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Abstract 
This paper provides an overview of several research developments I have been privileged to be 
involved with during my 30+ years of engagement with colleagues within the Structural Stability 
Research Council, AISC, MBMA, AISI, FHWA, and AASHTO. Emphasis is given to key 
concepts and procedures captured within the recently-published AISC/MBMA Design Guide 25 
Second Edition, Frame Design Using Nonprismatic Members, the applicability of these concepts 
and procedures to the design of arches, and related concepts and methods implemented in the 
AASHTO LRFD Specifications for the unified design of straight and horizontally curved bridge 
I-girders.  

1. Introduction 
I am indebted to so many people throughout my career, often via collaborations initiated within 
and strengthened by the Structural Stability Research Council (SSRC). My first formal exposure 
to the SSRC began in January 1983, when I was fortunate to take the graduate class Structural 
Stability with Teoman Peköz at Cornell. The 3rd Edition of the Guide to Stability Design Criteria 
for Metal Structures, the text Principles of Structural Stability Theory by Alexander Chajes, and 
the Theory of Elastic Stability monograph by Timoshenko and Gere were required purchases for 
the course. In addition, Dr. Peköz engaged us with assigned readings from Bleich’s Stability of 
Metal Structures as well as reports from his research. As an undergraduate student at NC State, 
J.C. Smith had piqued my interest in plastic design (via Lynn Beedle’s Plastic Design of Steel 
Frames text). Bill McGuire and John Abel were kind enough to pick me up as a fresh MS student 
in their research program on the inelastic design of steel frames using interactive computer 
graphics. I quickly developed a passion for research, spending long hours with articles and books, 
and writing structural analysis and computer graphics software. Bill introduced us to numerous 
papers in his two-semester course sequence on Advanced Design and Behavior of Metal 
Structures. Through Teoman, Bill and John, we were exposed to various articles by giants in the 
field such as Beedle, Johnston, Winter, Galambos, Yura, Chen, Trahair, Nethercot, and others.   

I first attended the SSRC Annual Technical Meeting at the 4th International Colloquium on Code 
Differences around the World, held in New York City in April 1989. Other first-time attendees 
that year were Jerry Hajjar and Greg Deierlein. I was a fresh junior faculty member at Purdue 
University. Will Chen had proposed that SSRC form a new Task Group 29 on second-order 
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inelastic analysis for frame design and had nominated me as the committee’s chair. I recall feeling 
very intimidated before meeting with the SSRC Executive Committee, given the stature of the 
various committee members. However, Lynn Beedle was very gracious in welcoming my 
involvement in the Council. I learned later that he had raised questions about whether I understood 
the importance of experimental testing to validate computational methods. I believe Will and 
others convinced him that I did. I recall insightful presentations and engaging discussions on 
second-order inelastic analysis and design and its potential from Russell Bridge, Will Chen, Bill 
McGuire, David Nethercot, John Springfield, and Nick Trahair at an ad hoc session on the topic 
in New York City. Nick Trahair introduced us to the early Australian Standard (AS 4100) rules 
for Advanced Structural Analysis. These rules were a seminal model behind the present AISC 
Specification Appendix 1 for Design by Advanced Analysis. In addition, the AISC Direct Analysis 
Method of frame design has significant roots in the above discussions.   

I met Ted Galambos at the meeting in New York City. During the first evening of the conference, 
several of us sat around chatting with Ted and others about the inelastic behavior of members and 
frames and other sundry topics. It was his 60th birthday. A couple of years ago, Ted celebrated his 
90th birthday and I celebrated my 60th. I am very grateful for the early mentorship from Lynn, Will, 
Ted and others, and the many years of camaraderie with them.  

There have been numerous other mentors and collaborators who have inspired me during my 
career, but I will not discuss those further at this point. A large number of key individuals are cited 
in the acknowledgments. I hope that this paper and the ensuing discussion at the 2022 Annual 
Stability Conference (ASC) will inspire others, even if in a small way, in their pursuits. Indeed, it 
is a fitting tribute to Bill McGuire’s legacy that Ron Ziemian and I, having both conducted our 
doctoral studies under Bill’s guidance, are giving our 2021 and 2022 Beedle Award presentations 
this year at the ASC. I hope that our presentations would make Bill proud.  

In this paper, I would like to summarize a range of advancements in the stability design of girders, 
frames, and arches, many of which have grown out of the above efforts on second-order inelastic 
analysis for frame design. In addition, I would also like to highlight specific achievements in the 
design of horizontally curved I-girders that also connect to the above early developments.  

2. Balancing Generality, Comprehensivity, and Simplicity in Nonprismatic Member Design 
Have you ever needed to design a framing system involving stepped and/or web-tapered columns? 
Or a frame in which axial loads are introduced into members at intermediate positions along their 
length? Figures 1a to 1c show several structures having these characteristics. Or have you needed 
to design a variable web-depth plate girder with steps in the plate thicknesses and/or flange widths 
along its length (Fig. 1d)? The first edition of the AISC/MBMA Design Guide 25 (DG 25) (Kaehler 
et al. 2011) was published as an extension of the AISC 360-05 Specification to address these 
considerations. A key focus was on balancing generality, comprehensivity, and simplicity in 
tackling the corresponding design complexities. The presentations within the DG 25 first edition 
emphasized web-tapered members. The first edition also addressed the broader application of the 
subject methods to members containing cross-section transitions and/or axial loads applied at 
intermediate positions along their lengths, as well as the overall system design of frames using 
these types of members. However, this was accomplished in an abbreviated manner. The second 
edition of DG 25, Frame Design Using Nonprismatic Members (White et al. 2021), provides an 
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expanded discussion of the various considerations associated with frame analysis and rules for 
member proportioning for these types of structures. 

