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Abstract 
Structural demands from rain loads can control the design of roof systems, especially roofs with 
large, flat bays where the accumulation of water due to deflections, known as ponding, amplifies 
the load. Under ponding conditions, insufficient strength or stiffness of the roof system can lead 
to instability and collapse. While procedures for elastic analysis of ponding are available, few 
models consider material or geometric nonlinearity in addition to the ponding nonlinearity. A 
recently developed analysis model that uses the OpenSees finite element framework to capture 
material, geometric, and ponding nonlinearity is verified and validated through comparisons to 
previously published analytical and experimental results, including large-scale experimental tests 
on open web steel joist roofs. These comparisons demonstrate that the analysis model is efficient 
and accurate in capturing the behavior of roofs subjected to ponding conditions up to incipient 
collapse.  
 
 
1. Introduction 
The 2022 edition of ASCE/SEI 7 Minimum Design Loads and Associated Criteria for Buildings 
and Other Structures requires explicit assessment of ponding head, the additional depth of water 
in the design condition due to roof deflections, for the determination of rain load (ASCE 2022). 
In contrast, previous editions of ASCE/SEI 7 did not include the ponding head in the rain load 
and ponding stability was ensured through a separate investigation. The new requirements will 
drive demand for structural analyses capable of capturing ponding effects. Engineers will need to 
perform elastic ponding analyses to assess rain loads and researchers will need to perform more 
advanced ponding analyses that account for material or geometric nonlinearity to build 
knowledge on the behavior of roof systems subject to ponding loads. 
 
Several elastic ponding analysis methods have been proposed (Marino 1966; Colombi 2006; 
Baber and Rigsbee 2010; Silver 2010; Denavit 2019). However, few analysis methods consider 
material or geometric nonlinearity in addition to the ponding nonlinearity. The authors developed 
an analysis model, built upon the OpenSees finite element framework, that captures material, 
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geometric, and ponding nonlinearity. The objective of this work is to verify and validate this 
model against existing analysis methods and experimental results. 
 
2. OpenSeesPy and PyPonding 
The ponding analysis model is implemented in the OpenSees framework and thus can leverage 
the wide range of constitutive relations, element formulations, and solution algorithms within the 
framework. The key aspect of the model is the computation of loads based on the water level and 
current deformed state of the structure. The roof is divided into “ponding load cells” connected at 
finite element nodes. Implemented within the load cell are procedures to calculate the volume of 
water above the cell and convert its weight to loads on the structure (Figure 1). The procedures 
are based on the work of Colombi (2006) with extensions to allow for quadrilateral (not only 
rectangular) load cells and automatic evaluation of the overlap of water and snow load as 
described in SJI Technical Digest 3 (Fisher and Denavit 2018).  
 

(a) Physical representation of water on one ponding load 
cell. The volume of water is computed based on the 

deformed shape of the roof. 

(b) Nodal point loads on the roof structure computed by 
the ponding load cell to represent the physical volume of 

water. 
Figure 1. Schematic showing the conversion of a physical volume of water to point loads for one ponding load cell 

on a small roof structure. Multiple ponding load cells cover the roof. 
 
The ponding load cells are implemented in the PyPonding Python package and thus can 
interoperate with the OpenSeesPy Python interpreter for the OpenSees framework (Zhu et al. 
2018). Two-dimensional and three-dimensional versions of the ponding load cells are 
implemented. PyPonding also includes ponding load manager classes that aggregate several 
ponding load cells and automate common functions between finite element analysis and ponding, 
such as communicating deformations and assembling the load vector.  
 
