
 

Proceedings of the 
Annual Stability Conference 

Structural Stability Research Council 
Denver, Colorado, March 22-25 2022 

 
 
 
 

  
 

 
 
 

 
 

 
 

 

 

 
 

 
 

 
   

 
 

A theoretical study on distortion induced fatigue of slender web curved I-
girders subjected to pure bending

Mehran Jalali Moghadam1, Justin D. Marshall2, James S. Davidson3

Abstract
The  slender  web  of  I-girder  bridges  subjected  to  pure  bending  undergoes  large  deformations  at 
the compressive region. This can occur at load levels less than the theoretical bend buckling limit 
due to the  presence  of  initial  geometric  imperfections.  Secondary  bending  stresses  amplify  the 
web stress upon receiving additional loads, i.e., traffic load. While the total web stress does not 
affect the resistance significantly, the cyclic component of the stress can lead to fatigue cracks at 
the web-to-flange connection area. The phenomenon, which is referred to as web breathing, has 
been studied comprehensively for straight girder. However, there is a lack of knowledge on the 
breathing  of  curved  web  panels. The  non-colinear  internal  forces  of  curved  girders  causes  web 
lateral  distortions  and  high  membrane  stresses  that  amplifies  the  web  breathing  compared  to 
straight  girders.  Theoretical  studies  associated  with  the  curved  web  can  be  divided  into  two 
categories. First, very limited research investigated the curvature effect at web panel boundaries 
that is critical for the fatigue limit state. The simplified methods, based on beam theory, are not 
capable of properly modeling the actual behavior of curved girders having slender webs. Second, 
the more accurate analytical models, based on plate theory, were conducted for establishing the 
ultimate web stress and lateral displacements corresponding to strength and stability limit state, 
respectively.  This  paper  reviews  the  analytical  approaches  related  to  the  breathing  of  straight 
girders  and  presents  a  theoretical  method  for  defining  the  web  stresses  at  the  web  panel
boundaries under pure bending moment.

1. Introduction
There is a limited understanding of curved web panels for fatigue considerations compared to the 
stability and strength design criteria (Linzell et al. 2004). Only two studies, one in the U.S and 
one in Japan, in 1980 and 1990, respectively, researched fatigue of curved girders (M. Jalali et al. 
2020).  In  the  absence  of  sufficient experimental  studies,  analytical  methods  assist  in  better 
understanding  the  fatigue  mechanisms  specific  to  curved  web  panels.  This  article  presents
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ongoing research on the analytical study of curved web panels under bending moment for fatigue 
limit.   
   
 
2. Flat web panel  
When a plate girder is loaded by repeated bending, three types of fatigue cracks appear at the 
web panel boundary elements, i.e., flanges, and stiffeners, as shown in Fig. 1. Crack type 2 and 3 
resulted from in-plane membrane and bending stress, respectively. Initial imperfections and high 
load levels cause the compression region to bulge out of the plane and forms crack type 1 at the 
web-to-compression flange location. This phenomenon is referred to as web breathing (Roberts 
and Davies 2002).  Crack type 1 is caused by large web surface stress normal to flange, denoted 
by σ⊥ , consisting of web membrane stress in the transverse direction and out-of-plane bending 
stress. For pure bend loading, detailed measurements of test girders (Kuhlmann and  Günther 
1999) showed that the secondary bending stress bσ  is much larger than the membrane stress in 
the transverse direction and is almost equal to the  σ⊥ .   
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Figure 1. web breathing  
 
 
Web breathing is a complex problem that corresponds to the post-buckling state and requires 
advanced solutions to define the non-linear web response and secondary bending stresses. 
Marguerre (1938) developed the governing differential equation (G.D.E) for a plate with initial 
deformation: 
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where 
3

212(1 )p
EtD
ν

=
−

 is the plate bending stiffness, E  is the elastic modulus, t  is the plate 

thickness, ν  is the Poisson’s ratio, ∇ is the Del operator, w  is the plate deflection function, 0w  
is the initial deformation, Φ  is the Airy stress function.  
 
Eq. 1 and 2 is a  coupled nonlinear biharmonic differential equation without closed-form 
solutions, and numerical methods such as Galerkin approximate the solution space. The 
secondary bending stresses at the web panel boundaries can be found in terms of the plate 
deflection function w . Analytical approaches, including the simplified methods and efforts to 
solve the Marguerre equation for defining the secondary bending stresses at the web panel 
boundaries, are discussed in the following.   
 