        
(a) Clear-span gabled portal frames with nonprismatic 

columns and roof girders (courtesy of Lee 
Shoemaker, MBMA) 

(b) Crane support structure with gabled portal frames 
and stepped crane columns (from ellsenbridge-
crane.com)  

      
(c) Warehouse building with modular steel frames 

containing stepped crane columns (from finework-
cranes.com)  

(d) Highway bridge with variable web-depth I-girders 
(courtesy of Jason Provines, VDOT)   

Figure 1: Example structures utilizing nonprismatic members  

Aside from the handling of nonprismatic member geometry and nonuniform member axial load, a 
key focus of the DG 25 second edition is the characterization of two specific stability design 
attributes common to metal building frames:  

(1) The influence of axial compression in rafters and roof girders, and  

(2) The influence of leaning column P- effects on the sidesway stability of modular frames 
(i.e., frames in which the roof girders or rafters are supported vertically by light interior 
columns, subdividing the frame into multiple bays). 

The second edition of DG 25 introduces the following advancements pertaining to the design of 
frames containing general nonprismatic members: 



 4

 Calculation of column axial resistances using a streamlined, unified plate effective width 
procedure, extending the method in Section E7 of the AISC 360-16 Specification to 
nonprismatic members.  

 Consideration of the substantial shear post-buckling strengths in thin unstiffened I-section 
webs, plus the contribution from inclined flanges, in member shear strength calculations, 
extending Section G2.1 of the Specification to nonprismatic members.  

 Simplified estimation of member elastic lateral-torsional buckling (LTB) resistances, as 
well as refined elastic buckling predictions using thin-walled open-section beam calcula-
tions.   

 Direct evaluation of general prismatic and nonprismatic column, beam, and beam-column 
design resistances using efficient inelastic buckling analysis procedures. 

 Application of the most up-to-date recommendations for the AISC Direct Analysis, 
Effective Length, and First-Order Analysis methods of system stability design.  

This new edition of DG 25 provides extensive examples illustrating the application of the 
recommended methods.  

The following discussions offer a snapshot of some of the key concepts introduced by DG 25.  

3. Unifying Concepts for Nonprismatic Member Design 
For the calculation of member axial compressive resistance, the basic procedures discussed in DG 
25 focus specifically on:  

(1) The governing elastic buckling load (or stress) ratio 

 e e
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which is a constant for a given member unbraced length, where fr = Pr /Ag at a given cross 
section, and 

(2) The axial load or axial stress level, Pr or fr, and the cross-section effective area, Ae, at a 
number of potentially critical cross sections along the unbraced length. 

Any member subjected to axial compression has a buckling load ratio, e, by which the required 
strengths (i.e., the internal stresses or forces from the applied loading) are multiplied to obtain the 
governing elastic buckling strength (i.e., Fe = e fr or Pe = ePr). In general, Fe = e fr and/or Pe = ePr 
can be different at different cross sections along a member length. However, there is only one 
governing value of e. Thus, the use of e provides significant advantages for members with 
complex nonprismatic geometries, subjected to nonuniform or uniform axial compression. 
Furthermore, numerical buckling solutions provide e directly as the eigenvalue, i.e., the multiple 
of the reference applied load, at incipient elastic buckling. 

Given the value of Fe = e fr at different locations along the length of a member subjected to 
nonconstant axial compression and/or containing a general nonprismatic geometry, the engineer 
can evaluate the nominal strength, Pn, at these locations. The Pn calculation is accomplished by 
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applying Section E7 of the AISC 360-16 Specification at each of these locations. The calculation 
for the various potentially critical cross sections is akin to the evaluation of multiple members with 
distinct buckling characteristics in a general structure, each subjected to different axial 
compressive forces, Pr, using an overall buckling analysis of the structural system. Once the 
critical cross section (the one giving the largest demand-to-nominal strength ratio) is identified, 
the corresponding Pn calculation can be envisioned as being conducted on an equivalent uniformly-
loaded prismatic member. This equivalent member has the same overall e, and the same fr /Fy and 
Ae /Ag [or fr / (Ae /Ag) / Fy = Pr / Pye], as the critical cross section (see Figure 2).  

 
Figure 2: Equivalent uniformly loaded prismatic member concept 

The above DG 25 approach is applicable with all three system stability analysis-and-design 
approaches in the AISC Specification – the Direct Analysis Method, the Effective Length Method, 
and the First-Order Analysis Method. In addition, a similar approach is recommended by DG 25 
for calculation of the flexural resistance of I-section members. This approach captures the AISC 
Chapter F flange local buckling (FLB), tension flange yielding (TFY), and out-of-plane LTB limit 
states. 

4. Effective Length Method, Direct Analysis Method, or First-Order Analysis Method? 
4.1 Effective Length Method Considerations 
Watwood (1985) touched on a particular anomaly of the Effective Length Method (ELM) for 
structural stability design. Members that have relatively small axial stress at incipient buckling of 
a frame tend to have large effective length factors, K, when considered as part of the evaluation of 
the overall structural system. In some cases, these K factors are justified, while in other cases, they 
are not. If the member participates significantly in the governing elastic flexural buckling mode, a 
large K value is justified. On the other hand, if the member is essentially undergoing rigid-body 
motion in the governing buckling mode, and/or if it predominantly serves to restrain flexural 
buckling of other members, a large K value is sometimes not justified. The distinction between 
these two situations requires significant engineering judgment. The K factor is only an index tied 
to the relation 
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in the case of a given prismatic member, where Pcr is the member axial force at the incipient 
buckling of the structural model considering just the axial forces in the model’s members, no 
geometric imperfections, and no bending or pre-buckling displacements;  is the column inelastic 
stiffness reduction factor (equal to 1.0 for elastic buckling); EI is the cross-section flexural rigidity 
of the member; and L is the reference unbraced length. The value of K is, in essence, always solved 
from Eq. 2 regardless of the method employed for its determination.  