The ponding load cells allow for a variety of analysis types. Figure 2 describes the procedure for 
two types of analysis. The first type of analysis described in Figure 2 achieves equilibrium for a 
given water level iteratively. Such an analysis may be appropriate for determining rain loads per 
ASCE/SEI 7 (ASCE 2022). The second type of analysis described in Figure 2 incrementally 
ramps up the volume of water without iteration in individual load steps. This type of analysis 
may be appropriate for cases where the water level reaches a peak since controlling the volume 
allows for analysis past this peak. The model and this analysis type have been used to evaluate 
the strength and reliability of steel roofs under rain loads (Denavit and Scott 2021). Other 
analysis types such as iterative analysis to a specified water volume, which may be appropriate 
for determining rain load per Canadian standards (NRCC 2015), are also possible.  
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Note that volume-controlled analyses include a step where the water level is determined 
iteratively using a standard Newton algorithm to achieve a target volume for the current 
deformed shape of the structure. The ponding load cell classes include procedures to return total 
water volume and water surface area (i.e., the ratio of change in water volume to change in water 
level or dV/dz), to accommodate this iterative procedure.  
 

Iterative analysis to specified water level 

Build model and define ponding load cells

Run analysis with initial loading

Communicate nodal displacements to ponding 
load cells

Compute updated nodal loads 

Converged?

Apply load increment to model

Run analysis step

No

Analysis complete

Yes

 
(a) 

Volume-controlled simple-step incremental analysis

Build model and define ponding load cells

Run analysis with initial loading

Communicate nodal displacements to ponding 
load cells

Compute updated nodal loads 

All steps run?

Apply load increment to model

Run analysis step

No

Analysis complete

Yes

Iteratively determine water level for target 
water volume

 
(b) 

Figure 2. Flowchart for two types of ponding analysis. 
 
3. Verification Against Closed-Form Solutions 
Researchers have developed closed-form solutions of displacements and internal forces, 
including ponding effects, for idealized cases. These solutions, especially those by Marino 
(1966), have a long history of use in design. Verification against these solutions confirms that 
PyPonding and OpenSeesPy accurately represent ponding effects as described by these solutions. 
 
3.1 Two-dimensional solutions by Silver (2010) 
Silver (2010) derived closed-form solutions for deflection and bending moments for several 
cases. The basic case of a flat simply supported beam with initial uniform loading (i.e., the 
loading would be uniform without ponding effects) is investigated here.  
 

 
w
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Figure 3. Flat simply supported beam with initial uniform loading as investigated by Silver (2010). 
 
Silver identified that the loading on the beam is the sum of the initial uniform loading and the 
weight of the water, which is proportional to the deflection of the beam.  
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    iw x w S y x    (1) 

 
where w(x) is the total load on the beam, wi is the initial uniform load (force per length), γ is the 
specific gravity of water (62.4 lb/ft3 = 3.61×10-5 k/in.3), S is the beam spacing (tributary width), 
and y(x) is the total deflection. 
 
Assuming small displacements and elastic behavior, the governing differential equation is 
formed noting that loading is proportional to the fourth derivative of the deflection.  
 
    iEI y x w S y x      (2) 

 
Silver derived the solution to this differential equation as: 
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Silver further derived the bending moment, noting that it is proportional to the second derivative 
of deflection. The flexibility coefficient, C, is a key parameter for these solutions.  
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Note that as C approaches unity, the deflections and bending moments diverge to infinity. 
 
Analysis results for the case of a W14×22 beam (I = 199 in4) spanning 40 ft and with a spacing 
of 10 ft are shown in Figure 4. The loading for this analysis consists of 20 psf dead load and 
water at a 2 in. level above the undeflected surface of the roof. Three sets of results are shown. 
The first set of results is from Silver’s closed-form solutions (e.g., Eq. 3 for beam deflection). 
The second set of results is from an analysis using PyPonding and OpenSeesPy. For this 
analysis, 20 elastic beam elements were used along the length of the beam and linear geometric 
transformations were employed. The PyPonding results match those from the closed-form 
solution. Both results exhibit significantly increased deflection and bending moment in 
comparison to the third set of results which does not include ponding effects and were obtained 
from standard beam equations, specifically Case 1 of Table 3-23 of the AISC Manual (AISC 
2017).  
 
