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Abstract 
Electrical transmission towers are usually made of slender single angle members, which are prone 
to have flexural and flexural-torsional buckling behaviors under large deformations. In this 
research, both displacement-based and mixed beam elements are developed and implemented in 
the OpenSees software for simulating elastic and inelastic buckling of members with asymmetric 
sections such as steel angles and tees. Geometric nonlinearity is captured using a corotational total 
Lagrangian approach, while material nonlinearity is modeled using the fiber section method with 
uniaxial constitutive laws. The formulations try to minimize the number of elements needed 
through remedying membrane locking, representing nonlinear curvature within an element, and 
utilizing a kinematic model in the basic system that decouples axial, flexural, and torsional 
deformations for the first order effect. This research then proposes a procedure for developing 
collapse fragility curves of transmission towers subjected to hurricanes. The storm maximum gust 
speed is selected as the intensity measure and incremental dynamic analysis (IDA) is adopted to 
model collapse with the use of the newly developed beam element. Uncertainties in wind speeds, 
directions and durations are considered by running IDAs on transmission towers with a suite of 
hurricane wind records. The fragility curve is assumed to be the cumulative distribution function 
of the intensity measure at the onset of collapse. The parameters of the fragility curve are estimated 
by employing the method of moments with a premise that the intensity measure at the onset of 
collapse follows a lognormal distribution. 
 
 
1. Introduction 
Electrical transmission towers are vulnerable to hurricane winds. For example, Hurricane Katrina 
broke 402 cable support towers in Mississippi, which lead to about 200,000 customers lost their 
power (Cauffman et al., 2006). Therefore, performance and reliability of transmission towers 
should be thoroughly studied so that the damage of these structures can be quickly estimated, 
which can benefit emergency management of transmission networks during hurricanes. This 
research focus on development of collapse fragility of transmission towers subjected highly 
intensive winds due to hurricanes. This goal is achieved through developing finite element method 
for modeling nonlinear behavior of transmission towers, selecting appropriate hurricane wind 
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records with considering uncertainties in different hurricanes, conducting incremental dynamic 
analysis (IDA) for estimating the collapse capacity of transmission towers, and generating collapse 
fragility curves using a set of simulated data of the collapse capacity. 
 
Conventional transmission towers are made of slender steel angles, which are monosymmetric or 
asymmetric. Members manufactured from these sections usually have coupled axial-flexural-
torsional deformation due to the noncoincident centroid and shear center, and the Wagner effect. 
Therefore, it is critical to accurately simulate this axial-flexural-torsional coupling phenomenon of 
steel angles so that the real behavior of transmission towers under large deformation can be 
captured. In addition, collapse fragility curves of transmission towers are of interest, which means 
that parts of the structure should be in plastic stage and the material nonlinear behavior of the angle 
members should be modeled. To account for the above mentioned geometric nonlinear effects, 
displacement-based and mixed beam elements are developed within the corotational total 
Lagrangian formulation, while the material nonlinear effect is considered using a fiber section 
analysis approach. The total Lagrangian method is invoked within a basic coordinate system that 
continuously translates and rotates with the element. The rigid body motion is considered through 
the corotational transformation and the high order terms in the strain displacement compatibility 
equation are included in the basic system to model the axial-flexural-torsional interaction. 
Compared with the conventional total and updated Lagrangian formulations without corotational 
transformation, the corotational formulation can reduce the number of degrees-of-freedom 
(DOFs); therefore, the element formulation is simplified. The kinematic model used in the basic 
system follows the classical beam theory where bending is defined with respect to the centroid and 
torsion is referred to the shear center. A linear transformation is then adopted to move all degrees-
of-freedom to the shear center in advance to the corotational transformation. The beam elements 
are implemented in the OpenSees framework (McKenna et al., 2010), validated with a set of 
examples, and then used for nonlinear dynamic analysis of transmission towers. 
 