Effective length calculation procedures are typically implemented on subassemblies extracted 
from the overall structure. For instance, in multi-story buildings, K factors are commonly 
calculated on a story-by-story basis with limited consideration of the interaction between the 
stories. Suppose one conducts an elastic buckling analysis of an entire multi-story frame with a 
large number of stories. In that case, it is common to obtain K factors that are relatively large in 
the upper stories of the structure and relatively small in the lower stories. If a K factor is back-
calculated for a typical girder of such a frame, the K value will be quite large since the axial force 
in the girder is relatively small.  

DG 25 provides guidelines addressing these issues. Particular emphasis is placed on applying the 
ELM to typical metal building frames composed of nonprismatic members. 

4.2 Advantages of the Direct Analysis Method  
DG 25 explains that the AISC Direct Analysis Method (the DM) eliminates the above complexities 
by avoiding a focus on the stability limit states behavior of the structural system (or subassembly) 
in which all the members are subjected to pure axial compression (i.e., no bending). Frames are 
rarely subjected just to pure axial compression of their members. Instead, the DM focuses on the 
second-order load-deflection behavior of the geometrically imperfect structural system subjected 
to the actual required strength loading, rather than the bifurcation response at a higher load level 
associated with pure axial compression in the various members of the idealized geometrically-
perfect structure. As a result, the DM provides significant advantages for design in that: (1) it may 
be used for all structures and load combinations, (2) it provides the most representative assessment 
of the actual internal forces and moments of the elastic analysis-and-design methods, and (3) it 
may be used to design frame members without calculation of K factors. 

When using the DM, typically the in-plane flexural buckling strength of columns and beam-
columns, Pni, is calculated using the actual unbraced length with K = 1.0. However, this approach 
can also misrepresent the physical strength behavior in certain situations. For example, in clear-
span portal building frames, the use of K = 1.0 to calculate the in-plane flexural buckling strength 
can be very conservative for the roof girders or rafters. Particularly in cases where the roof girder 
span is large and the eave height of the structure is relatively small, the columns can provide 
significant rotational restraint to the girder ends. Furthermore, the concept of a K factor is rather 
complex in itself when the roof girder has, for instance, multiple tapers and multiple steps along 
its length. DG 25 resolves this problem by the following extensions to the AISC Specification: 

(a) For members withPr ≤ 0.10PeL at all locations along their length, or stated more simply, 
for /eL < 0.10 (where , PeL, and eL are defined below), and where Aes > 0.5Ag, the 
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member Pni may be taken as the cross-section axial yield strength accounting for local 
buckling effects, Pns = AesFy. This simplification is permissible because the in-plane 
stability effects are minor at the member level for columns and beam-columns that satisfy 
the above limits. The term PeL here is the in-plane elastic flexural buckling load for the 
member unbraced length under consideration, assuming idealized simply-supported end 
conditions, and eL is the corresponding elastic buckling load ratio. The term  is employed 
by the Specification to scale the required ASD “working” loads up to an ultimate strength 
design load level. It is equal to 1.0 for design by LRFD and 1.6 for ASD. Typical single-
story metal building frame members often satisfy the /eL < 0.10 and Aes > 0.5Ag limits. 
(Note that Aes is the effective area associated with an axial stress equal to Fy; frame 
members practically always have Aes > 0.5Ag). 

(b) If P- effects are included in the structural analysis model, and an appropriate out-of-
straightness between the member ends is also included, Pni may be taken as Pns even when 
/eL > 0.10. This is permissible because the combined reduced stiffness and out-of-
straightness in the DM-based analysis account sufficiently for the in-plane stability effects 
at the member level. The appropriate member out-of-straightness is an imperfection of 
0.001L in the direction that the member deforms (due to the applied loads) relative to a 
chord between its end supports or points of connection to other members, where L is the 
overall member unsupported length. A chorded representation of the out-of-straightness 
with maximum amplitude at the middle of the unsupported length is considered sufficient. 
For clear-span gabled frame rafters subjected to loads causing a net downward 
displacement at the ridge, this requirement may be implemented by shifting the ridge 
downward by 0.001L, where L is the on-slope length between the columns. For an unusual 
situation where the loading may cause an upward movement of the ridge, the ridge should 
be shifted upward by 0.001L. 

The use of Pni = Pns with the DM, based on satisfying one of the above two requirements, is the 
most accurate and the preferred approach for the in-plane stability design of rafters in clear-span 
frames. Within the above contexts, the load-deflection analysis of the DM sufficiently captures all 
the essential attributes of the in-plane stability behavior. Therefore, the member in-plane axial 
compressive resistance may be calculated as the axial compressive resistance of its cross sections. 
Furthermore, since the out-of-plane axial compressive resistance is always less than Pns for any 
finite out-of-plane unbraced length, the out-of-plane buckling resistance always governs when the 
in-plane strength is taken as Pni = Pns. 

The accurate design of rafters and roof girders using the ELM requires the recognition of end 
restraint from the columns within an elastic buckling analysis or the related K < 1.0 solution. 
Unfortunately, the lowest eigenvalue buckling mode may correspond to K > 1.0 in these members. 
As stated previously, the use of K = 1.0 with the DM for calculating Pni in roof girders or rafters 
of clear-span portal frames can result in a significantly conservative characterization of the axial 
compressive resistance in these members. The most effective way out of this quandary of in-plane 
stability design assessments is to focus on estimating the second-order load-deflection response 
due to the actual strength design loads applied to the structure on the demand side, and to focus on 
the cross-section-based resistance Pni = Pns on the resistance side.  
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4.3 Limitations of the First-Order Analysis Method  
Regarding the First-Order Analysis Method (FOM), DG 25 recommends that for frames in which 
the internal axial force in any of the girders or rafters exceeds 0.08PeL (i.e., when /eL > 0.08), 
the FOM should be limited only to preliminary design. In this context, PeL is the nominal in-plane 
elastic flexural buckling strength of the girder or rafter, based on the on-slope length between the 
columns and assuming simply-supported end conditions. The simplifying approximations 
embedded in the FOM can become suspect for frames that fall outside of these limits.  