The flexibility coefficient, C, equals 0.424 for the case presented in Figure 4. Additional 
comparisons over a range of flexibility coefficients are shown in Figure 5. The beam length, 
beam spacing, modulus of elasticity, and loading were the same as for Figure 4. Only the 
moment of inertia of the beam varied. Again, the results agree, indicating that PyPonding with 
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OpenSeesPy is capable of accurately capturing the effects of ponding even for large flexibility 
coefficients that lead to large ponding loads in comparison to the initial uniform loading.  
 

(a) (b) 
Figure 4. Analysis results for a W 14×22 beam (C = 0.424). 

 

(a) (b) 
Figure 5. Analysis results for cases with various flexibility coefficients. 

 
3.2 Three-dimensional solutions by Marino (1966) 
Marino (1966) derived a closed-form solution for deflections and bending moments of an 
idealized rectangular bay consisting of primary members supporting secondary members. These 
solutions formed the basis for the methods of design for ponding that appear in Appendix 2 of 
the AISC Specification (AISC 2016). The bay is perfectly flat with no slope or camber. The 
primary members have equal stiffness. The secondary members have equal stiffness, are equally 
spaced, and are spaced closely enough that the primary members can be considered uniformly 
loaded. All members are simply supported, and adjacent bays are identical. 
 
The main results of Marino’s derivation are the maximum deflection of the primary members 
and the secondary members due to the ponding loads. Using these results, the maximum moment 
in the primary member, Mp,max, and maximum moment in the secondary members, Ms,max, are:  
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where qi is the initial uniform load (force per area), Lp is the length of the primary members, Ls is 
the length of the secondary members, S is the spacing of the secondary members, αp = Cp/(1–Cp), 
αs = Cs/(1–Cs), and ρ = Cs/Cp. The flexibility coefficients for primary and secondary members are 
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where Ip is the moment of inertia of the primary members and Is is the moment of inertia of the 
secondary members.  
 

 
Figure 6. Idealized bay investigated by Marino (1966). 

 
The maximum moment in the primary and secondary members for a variety of flexibility 
coefficients are shown in Figure 7 for a case with Lp = Ls = 40 ft, S = 5 ft (8 secondary member 
spaces), E = 29000 ksi, 20 psf dead load and 2 in. of water above the undeflected surface of the 
roof. As before, three sets of results are shown. The first set is from Marino’s closed-form 
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solutions (i.e., Eqs. 5 and 6). The second set of results is from analyses using PyPonding and 
OpenSeesPy. The third set of results is based on standard beam theory and does not include the 
ponding effect and thus shows no variation with the flexibility coefficients.  
 
To accommodate the symmetry at each edge of the bay, individual members are analyzed 
separately with PyPonding and OpenSeesPy. Once the water load is determined, analyses are 
performed for each of the secondary members with pin and roller boundary conditions. The loads 
are doubled on the secondary members at the edges of the bays to account for the loads applied 
from the adjacent bays. The reactions from the analyses of the secondary members are recorded, 
doubled (to account for the adjacent bays), then applied as loads in the analyses of the primary 
members. Deformations from analyses of primary and secondary members are combined to 
determine the total deformations that the ponding load cells use to update the water load. For 
these analyses, eight elements were used along the length of the primary members (matching the 
number of secondary member spaces) and 20 elements were used along the length of the 
secondary members. Elastic beam elements with linear geometric transformations were 
employed.  
 

(a) (b) 
Figure 7. Analysis results for cases with various flexibility coefficients. 

 
The PyPonding results match those from the closed-form solution. Both results exhibit 
significantly increased bending moment compared to the third set of results which do not include 
ponding effects. As before, these results indicate that PyPonding with OpenSeesPy is capable of 
accurately capturing the effects of ponding even for highly flexible framed roof systems. 
 