The collapse fragility development includes running a series of IDAs (Vamvatsikos and Cornell, 
2002) with a set of hurricane wind records selected from a synthetic hurricane catalog (Liu, 2014) 
to consider the record-to-record randomness. From the perspective of structural reliability, fragility 
is defined as the failure probability of a structure conditional on a given loading intensity. Here, 
the hazard intensity measure is set to be the storm-maximum gust wind speed. The limit state that 
is considered in the fragility development is collapse, which is related to global dynamic stability 
of the tower and is determined by using IDA. The fragility curve is modeled as the cumulative 
distribution function (CDF) of a lognormal distribution, and the two parameters of the CDF are 
estimated using the method of moments. 
 
2. Beam Element Development for Angle Sections 
This section presents the development and validation of the displacement-based and mixed beam 
elements in OpenSees, which can be used to simulate the nonlinear behavior of angle members 
used in transmission towers. Both the displacement-based element and the mixed element can 
address inelastic behavior using fiber-based cross section formulations. The mixed element has 
more complex formulations and is more computationally intensive than the displacement-based 
element; however, the mixed element can model nonlinear curvature within an element while the 
displacement-based element is only capable of representing linear curvature. Consequently, for 
severely inelastic cases with nonlinear distribution of curvature such as plastic hinges, the mixed 
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element is more accurate, and fewer number of mixed elements are needed to obtain similar results 
as compared to the displacement-based element. 
 
2.1 Corotational Total Lagrangian Framework 
To capture the axial-flexural-torsional interaction behaviors of slender members with asymmetric 
sections such as steel angles, the Green-Lagrange strain is invoked by using the total Lagrangian 
approach in the basic system of the corotational transformation approach. Within the context of 
corotational transformation, when describing strains and displacements at time t+Δt, the reference 
system is selected as the basic system at time t+Δt (i.e., reference configuration in Fig. 1). The 
element with 6 DOFs is formulated in the basic system at time t+Δt, which is then transformed to 
the 12-DOF global system with the help of the corotational transformation matrix at time t+Δt. 
The corotational transformation matrix is time dependent since the basic system translates and 
rotates continuously with the moving element chord. The pure deformations are captured at the 
basic system, while the rigid body motions are considered using the transformation matrix relating 
the global and basic coordinate systems. 
 

 
Figure 1. Global and basic systems of the corotational total Lagrangian formulation (after Mattiasson et al., 1985) 

 
2.2 Coordinate Systems 
Since the new elements are implemented in the OpenSees framework, the same global system and 
corotational transformation from the original OpenSees element are adopted. However, due to the 
noncoincident shear center and centroid of the beam element with asymmetric sections such as 
steel angles, the basic coordinate system is slightly different from the one used in typical beam 
elements in OpenSees. Figure 2 shows an angle section in the basic system, which is defined with 
two coordinate systems: x, y, z and x, y, z. The right-hand orthogonal coordinate system x, y, z is 
selected such that y and z are the principal axes of the cross section and x is the centroidal axis 
CC’. the coordinate system x, y, z is defined such that y and z are parallel to the principal axes (y 
and z) of the cross section and x is the shear center axis SS’. In this formulation, v and w represent 
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displacements of the shear center in the y and z directions, respectively, u is the axial displacement 
along the centroidal axis, and ϕ is the angle of twist about the shear center axis. This new basic 
system uncouples axial, flexural, and torsional deformations for the first-order effect. 
 

 
Figure 2: Element nodal forces and reference axes in the basic system 

 
In the basic system, the element stiffness matrix is formulated, which has 6 DOFs: one relative 
axial displacement 𝑢𝑢𝐽𝐽 of the centroids, two rotations relative to the chord 𝜃𝜃𝐼𝐼𝐼𝐼 and 𝜃𝜃𝐽𝐽𝐽𝐽, about the z 
axis, two rotations relative to the chord 𝜃𝜃𝐼𝐼𝐼𝐼 and 𝜃𝜃𝐽𝐽𝐽𝐽, about the y axis, and one relative angle of 
twist 𝜙𝜙𝐽𝐽 about the x axis. The corresponding nodal forces are the axial force 𝑁𝑁𝐽𝐽 acting along the 
centroidal axis; the two bending moments acting about the principal axis z and in the xy plane, 𝑀𝑀𝐼𝐼𝐼𝐼 
and 𝑀𝑀𝐽𝐽𝐽𝐽; the two bending moments acting about the principal axis y and in the xz plane, 𝑀𝑀𝐼𝐼𝐼𝐼 and 
𝑀𝑀𝐽𝐽𝐽𝐽; and the torque 𝑇𝑇𝐽𝐽 acting about the shear center axis. These nodal displacements and forces 
are expressed in vector format as 