5. Advanced Calculations 
Generally, the basic procedures recommended in DG 25 require the calculation of member elastic 
buckling load ratios, e, followed by a mapping to the corresponding design resistances. However, 
suppose the stiffness reduction factors (SRFs) associated with the Specification strength curves are 
embedded within the buckling calculations. In that case, the buckling analysis can be configured 
to provide the column, beam, or beam-column design resistances directly. This type of inelastic 
buckling analysis is discussed in the DG 25 second edition as a supplement to the basic or more 
routine methods. The advantage of inelastic buckling analysis is that it can more rigorously account 
for a wide range of attributes such as: 

 Nonprismatic geometry,  
 Moment gradient,  
 Variations in axial force along member lengths,  
 Load height,  
 Member end restraint,  
 Member continuity effects across braced locations, and  
 Beam-column strength interactions.  

In addition, inelastic buckling analysis removes the need for tedious and relatively inaccurate Cb, 
K, and beam-column strength interaction calculations. 

It should be noted that all of the above methods are focused on the design of planar structural 
systems in which the members are loaded predominantly within the plane of the structure (although 
the member strength may be governed by in-plane or out-of-plane, three-dimensional, limit states). 
The in-plane actions and strength limits are addressed most effectively by focusing on the in-plane 
second-order load-deflection response. In contrast, the out-of-plane strength assessments are 
handled most effectively by calculations that are rooted (implicitly or explicitly) in an eigenvalue 
buckling analysis (elastic or inelastic). Suppose the DM approach of focusing on the second-order 
load-deflection response of the geometrically imperfect structure is employed in the out-of-plane 
direction. In that case, the planar frame solution becomes a more complex three-dimensional load-
deflection analysis problem. Handling of these complexities by a theoretical out-of-plane buckling 
(bifurcation) analysis simplifies the out-of-plane calculations substantially. Figure 3 shows a 
representative inelastic out-of-plane buckling mode of a tapered member from DG 25. The darker 
arrows with slashes denote constrained displacements and rotations within the model. The lighter 
non-slashed arrows labeled M and P indicate the applied axial force and moment at the right-hand 
end of the member. Figure 4 illustrates the variation of an inelastic stiffness reduction factor (SRF) 
applied to the rigidities EIy, ECw, and GJ along the member length. Details of the calculations are 
explained in the DG 25 second edition and by White et al. (2016 and 2021).  
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Figure 3: Inelastic out-of-plane buckling mode of a tapered member subjected to axial compression and bending, 
from AISC/MBMA Design Guide 25 (White et al. 2021) 

 

Figure 4: Variation of the inelastic stiffness reduction factor (SRF) along the member length at incipient inelastic 
out-of-plane buckling of the member shown in Fig. 3 

All of the above methods stop short of the highest level of rigor of structural analysis for member 
and structural system design. In the lexicon of the AISC Specification, the term Advanced Analysis 
is reserved for the highest level of analysis. In a few words, Advanced Analysis commonly refers 
to a method of analysis in which, once the analysis has been conducted up to or beyond the required 
strength load levels, the engineer can conclude that the structure is sufficient to resist the required 
loads. No further member resistance calculations are necessary. That is, the structural analysis is 
fully capable of capturing the strength limits without the separate application of any member 
resistance calculations. Unfortunately, a complicating factor is that the definition of what 
constitutes an Advanced Analysis can vary depending on the nature of the structural system and 
its members and other components. This is where some of the distinctions and definitions of 
“advanced” become cloudy and confusing.   

In the AISC Specification, Advanced Analysis implies a comprehensive three-dimensional load-
deflection analysis of a structure or structural subassembly. However, the satisfaction of 
comprehensivity depends on which strength limit states significantly impact the response for a 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48 60 72 84 96 108 120 132 144

SRF

Position, x (in.)



 10

given problem. For instance, if local buckling has a significant contribution to the strength limit 
states, local buckling effects must be addressed rigorously in some manner within the Advanced 
Analysis calculations. On the other hand, if the member cross-sections are sufficiently stocky, then 
local buckling effects are insignificant. In this case, the member cross-sections must be sufficiently 
stocky such that local buckling does not significantly impact the ductility required for inelastic 
redistribution of the local demands. Tools such as the continuous strength method (Gardner 2008) 
provide a refined means for assessing the local demand-to-capacity, focusing on the strain or 
deformation demands. Alternatively, traditional plastic design cross-section b/t limits can be 
checked. If the local buckling response is not sufficiently limited (by limiting b/t), a more 
sophisticated advanced analysis model is necessary to capture the local buckling effects.  

In many situations, the unbraced lengths of I-section members are not small enough to discount 
the influence of out-of-plane LTB limit states on the response. Proper assessment of the LTB 
response of open-section members requires the consideration of warping (e.g., cross-bending of 
the flanges of an I-section member) based on thin-walled open-section beam theory at a minimum. 
Furthermore, it is well established that the onset of yielding, including residual stress effects, can 
significantly impact the LTB resistance. The most rigorous way to address these considerations is 
via a distributed plasticity analysis capable of capturing the spread of yielding through the cross 
section and along the length of the structural members, including the modeling of residual stresses. 
In addition, the out-of-plane sweep of the compression flange(s) generally has a measurable 
influence on the LTB response. Therefore, appropriate out-of-plane sweep imperfections also must 
be modeled in a rigorous Advanced Analysis solution. Manual definition of the appropriate 
geometric imperfections and residual stresses is not practical if these types of solutions are to 
become more routine. Therefore, although the technology has great potential, it is my opinion that 
it will be necessary for software to handle these definitions in an automated manner (with control 
by the engineer) for Advanced Analysis to achieve the most useful application in structural 
engineering practice. 