4. Validation Against the Particle Finite Element Method 
Ponding models based on static, mechanical loading of structural members neglect the effects of 
fluid flow and pressure in computing the structural response. The particle finite element method 
(PFEM) is an approach to fluid-structure interaction that forms and solves the governing 
equations in a monolithic system rather than using a staggered solution along the fluid-structure 
boundary. Due to its Lagrangian formulation, the PFEM integrates with the structural finite 
elements implemented within OpenSees (Zhu and Scott 2014). In addition to the physical 
experiments of the next section, PFEM simulations can validate the ponding analysis method 
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since they provide an accurate representation of the physics of ponding that is conceptually 
distinct from the representation upon which PyPonding and the closed-form solutions are based. 
 
In the first validation, the ponding analysis method is compared to an OpenSees PFEM analysis 
of a flat beam like shown in Figure 3. As before, the beam is a W 14×22 (I = 199 in4) spanning 
40 ft and with a spacing of 10 ft. The loading for this analysis consists of 20 psf dead load and a 
given volume of water. Three PFEM analyses were performed with normalized water volumes 
(i.e., V/LS) of 20 in., 30 in., and 40 in., respectively. This amount of water would cause the beam 
to yield and subsequently collapse, however, both the PyPonding and PFEM analyses assumed 
linear elastic beam behavior thus collapse did not occur. The large volumes of water were 
selected to allow for a coarser mesh in the PFEM analyses and reduced run times. Unlike 
PyPonding, the PFEM analyses are dynamic. Each analysis was performed for 10 seconds to 
reach steady state. A snapshot at the end of one of the analyses is shown in Figure 8(a). The red 
points are fluid particles, the blue mesh is the background finite element mesh, and the green line 
is the beam.  
 
Detailed results are compared in Figure 9. Water level is not an explicit output from the PFEM 
analyses, and the water particles were not in a strict horizontal line at the end of the analyses as 
assumed in PyPonding. Water level from the PFEM analyses was taken as the nearest mesh line. 
Deflections, bending moments, and shears along the length of the beam match; however, the 
axial load in the beam does not match. In PyPonding, water loads are always applied vertically, 
therefore with a flat beam and linear geometric transformations, the axial load in the beam will 
always be zero. Physically, water pressure acts perpendicular to the beam. Thus, as the beam 
deflects, a small horizontal component of the water load arises, resulting in tension in the beam. 
The PFEM analyses capture this behavior through interaction between the fluid and structure 
even when the underlying structure is modeled with linear geometric transformations. 
 
The second validation is for a sloped beam, which has the same properties as the flat beam 
except the right support is 20 in. higher than the left support (i.e., 1/2 in. per foot slope). A single 
PFEM analysis was run for the sloped beam with normalized water volume, V/LS = 15 in. The 
analysis was performed for 30 seconds to reach steady state. A snapshot at the end of the analysis 
is shown in Figure 8(b). Note that the right end of the beam is above the water level. Detailed 
results are compared in Figure 10. Again, the results match except for axial force due to the 
realistic simulation of fluid pressures normal to the deflected shape of the beam.  
 

(a) Flat beam with normalized water volume, V/LS = 20 in. 

(b) Sloped beam with normalized water volume, V/LS = 15 in. 
Figure 8. Snapshots of PFEM ponding analysis results at end of analysis. 
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(a) 

(b) (c) 

(d) (e) 
Figure 9. Comparison of PyPonding and PFEM results for a flat beam. 
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(a) 

(b) (c) 

(d) (e) 
Figure 10. Comparison of PyPonding and PFEM results for a sloped beam. 
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5. Validation Against Physical Experiments 
Due to fluid loading conditions, physical testing of roof ponding is challenging. The authors are 
aware of only one set of physical tests which have been performed on full-scale roof structures 
subjected to ponding loads (Stark 2009; Stark et al. 2010). In this series of tests, two open-web 
steel joist roofs were loaded with water until failure. The roofs were constructed with three joists 
each, a 24K9 center joist and two edge joists. The span of the joists was 48 feet, and the width of 
the roof was 12 feet. The two edge joists were designed not to fail and to be half as stiff as the 
center joist to approximate a one-way bending condition. One of the roofs was constructed 
without slope while the other “pitched” roof was constructed with a 1/4 in. per foot slope. All 
joists were constructed with approximately 1 in. of camber.  
 