𝑫𝑫𝑏𝑏 = [𝑢𝑢𝐽𝐽 𝜃𝜃𝐼𝐼𝐼𝐼 𝜃𝜃𝐽𝐽𝐽𝐽 𝜃𝜃𝐼𝐼𝑦𝑦 𝜃𝜃𝐽𝐽𝐽𝐽 𝜙𝜙𝐽𝐽]𝑇𝑇                                          (1) 
and 

𝑷𝑷𝑏𝑏 = [𝑁𝑁𝐽𝐽 𝑀𝑀𝐼𝐼𝐼𝐼 𝑀𝑀𝐽𝐽𝐽𝐽 𝑀𝑀𝐼𝐼𝐼𝐼 𝑀𝑀𝐽𝐽𝐽𝐽 𝑇𝑇𝐽𝐽]𝑇𝑇                                        (2) 
 
When using the corotational transformation approach, nodal displacements, nodal forces, and the 
stiffness matrix should be transformed to the global system. Nevertheless, within the current basic 
system, some DOFs are defined about the shear center, while others are defined with respect to the 
centroid. This means that the conventional corotational transformation should not be applied 
directly. Therefore, all nodal forces and displacements must be transformed to the same reference 
point before the corotational transformation. In the basic system, the lateral forces and torque are 
referred to the shear center, the moments act in the planes containing the shear center, while the 
axial force is defined with respect to the centroid. Consequently, it is straightforward to transform 
all DOFs to act about the shear center, since only the axial force needs to be transformed. If another 
point (e.g., the centroid) is chosen as the reference point, then the lateral forces also need to be 
transformed, which is more difficult, since the lateral forces are only recovered after the 
corotational transformation. Thus, it is appropriate to select the shear center as the reference point 
and select the shear center axis as the member reference axis in advance of the corotational 
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transformation. The coordinate system x, y, z is referred as the element basic reference system with 
the nodal displacements 𝑫𝑫𝑟𝑟 and forces 𝑷𝑷𝑟𝑟 acting about the shear center. The equations adopted to 
transform all DOFs to shear center are shown as 

𝑷𝑷𝑟𝑟 = 𝑻𝑻𝑟𝑟𝑇𝑇𝑷𝑷𝑏𝑏                                                                    (3) 
and 

𝑫𝑫𝑏𝑏 = 𝑻𝑻𝑟𝑟𝑫𝑫𝑟𝑟                                                                    (4) 
where the cross-sectional transformation matrix is defined as (Richen et al., 2020) 

𝑻𝑻𝑟𝑟𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0
𝑦𝑦𝑠𝑠 1 0 0 0 0
−𝑦𝑦𝑠𝑠 0 1 0 0 0
−𝑧𝑧𝑠𝑠 0 0 1 0 0
𝑧𝑧𝑠𝑠 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

                                                       (5) 

and ys and zs are coordinates of the shear center with respect to the centroid. Therefore, in the 
element basic reference system, the tangent stiffness matrix is 

𝑲𝑲𝑟𝑟 = 𝑻𝑻𝑟𝑟𝑇𝑇𝑲𝑲𝑏𝑏𝑻𝑻𝑟𝑟                                                                (6) 
where 𝑲𝑲𝑏𝑏 is the element tangent stiffness matrix in the basic system. 
 
