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Abstract 

The Direct Strength Method (DSM) is useful in determining the local and distortional buckling 

strength of thin-walled cold-formed steel compression and flexural members. This method 

provides a consistent approach applicable to any cross-section based on its yielding and elastic 

buckling characteristics. Recent research has shown opportunity for improvement for flexural 

members unsymmetric about the axis of bending. This paper investigates how additional stress 

redistribution due to asymmetry impacts strength. Adjustments to the DSM strength equations for 

local and distortional buckling are proposed to account for this behavior, and are validated against 

a wide variety of test and simulation results. A new form of the DSM strength equations is also 

developed to additionally address cases where section instability results in a reduced effective 

depth and therefore lower strength. This new proposed form offers simplicity and broader 

applicability suitable for consideration in design specifications. 

 

 

1. Introduction 

The strength of cold-formed steel members subject to local and distortional buckling can be 

determined using the Direct Strength Method (DSM) as provided in the AISI S100 (AISI 2016) 

and AS/NZS 4600 (AS/NZS 2018) specifications. This DSM strength is a function of the yielding 

and elastic buckling behavior of the section, enabling a consistent approach regardless of section 

complexity. 

 

For flexural members, DSM uses the dimensionless slenderness factors 𝜆𝐿 = √𝑀𝑦/𝑀𝑐𝑟𝐿  and 

𝜆𝐷 = √𝑀𝑦/𝑀𝑐𝑟𝐷 where My is the moment causing first yield, and McrL and McrD are the critical 

elastic buckling moments for local and distortional buckling, respectively. The strength equations 

utilize a form of the Winter plate buckling formula:  
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where MnL and MnD are the nominal moment strengths for local and distortional buckling, 

respectively. These equations are used for strengths up to the yield moment as plotted in Fig. 1. 

The AISI (2016) provisions define the strength above the yield moment as a separate inelastic 

reserve linear transition to the plastic moment strength. 

 
Figure 1. Current DSM strength curves in AISI S100-16. 

 

DSM has been used successfully for several years, but some opportunities for continued 

improvement exist (Schafer 2019). In particular, tests and simulations of flexural members 

unsymmetric about the axis of bending often demonstrate under-prediction and sometimes over-

prediction with DSM. Studies by Baur and LaBoube (2001), Nuttayasakul and Easterling (2003), 

Oey and Papangelis (2020), Degtyarev (2020), and Raebel and Gwozdz (2017) have investigated 

different DSM equations for special cases, as shown in Fig. 2. 

 
Figure 2. Examples of sections not symmetric about the axis of bending. 

 

This paper presents a generalized modification to the DSM strength predictions for sections 

unsymmetric about the axis of bending while maintaining equivalent strength predictions for 

sections symmetric about the axis of bending. A new simpler form of the DSM strength equation 

is also presented which better accommodates certain types of sections that experience more 

strength reduction due to their inability to maintain full section depth. 
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2. Modification to DSM strength curves 

The general form of the DSM strength equation is given by Eq. 3, where the exponent η and 

coefficient c provide flexibility to fit the equation to strengths observed in tests. The λ1 limit is the 

slenderness at which first yield occurs (Mn/My = 1). For slenderness less than λ1, The DSM strength 

for inelastic reserve is given by the linear expression shown in Eq. 4 between (0, ks) and (λ1, 1), 

where ks is the shape factor determined by the ratio of plastic section modulus to elastic section 

modulus, i.e., ks =  Mp/My where Mp is the plastic moment. 

 

 For 𝜆 > 𝜆1:   
𝑀𝑛

𝑀𝑦
=

1

𝜆𝜂 −
𝑐

𝜆2𝜂 = (1 − 𝑐/𝜆𝜂)/𝜆𝜂 (3) 

 For 𝜆 ≤ 𝜆1:   
𝑀𝑛

𝑀𝑦
= 1 + (𝑘𝑠 − 1)(1 − 𝜆 𝜆1⁄ ) (4) 

 

Sections unsymmetric about the axis of bending often undergo greater redistribution of stresses as 

the moment increases. Stress redistribution may be driven by material nonlinearity where yielding 

in the tension and compression regions are unbalanced as shown in Fig. 3(b), or by geometric 

nonlinearity where slender portions of the cross-section cannot carry their full elastic stress as 

shown in Fig. 3(c), or by a combination of these two as shown in Fig. 3(d). Both types of stress 

redistribution result in a shift of the neutral axis to maintain net-zero axial force, typically more 

than that for a section symmetric about the axis of bending. 