Given the above challenges, the techniques described previously (i.e., the use of elastic buckling 
load ratios, e, to generalize Specification rules, and/or the use of inelastic buckling analysis 
methods) were the best choice for practical consideration of out-of-plane strength limit states in 
DG 25 at the present time. DG 25 predominantly targets the design of planar members and frames 
loaded within the corresponding plane, but in which the strength limit states may be (and often 
are) associated with an out-of-plane failure. The in-plane stability problem is handled well, on the 
demand side, by the DM’s load-deflection-based procedures. The out-of-plane stability problem 
is handled best on the resistance side, via buckling (bifurcation) analysis approximations, or by 
using rigorous theoretical elastic or inelastic eigenvalue buckling calculations where desired.  

It is important to understand that the internal required force predictions from the DM are not 
“perfect.” They typically provide a reasonable match with Advanced Analysis solutions, but there 
will be some differences. The same can be said for any structural analysis based on the assumption 
of linear elastic material behavior (with reduced or nominal stiffness). I like to refer to the DM 
analysis solution as a “poor-folks” version of a distributed plasticity test simulation. The objective 
is to obtain a reasonable coarse representation of the response of the physical structure. When 
considering the predictions of the internal force demands, I believe it is valuable to remember the 
lessons from the moment balancing method discussed in Lynn Beedle’s Plastic Design of Steel 
Frames text. There is no unique required internal force distribution for a given design. One need 
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only determine a statically admissible set of internal forces that does not exceed the available 
resistance anywhere in the structure, assuming adequate ductility. The consideration of second-
order effects complicates this deliberation a bit; however, the concept is still the same but applied 
in the structure’s deformed configuration. I recall Ted Galambos’ words of wisdom that structural 
engineers need to understand plastic design so that they will be “less afraid of their structures.” 
Even if the DM analysis were a perfect match to Advanced Analysis, there is always some 
sensitivity of the Advanced Analysis results to the details of the residual stresses, initial geometric 
imperfections, applied load positions, etc. This is not to say that the approximations by the DM 
analysis rules cannot be improved. However, “perfection” is an unachievable goal. 

6. Stability Design of Arches 
The concepts and procedures from DG 25 also are relevant to the structural design of arches. Figure 
5 shows an elegant tied-arch bridge designed using the Direct Analysis Method (Nair et al. 2016; 
2019). For the in-plane stability assessment of this type of structure via the DM, one considers an 
out-of-straightness within the plane of the arch rib that is affine to the buckling mode of the arch. 
The in-plane buckling mode of an arch rib is an S shape. Once the out-of-straightness is included 
in the analysis, the axial resistance of the arch rib may be taken as its cross-sectional resistance 
(Pns, based on L = 0) at any location along its length. In addition, the prior discussions pertaining 
to the handling of nonprismatic geometry are applicable for the design of arches in cases where 
the cross-sectional geometry varies along the length.  

 

Fig. 5: Tied arch bridge designed using the Direct Analysis Method (courtesy of Shankar Nair, EXP Design) 

In his discussions, Nair (2016) emphasizes that DM principles were instrumental in justifying the 
lightweight Vierendeel bracing system between the arch ribs in the bridge shown in Fig. 5. In fact, 
for tied-arch bridges, the out-of-plane stability effects tend to be more significant than the in-plane 
stability effects. In the plane of the arch, the second-order effects in the rib and tie counteract one 
another. The horizontal components of the rib compression and the tie tension are equal from 
fundamental statics. Also, the vertical displacements of the rib and the tie are approximately equal, 
neglecting the small hanger elongation. Therefore, the destabilizing effect of the rib vertical 
displacements is balanced by the restoring effect of the tie displacements. Nair (1986) shows a 
simple example demonstrating that tied arches do have a finite in-plane buckling load; however, 
the in-plane structural system stability is greatly enhanced by the tension tie. Arches without a 



 12

tension tie can have substantially larger in-plane second-order effects. Either with or without the 
tie, the in-plane second-order amplification is most significant for load combinations involving 
unbalanced loadings, producing structural system displacements that are more affine to the 
structure’s fundamental buckling mode.  

The DM may be applied with relative ease to consider both the in-plane and out-of-plane stability 
effects in the structure shown in Fig. 5 since the arch ribs are closed box sections with substantial 
torsional stiffness. For the out-of-plane stability assessment, the essential geometric imperfection 
is a potential overall sweep of the arch ribs in the out-of-plane direction in the shape of a half sine 
wave or parabola. This overall sweep can be modeled easily by an equivalent (i.e., “notional”) 
uniformly distributed out-of-plane lateral load and corresponding equilibrating end shears at the 
arch supports.  

According to Dr. Nair, the design analysis of the bridge in Fig. 5 entailed a three-dimensional 
model with 4695 nodes, 1314 frame elements, and 4444 shell elements (shell elements were used 
to model the regions at the intersections of the arch ribs and ties). Furthermore, all the calculations 
were second-order, requiring 488 separate structural analyses for the various load combinations 
and effects considered for the design. Nair (2016) points out that in a similar tied-arch bridge he 
designed earlier in his career, the in-plane second-order effects were on the order of 7 %, while the 
out-of-plane second-order effects were five times larger.  

In all situations, the essential concept for the in-plane and out-of-plane analysis for the DM is the 
following: Calculate a reasonable estimate of the actual second-order axial forces and moments 
within the structure, considering the influence of the internal forces acting through the structural 
displacements plus plausible initial geometric imperfections. This concept can be applied readily 
for general design, including the design of other arch structures such as network tied-arch bridges, 
arch bridges with inclined (non-vertical) ribs, etc.  