2.3 Beam Section Kinematics 
With the kinematic assumption of the Euler-Bernoulli beam theory and neglecting warping effects, 
the motion of a material point P (x, y, z), which is defined in the coordinate system x, y, z in Fig. 
2, on the cross section is described in terms of the displacement components of the shear center 
and centroid (Alemdar, 2001; Trahair, 1993) 

𝑢𝑢𝑝𝑝 = 𝑢𝑢 − 𝑦𝑦𝑣𝑣′ − 𝑧𝑧𝑤𝑤′ + 𝑧𝑧𝑧𝑧𝑣𝑣′ − 𝑦𝑦𝑦𝑦𝑤𝑤′                                         (7) 
𝑣𝑣𝑝𝑝 = 𝑣𝑣 − 𝜙𝜙(𝑧𝑧 − 𝑧𝑧𝑠𝑠)                                                            (8) 
𝑤𝑤𝑝𝑝 = 𝑤𝑤 + 𝜙𝜙(𝑦𝑦 − 𝑦𝑦𝑠𝑠)                                                           (9) 

where ys, zs, u, v, w and ϕ are defined in Section 2.2. Taking derivatives of the displacement fields 
in Eq. (7) to Eq. (9) with respect to x and substituting the results into the definition of the Green-
Lagrange strain gives 

𝜀𝜀̂ = 𝑢𝑢′ − 𝑦𝑦𝑣𝑣′′ − 𝑧𝑧𝑤𝑤′′ + 1
2

[(𝑣𝑣′)2 + (𝑤𝑤′)2] + 1
2

[(𝑦𝑦 − 𝑦𝑦𝑠𝑠)2 + (𝑧𝑧 − 𝑧𝑧𝑠𝑠)2](𝜙𝜙′)2 + (𝑧𝑧𝑠𝑠𝑣𝑣′ −
𝑦𝑦𝑠𝑠𝑤𝑤′)𝜙𝜙′ + (𝑧𝑧𝑣𝑣′′ − 𝑦𝑦𝑤𝑤′′)𝜙𝜙                                                                                  (10) 

Comparing with the axil strain term 𝜀𝜀̂ = 𝑢𝑢′ − 𝑦𝑦𝑣𝑣′′ − 𝑧𝑧𝑤𝑤′′ adopted in the original OpenSees beam 
element, Eq. (10) has extra terms that can account for the coupling between the axial, flexural and 
torsional deformations. The shear strain at the material point P resulting from twisting of a member 
with thin-walled open section is approximated by the following equation (Rasmussen, 1997) 

𝛾𝛾� = 2𝑛𝑛𝜙𝜙′                                                                   (11) 
where n is the perpendicular distance between the material point P and the mid-thickness line of 
the cross-section. Shear strains due to bending and warping torsion are ignored. 
 
2.4 Element Formulation 
The displacement-based beam element can be derived from the principle of virtual work, which is 

∫ 𝛿𝛿𝝐𝝐�𝑇𝑇𝝈𝝈 
𝑉𝑉0

𝑑𝑑𝑑𝑑 − 𝛿𝛿𝑫𝑫𝑏𝑏
𝑇𝑇𝑷𝑷𝑒𝑒𝑒𝑒𝑒𝑒 = 0                                                     (12) 

where 𝝐𝝐� = [𝜀𝜀̂ 𝛾𝛾�]𝑇𝑇 is the strain vector, 𝝈𝝈 = [𝜎𝜎 𝜏𝜏]𝑇𝑇 is the corresponding stress vector, 𝑉𝑉0 is the 
volume of the undeformed element, and  𝑷𝑷𝑒𝑒𝑒𝑒𝑒𝑒 is a vector of external forces acting on element ends. 
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The mixed element can be derived from the Hellinger-Reissner variational principle, which can be 
stated by combining Eq. (12) of equilibrium and Eq. (13) of compatibility (Alemdar, 2001). 