 
Figure 3. Stress redistribution due to (b) material nonlinearity, (c) geometric nonlinearity, and (d) both. 

 

The exponent η, coefficient c, and slenderness limit λ1 require adjustment to reflect the difference 

in strength observed in tests for sections unsymmetric about the axis of bending. The magnitude 

of adjustment has correlated well with the relative position of the elastic neutral axis, which is 

defined by the expression in Eq. 5. This non-dimensional symmetry parameter βs can be expressed 

using the extreme compression fiber distance (yc) and overall depth (d), or the ratio of section 

moduli for compression (Sc) and tension (St). For a section symmetric about the axis of bending, 

βs=1; for a section with first yield in tension, βs<1 and the strength curve should be higher; and for 

a section with first yield in compression, βs>1 and the strength curve should be lower. 
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This coefficient was found to work well as a direct multiplier on the exponents currently used for 

local (0.8) and distortional buckling (1.0). For local buckling, the exponent ηL becomes 0.8βs with 

possible values ranging from 0 to 1.6. For distortional buckling, the exponent ηD becomes 1.0βs 

with possible values ranging from 0 to 2. At one extreme, where η=0, the curve is a horizontal line 

at Mn/My=1. At the other extreme, where η=2, the curve is an offset from the elastic buckling 

curve. 

 

The slenderness limit λ1 has been observed to increase (shift right) as the strength curve raises (βs 

decreases), and also as the shape factor ks increases. These adjustments were found to work well 

as direct divisors and multipliers, respectively: λ1=λ10(βso/βs)(ks/kso), where λ10 is the base 

slenderness limit currently used in DSM, βso is the base symmetry factor (1.0), and kso is the base 

shape factor.  

 

Typical cold-formed steel sections such as those used to calibrate the DSM strength curves have a 

shape factor ks near 1.2. Evaluation of the SFIA (2018) studs and tracks shows similar shape factors 

for major axis bending around 1.2 as shown in Table 1. Therefore, a base shape factor of 1.2 was 

chosen in the slenderness limit adjustment. The range of shape factors and symmetry factors for 

minor axis bending of SFIA studs and tracks are also given in Table 1. 

 
Table 1. Shape factor data for SFIA (2018) studs (without holes) and tracks 

Type 

Bending 

About Sections 

ks = Mp/My 

Mean (CoV) 

βs = 2yc/d 

Range 

Stud Major Axis 428 1.19 (0.04) 1.00 

Track Major Axis 283 1.23 (0.06) 1.00 

Stud Minor Axis c 428 1.51 (0.04) 0.30 – 0.78 

Track Minor Axis c 283 1.76 (0.03) 0.17 – 0.63 

Stud Minor Axis t 428 1.51 (0.04) 1.22 – 1.70 

Track Minor Axis t 283 1.76 (0.03) 1.37 – 1.83 
c Web in compression, t Web in tension 

 

The adjustments described herein are incorporated into the DSM equations as follows, where the 

coefficients cL and cD are determined by satisfying the strength equations for Mn/My=1 at λ=λ1. 

 

 For 𝜆𝐿 ≤ 𝜆1𝐿:   𝑀𝑛𝐿 = 𝑀𝑦 + (𝑀𝑝 − 𝑀𝑦)(1 − 𝜆𝐿/𝜆1𝐿) (6) 

 For 𝜆𝐿 > 𝜆1𝐿:   𝑀𝑛𝐿 = [1 − 𝑐𝐿 (
𝑀𝑐𝑟𝐿

𝑀𝑦
)

0.4𝛽𝑠

] (
𝑀𝑐𝑟𝐿

𝑀𝑦
)

0.4𝛽𝑠

𝑀𝑦 (7) 

 𝜆1𝐿 = 0.776 (
𝑘𝑠

1.2𝛽𝑠
) (8) 

 𝑐𝐿 = (1 − 𝜆1𝐿
0.8𝛽𝑠) 𝜆1𝐿

0.8𝛽𝑠 (9) 

 For 𝜆𝐷 ≤ 𝜆1𝐷:   𝑀𝑛𝐷 = 𝑀𝑦 + (𝑀𝑝 − 𝑀𝑦)(1 − 𝜆𝐷/𝜆1𝐷) (10) 