Muller and Yen (1966,1968) applied a semi-empirical method to define the web panel secondary 
stresses by fitting a fourth-order polynomial to the measured web lateral deformations. The 
stiffener and flange rigidities were considered through compatibility equations in terms of web 
deflections. Further tests (Patterson et al. 1970) verified their proposed approach, and the 
following web slenderness requirements for fatigue limit were reflected in the AASHTO (1989):  
 

 3047

yF
β ≤  , for girders without longitudinal stiffener (3) 

 6094

yF
β ≤ , for girders with longitudinal stiffener (4) 

 
where β  is the web thickness to web height ratio, and yF  is the yield stress in Mpa.  
 
Maeda and Okura (1984) attempted to solve the Marguerre equations by utilizing the Galerkin 
method for the web panel shown in Fig. 2. The assumed initial deformation and plate deflection 
response were given by:  
 

 

 0 0( , ) sin sinx n yw x y e
a b
π π
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 1 2
2( , ) sin sin sinx y yw x y e e

a b b
π π π = + 
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where 0w  is the initial deformation, w  is the deflection function, and 'i se  are the coefficients.  
Given that the Sine function cannot model the tangency condition at the fixed horizontal edges, 
the Galerkin method could not be applied entirely. Consequently, the analytical model only 
served as a mathematical formulation, and the coefficients were found by finite element analysis. 
The solution resulted in two dependent expressions that define the displacement at point B 
(a/2,b/4) and secondary bending stress at point A (a/2,0). Based on experimental results (Maeda 
et al. 1976) and regardless of the analytical approach, it was proposed that crack Type 1 due to 
web breathing does not occur if crack Type 2 is prevented.          
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Figure 2. Maeda et al. plate loading and boundary condition  

 
 
Dubas (1992) modeled the compressive region of the web panel by the simple framework made 
of cross beams in the two directions. The same limit as Maeda and Okura (1984) was concluded. 
Remadi et al. (1995) further improved the analytical model of Maeda and Okura (1984) by 
considering larger aspect ratios, additional deflection function coefficients, and a higher number 
of half-waves. The following limit for prevention of crack Type 1 based on parametric FEM 
analysis was proposed (Aribert et al. 1996): 
 

 max 0 ,2

71min ( ),
1 cr F S

N
ST mm

σ σ −
 ≤  − 

 (7)   

 
where 0σ is the in-plane stress, ST is the stress ratio, and ,cr F Sσ − is the linear elastic buckling 
stress of the plate with fixed and simply supported longitudinal and vertical edges, respectively.  
 
Spiegelhalder (2000) solved the Marguerre equation for web plates under bending with all edges 
fixed and considered the flange stiffness in terms of additional Airy stress functions. A 
parametric FEM model calibrated with the test data was used for developing a design limit 
instead of the pure analytical solution of the Marguerre equation, due to the extreme 
computational cost of the mathematical formulation,  
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2

0 min ,2
1

Type
c
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σσ σ
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≤  − 

 (8) 

where 2Type
cσ∆ , is the fatigue strength of crack type 2, crσ  is linear elastic buckling of the plate 

with all edges simply supported. 
 
 

 
 
3. Curved web panel
The  elastic  behavior  of  curved  web  panels  has  been  studied  extensively  through  purely 
theoretical  analysis  and  numerical  methods. The  main  focus  of  the  works  was  to  assist  in
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understanding the geometric nonlinear effects and developing web bending stresses limits in 
terms of moment reduction factors with respect to straight web panels. In addition, setting a limit 
on web out-of-plane displacement was investigated for stability concerns. Featured analytical 
researches resulted in defining design guideline limits or highlighting important characteristics of 
curved web panels behavior are presented in the following.     
 
Dabrowski (1968) developed the nonlinear G.D.E of curved web panels under pure bending 
based on shell theory that assisted in the fundamental understanding of curved web panels 
behavior: 
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where 
3

212(1 )p
EtD
ν

=
−

is the plate bending stiffness,  0
yσ  is the maximum normal stress in the y 

direction, and R is the panel radius of curvature. The solution of  Dabrowski equations revealed 
that web membrane stress distribution deviates from linear beam theory at high loads 
(Wachowiak 1967). Washizu (1975) derived another form of nonlinear G.D.E of curved web 
panel for additional loading conditions based on the total potential energy.  
  
Culver et al. (1972) investigated the maximum web bending stress by dividing the web panel into 
cylindrical strips supported elastically, i.e, spring foundation. The stiffness of each strip was 
calculated by considering unit vertical strips between the neutral axis and the compression 
flange. The final stress state solution was found by applying the total potential energy. A web-
slenderness limit was developed in the form of:  
 

 236500 1 8.6 34( )
w y

D a a
t R RF

 = − +  
 (11) 

where D is the web height, wt  is web thickness, a  is panel length, and yF is the yield stress in 
psi.  
 
An extended version of the approach improved the cylindrical strips stiffness calculation by 
considering the whole web panel portion instead of discrete vertical strips (Culver et. al 1973).    
The following web-slenderness limit for curved girders was developed.  