One additional consideration that can be important to the proper stability design of some arches is 
the assessment of out-of-plane stability accounting for the influence of the vertical curvature. For 
unbraced lengths in vertically curved members such as arch ribs, the vertical curvature reduces the 
LTB resistance when the unbraced length is subjected to moments causing compression in the 
flange farthest from the center of curvature (that is, moments that “straighten” the arch rib). 
Conversely, the LTB resistance is increased by moments causing compression on the flange closest 
to the center of curvature; that is, moments that increase the curvature of the rib. It is safe and 
sufficient to neglect the increases in the LTB resistance due to these effects. For typical unbraced 
lengths of arch ribs with Ldb/R greater than 0.20 (where Ldb is the developed length between the 
brace points and R is the minimum radius of curvature of the arch rib), subject to moments that 
would reduce the LTB resistance, 0.90 is a reasonable lower bound on the reduction in the elastic 
LTB resistance. This reduction may be applied conservatively to the Cb modifier (AASHTO 2020). 
Of course, arch ribs in bridges are typically closed box sections, and therefore they have ample 
LTB resistance despite this reduction. The adjustment to the Cb modifier for arch ribs composed 
of doubly symmetric open or closed sections, with large unbraced lengths between the out-of-plane 
bracing members, may be determined more rigorously by a set of closed-form equations provided 
by Dowswell (2018). For arch ribs composed of singly-symmetric open or closed sections, the 
adjustment to the Cb modifier may be determined by solving equations provided by Trahair and 
Papangelis (1987). 
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7. Behavior and Design of Horizontally Curved I-Girders 
Similar to DG 25, and to the routine handling of LTB in Section F of the AISC Specification, the 
AASHTO (2020) LRFD Bridge Specifications address the flexural resistance of straight and 
curved bridge girders using a buckling analysis-based approach. In fact, the AASHTO LRFD 
Specifications apply a buckling analysis-based (i.e., ELM-based) approach that in effect treats the 
girder flanges as effective beam-columns. The flange lateral bending is the bending moment, and 
the axial stresses due to major-axis bending correspond to the axial load in these effective beam-
columns. The flange lateral bending may be due to lateral loads, such as wind, as well as warping 
(i.e., flange cross-bending) from the torsion due to horizontal curvature or eccentric loads from 
overhang brackets during construction, etc. Given that bridge design necessitates the detailed 
consideration of moving live loads, routine design of bridge I-girders is best suited to this type of 
approach (versus the use of a second-order load-deflection approach, such as the application of the 
DM for in-plane analysis and design of metal buildings, or the in-plane or out-of-plane design of 
the arch ribs in a case such as the bridge discussed in Section 6).  

7.1 The AASHTO LRFD One-Third Rule 
The basic form of the AASHTO (2020) resistance equations that account for the combined effects 
from major-axis bending and flange lateral bending is  

 
1

3bu f nf f F    (3) 

in the AASHTO (2020) Section 6, where the major-axis bending resistance is expressed in terms 
of flange stress, and 

 
1

3u x f nM f S M    (4) 

in the AASHTO (2020) Appendix A6, where the major-axis bending resistance is expressed in 
terms of bending moment. The variables in these equations are as follows: 

fbu = the elastically-computed flange major-axis bending stress,  
f = the elastically-computed second-order flange lateral bending stress, 

f Fn = the factored flexural resistance in terms of the flange major-axis bending stress,  
Mu = the member major-axis bending moment, 
Sx = the elastic section modulus about the major-axis of the cross section to the 

flange under consideration, and 
f Mn = the factored flexural resistance in terms of the member major-axis bending 

moment. 

Equations 3 and 4 are referred to by AASHTO (2020) as the one-third rule. These equations are 
simple, yet they do an excellent job of characterizing the various strength limit states that can 
govern the resistance of I-girders in skewed and/or horizontally curved bridges. 

AASHTO (2020) targets Eq. 3 to assess the strength of slender-web noncomposite members, 
slender-web composite members in negative bending, and noncompact composite members in 
positive bending. In the limit that the flange lateral bending stress f is zero, Eq. 3 reduces to the 
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basic member check fbu < f Fn for major-axis bending alone. In the AASHTO Section 6, the flange 
yield strength, Fyf, is the maximum potential value of Fn. However, Fn can be less than Fyf due to 
slender-web bend buckling and/or hybrid-web yielding, lateral-torsional (LTB), or compression 
flange local buckling (FLB) effects. 

AASHTO (2020) provides Eq. 4 for checking the strength limit states of straight noncomposite 
members or composite members in negative bending that have compact or noncompact webs, and 
for checking compact composite members in positive bending. For these member types, f Mn can 
be as large as f Mp, where Mp is the section plastic moment resistance. However, Eq. 3 may be 
used as a simple conservative resistance check for all types of I-section members. AASHTO (2020) 
Article 6.10 emphasizes this fact by relegating the use of Eq. 4 to its Appendix A6. 

In the application of Eqs. 3 and 4, the stresses f and fbu, and the moment Mu, are taken as the largest 

values throughout the unbraced length when checking against the base flexural resistance f Fn or 
f Mn associated with LTB. This is consistent with the proper handling of the moment when 
applying the AASHTO and AISC interaction equations for a general beam-column subjected to 
combined axial load and bending. The stress fbu in Eq. 3 and the moment Mu in Eq. 4 are analogous 
to the axial load in a general beam-column, and the stress f is analogous to the beam-column 

bending moment. The moment Mu is analogous to axial loading since it produces axial stresses in 
the flanges. When checking FLB or TFY, f, fbu, and Mu may be determined as the corresponding 

values at the cross section under consideration. Generally, Eq. 3 or 4, as applicable, must be 
checked for each flange, and both the FLB and LTB resistances must be checked for the 
compression flange in determining Fnc or Mnc. The check providing the largest ratio of the left-
hand side to the right-hand side of these equations governs. 