 For 𝜆𝐷 > 𝜆1𝐷:   𝑀𝑛𝐷 = [1 − 𝑐𝐷 (
𝑀𝑐𝑟𝐷

𝑀𝑦
)

0.5𝛽𝑠

] (
𝑀𝑐𝑟𝐷

𝑀𝑦
)

0.5𝛽𝑠

𝑀𝑦 (11) 

 𝜆1𝐷 = 0.673 (
𝑘𝑠

1.2𝛽𝑠
) (12) 

 𝑐𝐷 = (1 − 𝜆1𝐷
𝛽𝑠 ) 𝜆1𝐷

𝛽𝑠  (13) 
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3. Proposed new form of strength curves 

The wide range of the strength curve exponents used in Eqs. 7 and 11 is a departure from the 

philosophy that a buckling mode is associated with a specific power curve (λ2 for elastic buckling, 

λ0.8 for local buckling, λ1.0 for distortional buckling), rendering it as merely one of many 

mathematical forms capable of being calibrated to test data. Although this form is a descendent of 

the Winter plate buckling formula and provides flexibility to handle many cases, additional 

empirical adjustments are necessary for certain cases. It also exhibits a discontinuity at yield not 

observed in tests. 

 

A broader variety of cases could be accommodated more naturally with a different slenderness-

based equation form where modifiers are driven more directly by the influences of shape factor, 

stress redistribution, and residual strength at high slenderness. One such novel form of the strength 

curve was developed to capture strength prediction throughout the entire range of slenderness 

values including inelastic reserve. The general form of this equation is: 

 

 
𝑀𝑛

𝑀𝑝
=

1+𝑎𝜆2

1+𝑏𝜆2 =
𝑀𝑐𝑟+𝑎𝑀𝑦

𝑀𝑐𝑟+𝑏𝑀𝑦
 (14) 

 

This form of the strength curve exhibits several notable features: 

• At zero slenderness, the magnitude is 1 and the slope with respect to λ is zero. 

• The horizontal asymptote is a/b, and for a/b < 1 the slope of the curve is always negative. 

• The steepest slope (inflection point) occurs at λ=1/√3𝑏. 

• For a given a/b ratio, smaller values of a and b produce a more gradual approach to the 

asymptote, thus providing a means to calibrate the curvature. 

• For a ≥ 0 and b < ks, the strength curve always crosses the elastic buckling curve, the point 

at which post-buckling strength begins. 

• For a = 0 and b ≥ ks, the curve stays below the elastic buckling curve. 

 

For local buckling, the base coefficients a and b were determined by matching the curve to the 

current DSM provisions for both inelastic reserve strength and local buckling strength (Eq. 1) as 

shown in Fig. 4(a) and given in Eq. 15. 

 
Figure 4. Curve comparison for (a) local buckling and (b) distortional buckling 
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The shape factor ks is already incorporated into Eq. 15, but adjustments are required for members 

unsymmetric about the axis of bending, where stress redistribution and degradation of residual 

strength can have additional influence. These adjustments were implemented using coefficients αs 

and βs as follows: 

 

 𝑀𝑛𝐿 = 𝑀𝑝
𝑀𝑐𝑟𝐿+0.10𝛼𝑠𝑀𝑦

𝑀𝑐𝑟𝐿+0.55𝛽𝑠𝑀𝑦
 (16) 

 𝛼𝑠 = 𝑑𝑠 𝑑⁄      𝛽𝑠 = 2𝑦𝑐/𝑑  

 

The αs coefficient addresses the potential reduction in strength at higher slenderness for sections 

unable to maintain full section depth, where ds is the depth of the stable portion of the section 

remaining after local buckling at extreme slenderness, typically full depth (d) or no depth (0). 

  

The βs coefficient is the same symmetry factor used as a modifier to the DSM curves to account 

for stress redistribution associated with asymmetry. It is applied in the denominator to alter 

coefficient b which has more influence over the entire curve. This simple multiplier provided good 

results using this equation form. For a section with first yield in tension, βs<1, and the strength 

curve is higher. For a section with first yield in compression, βs>1, and the strength curve is lower.  

 

For distortional buckling, the base coefficients a and b were determined by matching the curve to 

the current DSM provisions for both inelastic reserve strength and distortional buckling strength 

(Eq. 2) as shown in Fig. 4(b) and given in Eq. 17. 