 46000 1 2.9 2.2
w b

D a a
t R Rf

 
= − + 

 
 (12) 

where bf  is the flange bending stress in psi.  
The only research related to the fatigue investigation of curved girders in the U.S. took place at 
Lehigh University. Two twin-girder assemblies, I-shaped and box, were analyzed only 
experimentally (Daniels et al. 1979a). The test assemblies were designed based on the early 
works on the straight girder fatigue requirements (Muller and Yen 1968). It was concluded that 
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the Culver et al. equations were too conservative, and the following slenderness requirements 
were proposed:  
 

 36500 1 4 192
w y

D a
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 (13) 
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Another research on fatigue testing of the horizontally curved girder was conducted in Japan 
(Nakai et al. 1990). A simplified method to approximate the maximum out-of-plane bending 
stress was developed and used for designing the scaled I-girder test setup. The curved web panel 
was idealized as a vertical strip with unit width, as illustrated in Fig. 3. The equivalent radial 
loading from in-plane bending was applied to the fixed-end strip beam model. The formula for 
maximum out-of-plane bending stress and displacements of the vertical  strip was obtained by 
application of the beam theory: 
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where maxbσ −   is the maximum out-of-plane bending stress, 0σ  is the maximum in-plane stress a   
is the panel width, ν   is Poisson's ratio, wt is web thickness, wh is web height, maxwδ −  is the 
maximum lateral displacement, E is the elastic modulus, and R is the radius of curvature.  
Although equations 15 and 16 were verified by the finite displacement method, only a web panel 
aspect ratio of 0.7 was considered in both the experiments and analyses. In other words, 
equations 15 and 16 do not include the two-way action of the web panel. The applicability of 
equation 15 is discussed in the results section.  
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Figure 3. Analytical model of Nakai et al. 1990 A)loading condition B) lateral load on the vertical strip beam, C) 

stress distribution of the vertical strip, D) displacement distribution  
 
 
Davidson et al. (1999a) developed a theoretical model referred to as the “lateral pressure 
analogy” to calculate the curved web panel bending stress and lateral displacement based on 
linear plate theory. The equivalent lateral load resulting from in-plane bending was applied to a 
flat panel with the same dimensions, as shown in Fig 4. The curved web panel behavior is similar 
to the flat plate under hydrostatic pressure with the G.D.E (Timoshenko and Woinowsky 1959):  
 

 
4 4 4

0
4 2 2 42 q xw w w q

x x y y D bD
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+ + = =
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where w  is the plate deflection function, b is the web height in compression, 0q  is the lateral 

pressure due to in-plane loading 0
0

tq
R
σ

= , 0σ is the in-plane bending stress at the web-flange 

juncture.   
 
The maximum web lateral displacement and bending stress were calculated based on the simply 
and fixed support condition for the top of the web (web-to-flange connection), respectively: 
 

 
4 2

0
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Et R

α σ νδ −
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2

0c
b

h tM
Rθ

λ σ
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where α and λ are coefficients dependent on panel aspect ratio and the location of the 
displacement and bending, respectively, ch is the web in compression. The coefficients were 
found using parametric FEM analyses.   
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Figure 4. Lateral pressure analogy model of Davidson et al. (1999a) 
 
4. Static loading vs. stress range 
Calculation of the secondary bending stresses bσ  requires complex methods and cannot be 
defined by an ordinary equilibrium of applied loads. Hence, it is not practical to establish design 
guides directly based on limiting the secondary bending stress ranges to the web breathing 
fatigue strength, i.e., Eq. 20:  
 b Cσ σ∆ ≤ ∆  (20)   
where bσ∆ is the secondary bending stress range, Cσ∆ is the fatigue strength.  A more 
appropriate method, developed by Maeda and Okura (1983), is to limit in-plane loads that 
prevent high out-of-plane bending stresses that can cause fatigue cracking. Fig. 5 represents a 
typical nonlinear relationship between the applied in-plane stresses and out-of-plane bending 
stresses for flat plates. The secondary bending stress increases more rapidly at higher levels of 
applied loads. Consequently, the smaller in-plane stress amplitude 0σ∆  of load condition 2 
results in the same bσ∆  of load condition 1.  