∫ 𝛿𝛿𝑺𝑺𝑇𝑇�𝒅𝒅� − 𝒅𝒅� 
𝑙𝑙0

𝑑𝑑𝑑𝑑 = 0                                                     (13) 
In Eq. (13), 𝑙𝑙0 is the length of the undeformed element, 𝑺𝑺 is the stress resultant internal force 
vector, 𝒅𝒅� is the cross-section deformation vector derived from displacement fields, and 𝒅𝒅 is the 
cross-section deformation vector derived from the interpolated stress resultant internal force fields 
(𝑺𝑺). The derivation of the displacement-based element requires appropriate displacement shape 
functions, while the derivation of the mixed element requires both displacement and force shape 
functions. Here, cubic shape functions are adopted for the transverse deflections so one 
displacement-based element can only represent a linear curvature field, while the mixed element 
can model nonlinear curvature within an element because of using both displacement and force 
shape functions in the Hellinger-Reissner variational principle. After linearization of the weak 
form of the governing equations (Eq. (12) for the displacement-based element; Combination of 
Eq. (12) and Eq. (13) for the mixed element), the following iteration format can be obtained 

𝑲𝑲𝑏𝑏∆𝑫𝑫𝑏𝑏 = 𝑷𝑷𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖+1 − 𝑷𝑷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                      (14) 
where ∆𝑫𝑫𝑏𝑏  is the increment of element end displacement; 𝑷𝑷𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖+1  and 𝑷𝑷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are the external load 
vector in (i+1)th iteration and the element internal resisting forces in ith iteration, respectively. In 
addition, to remedy the membrane locking problem of the displacement-based element, the high 
order strain term 1

2
[(𝑣𝑣′)2 + (𝑤𝑤′)2] appeared in Eq. (10) is replaced by an effective membrane 

strain 1
𝑙𝑙0
∫ 1

2
[(𝑣𝑣′)2 + (𝑤𝑤′)2]𝑙𝑙0

0 𝑑𝑑𝑑𝑑 as suggested by Crisfield (1991, 1997), while the mixed element 
does not have this problem as demonstrated in the examples in Section 2.5. 
 
2.5 Validation Examples 
In the following examples, “DBxx” indicates using xx number of the new displacement-based 
element with membrane locking remedied, while “MBxx” indicates using xx number of the new 
mixed elements. 
 
2.5.1 Eccentrically Loaded Beam-Column 
This example, previously studied by Alemdar (2001), is about a simply supported beam-column 
subjected to an eccentric axial load (see Fig. 3). The length of the beam-column is L = 6668.52 
mm, and the eccentricity is e = 20.83 mm. The beam-column is in strong axis bending. The bending 
stiffness is EI and the axial load is 𝑃𝑃 = 8𝐸𝐸𝐸𝐸/𝐿𝐿2. As for the material properties, Young’s modulus 
E is 199,948 MPa and Poisson’s ratio ν is 0.3. 
 

 
Figure 3. Eccentrically loaded beam-column 

 
To simulate this example, 1 displacement-based element with membrane locking remedied and 1 
mixed element are adopted with elastic material. In Fig. 4, the exact curvature field along the 
member is compared with the curvature values at the Gauss integration points obtained from the 
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displacement-based and mixed elements. It is seen that the displacement-based element can only 
represent a linear curvature field owing to the cubic shape functions used for transverse deflections. 
In contrast, the mixed element exhibits a nonlinear curvature field because of the independently 
interpolated displacement fields and force fields. Equilibrium is satisfied at each Gauss integration 
point within the mixed element, while it is only satisfied in a weighted average sense for the 
displacement-based element. This example is also simulated using 2 elements whose results are 
illustrated in Fig. 5. The mixed element yields a good approximation for the nonlinear curvature 
field with no discontinuity, while the curvature field of the displacement-based element includes 
two linear parts with a discontinuity at the connection point. In this example, each element has 
seven Gauss-Lobatto integration points with 24 fibers on the cross section. 

 
Figure 4. Curvature field along the member (1 element) 

 
Figure 5. Curvature field along the member (2 elements) 

2.5.2 Flexural-Torsional Buckling of Concentrically Loaded Angle Struts 
This example, studied by Kitipornchai and Lee (1986), is about elastic flexural-torsional buckling 
of a pin-ended unequal-leg angle strut (L76x51x5 mm) under concentric loading. The detailed 
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material properties are: Young’s modulus E = 200,000 MPa, Poisson’s ratio ν = 0.3, and yielding 
stress Fy = 312 MPa. The calculated elastic buckling load for members with different modified 
slenderness are shown Fig. 6. Here, the modified slenderness is defined as 𝜆𝜆 = �𝐹𝐹𝑦𝑦/(𝜋𝜋2𝐸𝐸)𝐿𝐿/𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚, 
where  𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum radius of gyration and L is the length of the angle strut. In Fig. 6, Py 
is the section yielding load (squash load) and Pc is the applied axial load. It is seen that the buckling 
loads computed using the newly developed elements match well with the theoretical results given 
in Kitipornchai and Lee (1986). 