 

 𝑀𝑛𝐷 = 𝑘𝑠𝑀𝑦
1+0.07𝜆𝐷

2

1+0.60𝜆𝐷
2 = 𝑀𝑝

𝑀𝑐𝑟𝐷+0.07𝑀𝑦

𝑀𝑐𝑟𝐷+0.60𝑀𝑦
 (17) 

 

The same αs and βs coefficients are applied to distortional buckling to account for stress 

redistribution and residual strength reduction at high slenderness for sections unsymmetric about 

the axis of bending.  

 𝑀𝑛𝐷 = 𝑀𝑝
𝑀𝑐𝑟𝐷+0.07𝛼𝑠𝑀𝑦

𝑀𝑐𝑟𝐷+0.60𝛽𝑠𝑀𝑦
 (18) 

 𝛼𝑠 = 𝑑𝑠 𝑑⁄      𝛽𝑠 = 2𝑦𝑐/𝑑  

 

4. Validation of modified and proposed DSM curves 

The current AISI DSM equations were established by calibrating the coefficients and exponents 

to a large number of tests and wide variety of sections which were originally categorized as 

prequalified sections (Schafer and Peköz 1998, Yu and Schafer 2003, 2006, 2007). The LRFD 

resistance factor of 0.9 for flexural members was justified based on the DSM accuracy for those 

sections with a target reliability index of 2.5. The following validations involve other types of 

sections and more recent studies which require the modifications to the strength predictions 

presented herein to achieve similar or better reliability. 

 

4.1 Sections unsymmetric about axis of bending 

Oey and Papangelis (2020) performed a computational study of stiffened C sections in minor-axis 

bending with the web in compression. Nonlinear finite element simulations were run on 33 sections 

having slenderness λL between 0.633 and 4.0, ks between 1.43 and 1.66, and βs between 0.50 and 

0.66. The full section depth is stable for these local buckling cases (αs=1).  
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Simulations for a variety of deck sections were performed by Degtyarev (2020), consisting of 

many common stiffened and unstiffened profiles with designations of 1F, 1.5B, 1.5BR, 3N, and 

3NR. The unstiffened profiles were controlled by local buckling and the stiffened profiles were 

controlled primarily by distortional buckling. Some profiles had equal top and bottom flanges 

where βs = 1, whereas others had βs values ranging from 0.74 to 1.26. 

 

A series of plain channel sections in minor axis bending were tested by Beale, Godley, and Enjily 

(2001). The tests were performed with the free edges in compression and were controlled by local 

buckling. The tested sections varied in slenderness, but had similar proportions with ks between 

1.78 and 1.86, and βs between 1.48 and 1.50. Predictions for these tests used a stable depth factor 

of αs=0 which lowers the strength at higher slenderness. Two of the tests at low slenderness had 

strengths well above Mp and were therefore excluded from this evaluation. 

 

A number of complex hat sections, typically used as truss chords, were tested by Baur and 

LaBoube (2001) and Nuttayasakul and Easterling (2003). The tests were performed with the edges 

of the stiffened flanges in compression and were controlled by distortional buckling. Although 

these tests consisted of a variety of different shapes, their strength modification characteristics 

were similar. The shape factor ks varied from 1.27 to 1.48, and βs varied from 0.99 to 1.19. 

Predictions for these tests used a stable depth factor of αs=0 which lowers the strength at higher 

slenderness. 

 

The statistics for the DSM prediction methods are tabulated in Table 2. For local buckling, the 

modified and proposed new DSM predictions show significant improvement over the current 

DSM. For distortional buckling, the modified DSM provides minor improvement and the proposed 

new DSM shows marked improvement particularly for the complex hat shapes. 

 
Table 2. Comparison of tests and simulations to predictions (Mt/Mn) 

Researchers Shapea Modeb Typec Testsd 

S100-16 DSM 

Mean (CoV) 

Modified DSM 

Mean (CoV) 

Proposed DSM 

Mean (CoV) 

Beale et al. (2001) T LB Test 11 0.97 (0.19) 1.10 (0.10) 1.00 (0.15) 

Baur and LaBoube (2001) H DB Test 48 0.92 (0.32) 0.95 (0.31) 1.09 (0.24) 

Nuttayasakul and 

Easterling (2003) 
H DB Test 67 1.02 (0.26) 1.10 (0.24) 1.12 (0.18) 

Combined    126 0.98 (0.30) 1.04 (0.26) 1.10 (0.21) 