∆σb

σb

σ0

∆σb

∆σ0,2

∆σ0,1

σH,2
σL,2

σH,1

σL,1 Load Condition 1

Load Condition 2

 
Figure 5. Normal stress σ0 vs. secondary bending stress σb 

 
The relationship between in-plane stress and stress range can be given by :  
 

 L

H

ST σ
σ

=  (22) 

 0 (1 )H STσ σ∆ = −  (23)  
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where ST  is in-plane stress ratio, 0σ∆  is the in-plane stress range, Lσ and Hσ  is the minimum 
and maximum in-plane stress, respectively. Fig. 6 illustrates the Maeda and Okura (1983) 
approach for a stress ratio of 0.5. A slope triangle with a fixed base equal to Cσ∆ is moved along 
the curve until the equation 3 condition is met. The triangle with the solid lines shows the 
governing loading condition in which by applying the in-plane stress range 0 0.5 Hσ σ∆ = , the 
amplitude of the secondary bending stress is equal to the fatigue strength cσ∆ . Consequently, 
the maximum in-plane bending stress can be defined in such a way that the secondary bending 
stress range does not lead to fatigue cracking.  
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Figure 6. Maeda and Okura (1983) approach for finding the maximum 0σ    
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4. Result and Discussion
The  current  analytical  investigation  through the solution  of  the  curved  web  panels  GDE,  Eq. 9 
and 10, is  under  development.  Preliminary  FEM  analysis is presented here and  compared with 
the Nakai et al. (1990) analytical model, Eq. 15.

ABAQUS (2019) FEM  package is  used  to  simulate  the  curved  web  panel. 4-noded  Shell 
elements, S4 elements, with full integration in the plane of the element, and 5 integration through 
the  thickness was  considered.  The  fine  mesh  is  constructed  by  100*100  elements  through  the 
depth and length of the web panel to properly capture the secondary bending stresses at the top 
and bottom of the web, as shown in Fig. 7.  Bending stress in the plane of the web is modeled by 
the equivalent nodal forces in the tangential direction of the cylindrical coordinate system. The
web panel dimensions and loading magnitudes are given in Table 1.

σ0 F-S 

S-S

S-S

M

M

A

B

R

Z θ 

 
 

Figure 7. Load and boundary condition 
 

 Table 1. Web panel dimensions and loading condition 
tw 

(in) 
D 

(in) 
a  

(in) 
R 

(ft) 0 max( )σ  

(ksi) 
0 min( )σ  

(ksi) 
0σ∆   

(ksi) 

Elastic 
Modulus 

(ksi) 

Slenderness 
ratio 

0.668 100 100 100 36 24 12 29000 150 
 
 
The maximum and minimum in-plane stresses are selected so that the resultant in-plane stress 
range, 0σ∆ , is equal to the fatigue strength of crack type 2, 2Type

cσ∆ . The secondary bending 
stress range, bσ∆ , is calculated based on the analytical equation (Nakai et al. 1990), linear, and 
nonlinear FEM simulation. The corresponding results are presented in Table 2.   
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Table 2. Secondary bending stress range comparison 
 

bσ∆ (ksi) bσ∆ (ksi) 
Point A,B Point C,D 

Nakai Eq. 13.62 --- 
Linear FEM 13.68 --- 
Non-Linear FEM 15.13 24.32 

 
The Nakai et al. equation accurately calculates the mid-panel linear response, and the nonlinear 
response can be approximated by applying proper amplification factors. The web normal stress 
in the transverse direction for the linear and nonlinear FEM analyses is shown in Fig. 8 for 
further explanation. The maximum web deformation and secondary bending stress occur at the 
mid-panel and points A/B, respectively. The deformation pattern is the same for the both 
minimum and maximum in-plane bending stresses, 0 min( )σ  and 0 max( )σ  . However, the nonlinear 
displacement response experience a jump of buckling shape mode-1 to mode-3 in the 
compression region as the in-plane bending stress increases. Fuji and Ohmura (1985) first 
observed this phenomenon by solving the nonlinear G.D.E of curved web panels under bending. 
The maximum secondary bending stress range increases to almost double the linear analysis, 
24.3 ksi compared to 13.6 ksi. This phenomenon that has significant effect on fatigue behavior of 
slender curved web panels is ignored by the simplified methods such as Nakai et al. (1990). 
 
 

R
Z θ

 
a)Linear b)non-linear

C
D

A

B

 
 
Figure 8. Web normal stress in transverse direction under maximum in-plane bending 0 max( )σ , a) linear analysis b) 

geometric non-linear analysis (magnified deformation) 
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5. Summary and conclusion
Analytical  methods  for  modeling  the  secondary  bending  stresses  for  flat  web  panels,  web 
breathing,  and  stability  methods  of  curved  web panels  were  reviewed.  The  most  accurate 
theoretical  response  of  slender  webs  are  defined  by  developing the solution of  nonlinear 
governing  differential  equations  based  on  plate  and  shell  theory. However, the  sophisticated 
mathematical solution procedures makes them less practical compared to simplified methods. It 
was  shown  that fatigue  behavior  of  slender  curved  web  panels  requires  nonlinear  geometric 
models that take into account the 2-way action of shells and could not be fully recognized by the 
simplified methods based on beam theory.
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