 
Figure 6. Flexural-torsional buckling of concentrically loaded angle struts (elastic) 

 
As for inelastic buckling, Kitipornchai and Lee (1986) proposed an approximate residual stress 
distribution as shown in Fig. 7, which is also employed in the present study. An elastic-perfectly 
plastic stress-strain curve is used and the shear modulus is assumed to remain constant in the plastic 
region. The inelastic buckling loads of the angle struts with different slenderness are calculated 
using the new mixed and displacement-based elements, which are then compared with the values 
from Kitipornchai and Lee (1986) in Fig. 8. It is seen that the inelastic buckling loads also have 
very good agreement. 

 
Figure 7. Assumed residual stress distribution for angle sections 
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Figure 8. Flexural-torsional buckling of concentrically loaded angle struts (inelastic) 

 
2.5.3 Nonlinear Dynamic Analysis of a Cantilever with Tee Section 
Le et al. (2014) numerically studied the nonlinear dynamic response of a tee cantilever as shown 
in Fig. 9. The material properties are given as: E = 210,000 MPa, ν = 0.3, and ρ = 7850 kg/m3. The 
left end of the cantilever is totally fixed. Two concentrated loads (Py = -50P(t), Pz = 25P(t)) with 
different directions are applied to point O at the free end. The time history of P(t) is given in Fig. 
10. This example is analyzed using a time step of 0.001 s. Damping is not considered. The Z-
displacement time histories of the free end centroid computed using the mixed and displacement-
based elements are shown in Fig. 11, compared with the results given in Le et al. (2014), including 
the results of 40 corotational beam elements, 80 Abaqus B31OS elements and 2880 Abaqus 
isoparametric 20-node solid elements. The displacements computed using different elements agree 
well. The small discrepancies should be due to the fact that a consistent mass matrix is adopted in 
Le et al. (2014) while a lumped mass matrix is used in the present study. 

 
Figure 9. Cantilever with a tee section 
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Figure 10. Time history of P(t) 

 
Figure 11. Time histories of the Z-displacement (Uz) of the right end centroid 

 
3. Collapse Fragility Development of Transmission Towers Subjected to Hurricanes 
3.1. Transmission Tower Modeling 
An 18-meter transmission tower as shown in Fig. 12 is studied in this research. In the modeling of 
the tower, beam orientation assignment is of great importance due to the asymmetric angle 
sections. Therefore, Abaqus/CAE (Dassault Systèmes, 2017) is adopted as a finite element 
processor, as shown in Fig. 13(a). After each member being discretized into 3 elements, the Abaqus 
model is saved as an Abaqus INP file, which is then converted to an OpenSees input file. In 
addition, in Abaqus the beam orientation in the global system is defined using the directions of n1 
and n2 (Fig. 13(b)); however, in OpenSees it must be defined using the direction of the principal 
axes (y and z in Fig. 13(b)). Therefore, a rotation matrix is adopted to obtain vectors y and z using 
the information of vectors n1 and n2. Primary members of the tower are made of ASTM A572 
Grade 50 steel, while secondary members are made of ASTM A36 steel. The Steel01 material, a 
uniaxial bilinear constitutive model for steel, is used in OpenSees, where standard yield stresses 
are assumed and a strain-hardening ratio of 0.031 is adopted. Residual stress is considered by 
applying initial stress to each fiber on the cross section, which follows the assumed residual stress 
pattern as shown in Fig. 7. 
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Figure 12. A typical transmission tower and its subsections 

 

                               
(a)                                                                                  (b) 

Figure 13. (a) Transmission tower model in Abaqus (rendering beam profiles); (b) Section reference axes in Abaqus 
and section principal axes of an angle section 