Oey and Papangelis 

(2020) 
C LB Sim 33 1.98 (0.12) 1.08 (0.07) 1.05 (0.08) 

Degtyarev (2020) D LB Sim 156-172 1.22 (0.14) 1.12 (0.05) 1.11 (0.05) 

Degtyarev (2020) D DB Sim 153-168 1.05 (0.07) 1.03 (0.05) 1.05 (0.06) 

Combined    342-373 1.21 (0.21) 1.08 (0.06) 1.08 (0.06) 

All Combined    468-499 1.15 (0.23) 1.07 (0.14) 1.08 (0.12) 
a C=Lipped Channel, D=Deck, H=Hat, T=Track 
b LB=Local buckling, DB=Distortional buckling 

c Sim=Simulations, Test=Physical Tests 
d Number varied by method due to controlling limit state 

 

4.2 Legacy data 

The original DSM development work by Schafer and Peköz (1998) evaluated a large database of 

574 cold-formed steel tests from 17 different studies. This same test data was evaluated using the 
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modified and proposed new DSM as summarized in Table 3. This evaluation also included two 

later studies (Yu and Schafer 2003, 2006) consisting of 26 C sections and 20 Z sections. The data 

in Table 3 excludes hat section tests by one study due to uncertainty about the test methods and 

results, but retains all other hat section data from four other studies which showed much better 

agreement. 

 
Table 3. Comparison of legacy tests to predictions (Mt/Mn) 

Axis of Bending Modea Tests 

S100-16 DSM 

Mean (CoV) 

Modified DSM 

Mean (CoV) 

Proposed DSM 

Mean (CoV) 

Symmetric LB 147 1.01 (0.09) 1.02 (0.09) 1.03 (0.09) 

Symmetric DB 232 1.07 (0.12) 1.08 (0.12) 1.07 (0.12) 

Unsymmetric LB 69 1.15 (0.23) 1.07 (0.10) 1.06 (0.10) 

Unsymmetric DB 140 1.12 (0.13) 1.08 (0.13) 1.08 (0.13) 

Combined  588 1.08 (0.14) 1.06 (0.11) 1.06 (0.11) 
a LB=Local buckling, DB=Distortional buckling 

 

The sections identified as symmetric about the axis of bending were C and Z sections, some 

trapezoidal deck sections, and a few hat sections with a mid-depth neutral axis. All three prediction 

methods are essentially equivalent for both local and distortional buckling because βs≈1.0 and 

ks≈1.2 for these tests. The sections identified as unsymmetric about the axis of bending were hat 

sections and some trapezoidal deck sections, where βs ranged from 0.63 to 1.24 and ks ranged from 

1.07 to 1.36. The modified and proposed DSM predictions provided considerable improvements 

for local buckling and slight improvements for distortional buckling. Overall, the modified and 

proposed DSM predictions provided nearly identical improvement because all of these tested 

sections had full stable depth (αs=1). 

 

The results in Table 3 demonstrate that the initial objective of this study was achieved. The mean 

and CoV values for the symmetric cases are essentially unchanged, whereas the mean and CoV 

for the unsymmetric cases show significant improvement. 

 

5. Conclusions 

Modifications to the DSM equations for local and distortional buckling of flexural members were 

developed to capture the influence of shape factor and stress redistribution due to material and 

geometric nonlinearity for members unsymmetric about the axis of bending. These modifications 

were validated against a variety of tests and simulations, where significant improvement in 

accuracy were achieved for local buckling, and minor improvements were seen for distortional 

buckling. For complex hat shapes subject to distortional buckling, additional modifications to the 

standard form of the DSM equation are needed. 

 

A new form of the direct strength equation was developed to more directly control the influence 

of shape factor, stress redistribution, and residual strength. This novel form is a single curve from 

the plastic moment to strength at extreme slenderness utilizing two simple coefficients. Adjustment 

to these coefficients for stress redistribution and residual strength are made using rational 

relationships with neutral axis location and stable section depth. The results from these proposed 

equations were slightly better than the modified DSM equations for local buckling, and much-

improved for distortional buckling. 
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The advantage of the proposed new form is its rational development providing greater control over 

factors influencing strength. The simple form of one equation has a seamless transition from 

buckling strength to inelastic reserve which reflects the natural curvature observed with tests. 

Further investigation is recommended for application of this form to compression members, beam-

columns, and other limit states. 
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