Both specimens were analyzed using PyPonding and OpenSeesPy. The analyses were performed 
in three-dimensions. The center joist was modeled using mixed beam finite elements for the top 
chord and truss elements for the bottom chord and web members. Two beam elements were used 
in each unbraced length of the top chord for a total of 48 elements along the length of the joist. 
Roof slope and camber were modeled explicitly through the definition of nodal coordinates. Out-
of-plane deformations of the joist were restrained in the model as they were in the physical 
specimens by bridging. Fiber cross sections were used for the double angle top chord with 23 
fibers along the height of the section and a bilinear stress strain relationship. Measured yield 
strength was used for the chord and web members of the center joist with an assumed E/200 
hardening modulus. The edge joists were modeled with elastic beam elements with the reported 
moment of inertia of the joist since details of the chord and web members of the edge joists were 
not reported. The magnitude of dead load was also not reported in the experiments however it 
was noted that the specimens were initially nearly planar. The dead load was assumed to be 5 psf 
as deflections due to this level of dead load offset the camber.  
 
Results of the comparisons are shown in Figure 11. Two sets of analysis results are presented 
one in which corotational (i.e., nonlinear) geometric transformations were used for the beam and 
truss elements, and one where linear geometric transformations were used. Little to no post-peak 
response is observed in the analyses using the nonlinear geometric transformations. While the 
ponding analysis overall is volume-controlled, each OpenSeesPy analysis step was performed in 
load control. The model is likely reaching a limit point at the maximum water level and thus is 
unable to return convergent results. The development of more sophisticated solution algorithms 
for ponding analysis is recommended for future research. Given the configuration and relatively 
low slenderness of the top chord (L/rx ≈ 39), no difference is seen between the analyses results 
using nonlinear and linear geometric transformations up to the maximum water level, however 
the lack of negative geometric stiffness allows the analysis with linear geometric transformation 
to converge for a few volume steps past the maximum water level.  
 
The analysis model can predict with high accuracy the experimentally observed response of the 
roof up to the point of collapse, indicating that the ponding effects are well-captured by the 
model. For both the physical experiment and the analysis, the failure mode was in-plane bending 
of the top chord. However, collapse occurs earlier in the analysis than it does in the experiment 
(i.e., for both specimens the analysis fails at a total water load of approximately 39 kips whereas 
the specimens failed at a total water load of 46 kips in the physical experiment). This 
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discrepancy may be due to differences between actual and assumed values of parameters which 
were not reported by the experimentalists.   
 

Figure 11. Model validation against large scale physical experiments of ponding on open-web steel joist roofs 
 
6. Conclusions 
Methods of structural analysis that include the nonlinear effects of ponding are needed to satisfy 
new design requirements and to further expand knowledge on the behavior of flexible roof 
systems. PyPonding is a newly developed Python package for ponding analysis. When coupled 
with a finite element framework, such as OpenSeesPy, PyPonding enables efficient ponding 
analyses that also consider other types of nonlinearities. Verification and validations studies were 
presented in this work, comparing PyPonding analysis results to those from closed-form 
solutions and physical experiments. The agreement of results for these challenging problems 
demonstrates the accuracy and capabilities of the PyPonding modeling approach.  
 
7. Supplementary Material 
The PyPonding package and numerical examples are available for download from GitHub at 
https://github.com/denavit/PyPonding. The OpenSeesPy package is also available from GitHub 
at https://github.com/zhuminjie/OpenSeesPy and can be installed directly using PyPi at 
https://pypi.org/project/openseespy/. 
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