 
3.2. Hurricane Wind Records Selection 
For the location of interest (latitude 41.776863, longitude -69.99792) studied in this research, 194 
hurricane wind records are collected (see Du et al., 2022 for details) from a 10,000-year synthetic 
hurricane catalog given in Liu (2014). Nevertheless, conducting IDAs for all 194 records is 
computationally intensive so that it prohibits the collapse fragility analysis. Therefore, a good way 
is to reduce the number of records used while still cover the uncertainties in the wind records. As 
such, the collected 194 wind records are first divided into 4 clusters using the autoencoder neural 
network and k-means algorithm, and then a set of wind records are selected from each cluster (Du 
et al., 2022). After clustering, the number of hurricane wind records in each cluster are 27, 48, 56 
and 61, respectively. The number of records selected from a cluster should be proportional to the 
total number of records in that cluster, which leads to 3, 5, 6 and 6 records from each cluster, 
respectively (see Fig. 14). This approach is adopted to ensure that the proportions of different 
patterns of wind records are similar in the original 194 hurricanes and the selected 20 ones. In Fig. 
14 the wind speeds are resolved into the North and East directions because both the wind speeds 
and wind directions are time-variant. The selected 20 hurricane wind records are then adopted to 
calculate wind forces for collapse modeling using IDA. 

𝑆
𝐶

𝑛𝑛1

𝒚

𝑛𝑛2

𝒛
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(a) Cluster 1                                                                      (b) Cluster 2 

 
(c) Cluster 3                                                                      (d) Cluster 4 

Figure 14. Selected hurricanes records 
 
The selected wind records in Fig. 14 are 10-minute mean wind speeds at 10-meter height. Based 
on these wind records, the synthetic wind fields are developed, which consist of mean wind speeds 
changing along the height of the tower and the superimposed fluctuating winds. To avoid impulse 
effects in structural analysis, the first hour and last hour are added as the ramp-up and ramp-down 
as shown in Fig. 15(a). To run IDA, the 10-minute mean wind speeds are scaled gradually so that 
the storm-maximum 10-minute mean wind speed increases from 10 m/s to 55 m/s with a 5 m/s 
increment. The scaled mean wind speeds are then specified as the mean wind speeds at 10-meter 
height. To generate mean wind speeds at loading points of different heights along the tower, the 
logarithmic law for the atmospheric boundary layer is used. This means that the mean wind speed 
at 10-meter height is controlled, while the mean wind speeds at other heights are calculated using 
the logarithmic law. Open terrain with a roughness length of 0.03 m is assumed. Fluctuating wind 
is simulated using the Kaimal spectrum for representing the stochastic properties (Kaimal et al., 
1972). As an example, Fig. 15(a) shows a set of generated wind speeds time histories without 
resolving to the North and East directions. The spectrum of the simulated fluctuating winds is 
presented in Fig. 15(b) together with the Kaimal spectrum. 
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(a)                                                                               (b) 

Figure 15. (a) Simulated wind field; (b) Spectrum of fluctuating wind 
 
3.3. Incremental Dynamic Analysis 
The wind speed time histories on all loading points along the tower should be converted to dynamic 
wind loads for running IDAs. It is shown in ASCE 74 (Agnew, 2020) that the drag wind load on 
a tower section depends on factors like wind speeds, drag coefficient and projected area in the 
wind direction. Given that the drag coefficient varies as the tower configuration changes in the 
vertical direction, the tower is divided into 5 subsections along the height as shown in Fig. 12. The 
drag coefficient for each subsection can be calculated using the code equations. Considering the 
time-variant wind directions, the equations for yawed wind on transmission towers provided by 
ASCE 74 are adopted to calculated wind forces in both longitudinal and transverse directions as 
illustrated in Fig. 16. Note that Fig. 16 shows the wind force time histories on all five subsections, 
while the additional two times histories in the transverse direction are wind forces on ground wires 
and conductors. 

