beams elastically restrained by concrete slabs, and also (ii) to 

enable the development of accurate analytical formulae to the calculate critical moments 

associated with these buckling phenomena. 

 

After deriving the GBT equilibrium equation system incorporating the elastic restraints/springs, 

the main concepts and procedures involved in determining the constrained deformation modes of 

open “branched” cross-sections were described and illustrated. Next, in order to clarify some 

behavioral features associated with the LDB of I-section steel beams elastically restrained by 

concrete slabs, results concerning the constrained-mode GBT buckling analyses of simply 

supported beams under uniform hogging bending moments were presented and discussed. For 

validation and assessment purposes, several results obtained with the proposed GBT-based 

approach were compared with values yielded by the programs GBTUL2.0 (conventional GBT) 

and CUFSM (finite strip method) – an excellent agreement was invariably found. 
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Finally, it was shown that using the decomposition of the GBT-based buckling solution, into 

constrained lateral-distortional and local deformation modes, made it possible (i) to obtain in-

depth insight into the mechanics underlying LDB, (ii) obtain simplified (but accurate) 

expressions for the lateral-distortional displacement field and (iii) derive analytical formulae 

providing critical buckling moment estimates. For validation and accuracy assessment purposes, 

these estimates were compared with “exact values” yielded by either conventional GBT or shell 

finite element analyses  an excellent performance was found in all cases. Moreover, critical 

buckling moment estimates obtained in this work were shown to compare favorably, both in 

accuracy and scope, with those provided by other analytical formulae available in the literature. 

 

Out of the various features of the proposed GBT-based approach to analyses the buckling behavior of 

restrained members open “branched” cross-sections, the following ones deserve to be highlighted: 

(i) It mechanically more illuminating than the conventional GBT approach. In particular, it is 

possible to obtain accurate buckling results with less deformation modes (often with just 

one or two). 

(ii) The constrained deformation modes provide insightful information about the restrained I-

section beam mechanics – this GBT feature was crucial for the accurate determination of 

the lateral-distortional deformation field, as well as to acquire an in-depth understanding of 

the associated kinematics. 

(iii) Enabled the derivation of analytical formulae were to estimate critical S-LDB and D-LDB 

moments of I-section steel beams elastically restrained by concrete slabs  such formulae 

were found to consistently yield accurate critical buckling moment estimates (in the 

overwhelming majority of the cases analysed, the error did not exceed 1.2%). Moreover, 

the constrained modal decomposition of the beam critical S-LDB or D-LDB mode shapes 

(LD and L modal participations) provide insightful information on their mechanical nature. 

(iv) Neglecting the web double curvature my lead to unsafe designs of I-section steel beams 

restrained by concrete slabs under uniform hogging bending moments, even in thick-flange 

cross-sections (tf /tw  4). 
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