Equations 3 and 4 are valid for all types of I-section members that satisfy the limits 

 Lb/R < 0.1 (5) 

where Lb is the unsupported length between the cross-frame locations and R is the horizontal radius 
of curvature,  

 Lb < Lr (6)  

where Lr is the unbraced length limit beyond which the base LTB limit state is elastic, and  

 f < 0.6 Fyf (7) 

The first of these limits is a practical upper bound for the subtended angle between the cross-frame 
locations (for constant R). However, Eqs. 3 and 4 have been observed to perform adequately in 
cases with Lb/R larger than 0.2 (White et al. 2001). Equation 6 is a practical upper bound for the 
unbraced length Lb beyond which the second-order amplification of the flange lateral bending 
stresses can be particularly large. The rationale for Eq. 7 is discussed below. 
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7.2  Calculation of Flange Lateral Bending Stresses 
Various methods may be used for calculating the flange second-order elastic lateral bending 
stresses f. AASHTO (2020) gives simple equations for estimating the first-order lateral bending 

stresses, f1, due to the torsion associated with horizontal curvature, the torsion from eccentric 

concrete deck overhang loads acting on cantilever forming brackets placed along exterior girders, 
and the flange lateral bending due to wind load. However, it is becoming more and more common 
to calculate f1 from 3D FEA bridge models for complex bridge geometries. In these solutions, the 

girder flanges are typically modeled using frame elements and the webs are modeled using shell 
elements.  

Similar to the amplification of internal bending moments in beam-column members, flange lateral 
bending stresses are amplified due to stability effects. However, in routine girder bridge design, it 
is impractical to calculate second-order stresses associated with the moving live loads via a 
general-purpose second-order analysis. Therefore, when Eq. 3 is applied for checking the 
compression flange, AASHTO (2020) provides the following simple lateral bending amplification 
equation to approximate the second-order effects: 

 1 1

0.85

1
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 
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  
 
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f

F

 (8) 

In this equation: 

Fcr = the compression flange elastic LTB resistance for compact- or noncompact-web 
members or the elastic LTB resistance times the web load-shedding factor Rb for 
slender-web members, 

f1  =  the first-order compression flange lateral bending stress at the section under 
consideration (for checking of FLB), or the largest first-order compression flange 
lateral bending stress within the unbraced length (for checking of LTB), and  

fbu  = the largest value of the compression flange major-axis bending stress within the 
unbraced length under consideration. 

A similar equation, but in terms of the moments, is employed with Eq. 4. Amplification of the 
tension flange lateral bending stresses is not necessary since the second-order effects tend to be 
relatively minor in flanges subjected to tension. White et al. (2001) show that Eq. 8 gives an 
accurate to conservative estimate of the compression flange second-order lateral bending stresses. 

When determining the amplification of fℓ1 in horizontally curved I-girders with Lb/R > 0.05, 
AASHTO (2020) Article C6.10.1.6 recommends that Fcr in Eq. 8 may be calculated using 
KLb = 0.5Lb. The use of KLb = 0.5Lb for girders with Lb/R > 0.05 gives a better estimate of the 
amplification of the bending deformations in the unbraced lengths within the spans, where the 
boundary conditions at the brace points are approximately symmetrical. The use of KLb = 0.5Lb is 
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based on the observation that an unwinding stability failure of the compression flange is unlikely 
for magnitudes of the horizontal curvature larger than 0.05.  

The basic amplification factor in Eq. 8 is a practical option for loading cases involving vehicular 
live load. However, in cases where the amplification of construction stresses is significant, a viable 
alternative is to conduct an explicit geometric nonlinear (second-order load-deflection) analysis to 
determine the second-order effects within the superstructure more accurately. 

 7.3 One-third Rule Concept 
Figure 6 compares Eq. 4 to the theoretical fully plastic resistance for several noncomposite doubly 
symmetric cross sections with compact flanges and compact webs. Figure 7 shows a typical fully 
plastic stress distribution on this type of cross section. The equations for the fully plastic cross-
section resistances are based on the original research by Mozer et al. (1971) and are summarized 
by White and Grubb (2005). The specific stress distribution shown in Fig. 7 is associated with 
equal and opposite lateral bending in each of the equal-size flanges (i.e., warping of the flanges 
due to nonuniform torsion). However, the solution is the same if one considers equal flange lateral 
bending moments due to minor-axis bending.  

 
Fig. 6: Comparison of the AASHTO (2020) one-third rule equation to the theoretical fully-plastic cross-section 
resistance for several doubly symmetric noncomposite compact-flange, compact-web I-sections (adapted from 

White and Grubb (2005)) 

One can observe that, within the limit given by Eq. 7, the one-third rule equations (Eqs. 3 and 4) 
provide an accurate to somewhat conservative estimate of the theoretical cross-section resistances 
for the different web-to-flange area ratios, Aw/Af, shown in Fig. 6. Moreover, in the limit that Aw/Af 
is taken equal to zero, the same approximation is provided by both Eqs. 3 and 4.  

The comparison of the theoretical and approximate equations shown in Fig. 6 is helpful in gaining 
a conceptual understanding of the one-third rule equations in the limit of compact-flange, compact-
web, compactly-braced noncomposite members. Schilling (1996) and Yoo and Davidson (1997) 
have presented other useful cross-section yield interaction relationships applicable to these cases. 
However, cross-section yield interaction equations are limited in their ability to fully characterize 
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the combined influence of distributed yielding along the member lengths along with the various 
stability effects (FLB, LTB, and web bend buckling). For instance, yield interaction equations 
generally do not reduce to the resistance equations for straight members subjected to major-axis 
bending in the limit that f = 0. 

 

Fig. 7: Sketch of fully plastic stress distribution, including flange lateral bending 

Equations 3 and 4 are a basic extension of the above one-third rule approximations of the 
theoretical cross-section yielding resistances to address the influence of stability limit states. This 
extension is accomplished simply by changing the flange yield strength, Fyf, to f Fn in Eq. 3 and 
by changing the section plastic moment resistance, Mp, to f Mn in Eq. 4. The 1/3 coefficient 
accurately captures the strength interaction including the various yielding and stability effects 
(White et al. 2001). The extension from cross-section yield interaction equations to the member 
strength equations is ad hoc. However, it is similar in many respects to the development of the 
AISC and AASHTO general beam-column interaction relationships. The shape of the interaction 
(i.e., the slope of the line relating fbu and f in Eq. 3 or Mu and f in Eq. 4) is obtained from curve 

fitting. Equations 3 and 4 are thus semi-analytical and semi-empirical. White and Grubb (2005) 
summarize the correlation of these equations with analytical, numerical, and experimental results. 
These developments are tied to the early activities discussed in Section 1; advanced finite element 
simulations of experimental tests were employed extensively in the referenced research studies. 
These simulation studies were combined with targeted physical testing.  