 
(a) Transverse force                                               (b) Longitudinal force 

Figure 16. Hurricane wind forces on the transmission tower 
 
With the calculated wind forces from a suite of scaled wind records and the finite element model 
of a transmission tower in OpenSees, IDAs are conducted to estimate the collapse capacity of the 
tower. Here, collapse capacity is defined as the storm-maximum gust speed associated with the 
onset of collapse. The onset of collapse is defined as the slope of the IDA curve reaches 20% of 



 14 

the elastic slope, which is borrowed from what is commonly used in earthquake engineering 
(Vamvatsikos and Cornell, 2002). The obtained IDA curves are shown in Fig. 17 along with the 
specified collapse capacities (red stars). 

 
Figure 17. IDA curves with corresponding collapse points (red stars) 

 
3.4. Collapse Fragility Development 
Fragility is defined as the conditional probability of reaching a damage state for a structure 
subjected to a given intensity measure of the loading. In this research, collapse fragility of 
transmission towers is of interest. The collapse fragility in this work is defined as (Shinozuka et 
al., 2000) 

𝐹𝐹(𝐼𝐼𝐼𝐼) = Φ�ln (𝐼𝐼𝐼𝐼 𝜃𝜃⁄ )
𝛽𝛽

�                                                              (15) 
where 𝐼𝐼𝐼𝐼 is the selected intensity measure for the fragility, i.e., the storm-maximum gust wind 
speed of a hurricane; Φ denotes the standard normal cumulative distribution function; 𝜃𝜃 is the 
median of the fragility function; 𝛽𝛽 is the standard deviation of ln (𝐼𝐼𝐼𝐼). Eq. (15) implies that the 
collapse capacity 𝐼𝐼𝐼𝐼collapse, which represents 𝐼𝐼𝐼𝐼 values associated with the onset of collapse of 
a structure, follows a lognormal distribution (Baker, 2015). Parameters of fragility functions are 
estimated using the method of moments (Baker, 2015): 

ln(𝜃𝜃�) = 1
𝑚𝑚
∑ ln(𝐼𝐼𝐼𝐼collapse,𝑖𝑖)𝑚𝑚
𝑖𝑖=1                                                        (16) 

𝛽̂𝛽 = � 1
𝑚𝑚−1

∑ �ln�𝐼𝐼𝐼𝐼collapse,𝑖𝑖 𝜃𝜃�⁄ ��
2𝑚𝑚

𝑖𝑖=1                                                  (17) 

where 𝜃𝜃�  and 𝛽̂𝛽  are the estimates of parameters 𝜃𝜃  and 𝛽𝛽 , respectively; 𝑚𝑚  is the number of 
simulations (e.g., IDAs) considered; 𝐼𝐼𝐼𝐼collapse,𝑖𝑖is the collapse capacity for the ith simulation.  
 
With the collapse capacity data from IDA curves (see Fig. 17), the two parameters (𝜃𝜃 and 𝛽𝛽) 
defining the collapse fragility curve are estimated using Eqs. (16) and (17). The collapse fragility 
curve generated from Eq. (15) is shown in Fig. 18 together with the simulation data (black stars), 
which can be employed to quickly estimate the failure probabilities of transmission towers 
provided the storm-maximum gust speed is given. Only the uncertainties in the hurricane wind 
loads are considered in this research. 
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Figure 18. Fragility curve for the transmission tower along with the simulation data (black stars) 

 
4. Conclusions 
To model the collapse behavior of electrical transmission towers under dynamic loading, three-
dimensional beam elements are developed within the OpenSees framework with capturing the 
geometric and material nonlinearities of angle members. The axial-flexural-torsional interaction 
behavior of angle members is simulated using the corotational total Lagrangian approach. The 
elements are validated with several examples. A procedure for developing collapse fragility curves 
under hurricanes is then proposed and demonstrated with an example. The fragility curve is 
expressed as the CDF of a random variable named collapse capacity, which is the storm-maximum 
gust wind speed at the onset of collapse. The uncertainties in collapse capacity are captured by 
running IDAs with a suite of selected hurricane wind speed and direction records. This means only 
the record-to-record randomness is propagated to the collapse capacity and thus to the fragility 
curve. Both changes in wind speed and wind direction are considered in this process. 
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