Dowswell (2018) discusses an approach similar to the above AASHTO one-third rule, but utilizing 
a form of the AISC 360 beam-column interaction Eq. H1-1a. This equation can be applied to cases 
with flange lateral bending stress larger than the limit specified by Eq. 7, such as members 
subjected to large minor-axis bending combined with major-axis bending. However, within the 
limits of Lb/R < 0.2, Lb < Lr (Eq. 6) and fbu < 0.6Fyf (Eq. 7), Eqs. 3 and 4 provide a more accurate, 
less conservative characterization of the strength of I-section members subjected to major-axis 
bending combined with flange lateral bending from any source.  

8. Unfinished Business 
There are numerous areas of potential further improvement in girder, frame, and arch stability 
design methods. I would like to offer just a few recommendations beyond the ones alluded to in 
the previous discussions. These recommendations are referenced to the AISC Specification; 
however, comparable considerations apply to the AASHTO LRFD Specifications:  
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(1) There are various exclusion clauses allowing for simplified application of the Direct 
Analysis Method (the DM) in the AISC Specification. For instance, the Specification 
permits structures where the second-order amplification of the sway displacements is 
smaller than 1.7 (based on the reduced stiffness employed by the DM) to be analyzed for 
lateral load combinations neglecting out-of-plumbness effects. In these situations, out-of-
plumbness effects tend to be negligible compared to the lateral load effects. However, for 
gravity-only load combinations, the modeling of out-of-plumbness (or the equivalent 
notional lateral loads) is always required. It should be possible to define a limit on the 
second-order amplification under the gravity load, or a cr value corresponding to incipient 
elastic buckling of the structural system, at which the geometric imperfections may be 
neglected for the DM structural analysis also for the gravity-only load combinations. This 
would eliminate the annoyance of having to model geometric imperfection effects when 
they may be negligible for certain classes of structures. 

(2) The AISC (2016) and (2022) Section F4 and F5 Tension Flange Yielding (TFY) limit state 
for singly-symmetric I-section members with a larger flange in compression, and hence 
Sxc > Sxt, is a somewhat artificial limit that amounts to disallowing any nominal yielding of 
the tension flange for slender-web sections. FEA simulation and experimental studies 
(Slein et al. 2021) show substantial capacity for inelastic redistribution of the tension flange 
stresses in these types of members. Simple calculation methods have been developed that 
employ only two flexural resistance limit state checks, compression flange local buckling 
(FLB) and lateral-torsional buckling (LTB), eliminating any explicit TFY check. These 
limit state calculations use the actual yield moment to the compression flange (accounting 
for the early yielding in flexural tension). This approach can dramatically shorten the AISC 
Chapter F provisions while also providing larger and more accurate calculated strengths.  

(3) The AISC (2016) and (2022) Chapter F FLB provisions do not recognize the beneficial 
gains in strength due to the flange stable post-local buckling response. The downside of 
recognizing these gains in design calculations is the possible need to consider significant 
local-global buckling interaction. Latif and White (2022) have recommended a simplified 
approach that recognizes these benefits via a minor modification of the current AISC 
calculation procedures. These calculations avoid the need to consider the local-global 
buckling interaction problem explicitly.  

(4) Subramanian et al. (2018) have demonstrated that the reliability index associated with the 
AISC (2016) and (2022) LTB strength calculations for built-up I-section members is 
significantly smaller than the target value of 2.6 for unbraced lengths in the vicinity of 
KLb = Lr. Slein et al. (2021) have confirmed this assessment experimentally and by FEA 
test simulation. The fundamental issue resides in the onset of yielding that occurs within 
unbraced lengths due to the amplified flange lateral bending stemming from unavoidable 
flange sweep imperfections. Slein et al. (2021) have shown this problem can be addressed 
acceptably by a slight reduction in the nominal stress, FL, at which inelastic LTB effects 
are deemed to be significant.  

(5) Liang et al. (2021) have demonstrated that thin-web I-section members with relatively large 
Cb values can experience a significant reduction in their elastic LTB resistance due to web 
distortion effects exacerbated by web shear stresses. Deshpande et al. (2021) have 
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demonstrated that these effects can combine with the onset of compression flange yielding 
at flange stresses in the vicinity of and larger than FL. As such, the flexural resistances 
predicted by the AISC Specification can be impacted substantially. Potential solutions are 
intrinsic in the calculation and/or application of the Cb factor.  

9. Closing Remarks 
This paper has presented an overview of several research developments I have been privileged to 
be involved with during my career. Emphasis has been given to key concepts and procedures 
captured in the recently-published AISC/MBMA Design Guide 25 Second Edition, the 
applicability of these concepts and procedures to the design of arches, and related concepts and 
methods implemented in the AASHTO LRFD Specifications for the unified design of straight and 
horizontally curved bridge I-girders. Cases have been highlighted where member and system 
stability design solutions are best conducted using a second-order load-deflection analysis of the 
geometrically imperfect structure, including nominal stiffness reduction effects (i.e., the Direct 
Analysis Method approach). In addition, cases have been highlighted where the design can be 
accomplished most effectively using a buckling (bifurcation) analysis approach. 
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Cagri Ozgur, Huy Pham, Evan Prado, Yavuz Mentes, Juan Jimenez Chong, Amit Jha, Cliff Bishop, 
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