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Abstract 
Torsional loading of members and its destabilizing effects are prevalent in mechanical and 
aerospace engineering applications where slender members are utilized to transfer significant 
torques. In structural engineering, the problem of buckling under torsion can be investigated at 
both member and frame level. While analytical solutions and numerical estimations have been 
derived for members, little attention has been paid to the buckling of space frames subjected to 
torsional loading. The purpose of this paper is to develop exact analytical buckling solutions for 
symmetric three-member frames subjected to torques at the supports. Frames subjected to such 
torsional loads can undergo large out-of-plane displacements when the exerted torques exceed 
the torsional buckling capacity of the structure. The developed solutions are concise and, due to 
their modal structure, provide new insights into the complex buckling behavior of structural 
frames, as well as equations to determine their slenderness and strength.  
 
 
1. Introduction 
In the structural engineering field, buckling is usually sought to be avoided as it is considered a 
marker for onset of failure. However, in recent years, a new approach has emerged in which the 
buckling of slender elements is exploited for novel modes of functionality (Reis (2015)). For 
instance, a structure with more than one stable state due to snap-through buckling is a promising 
solution as it can be utilized to construct functional bi-stable mechanisms (Zirbel et al. (2016)). 
In this rapidly evolving field, the intrinsic features of buckling, including high-rate motion, 
sudden energy release, and multiple equilibrium states, are viewed as assets that can be 
beneficially applied in designing smart and passively intelligent devices. Buckling induced 
applications have already been integrated into various structures with different scales (Restrepo 
et al. (2015), Ren et al. (2018), and Jenett et al. (2017)).  
 
Following this line of thought, designers have been studying the buckling and post-buckling 
behavior of slender structural elements to find suitable mechanisms that can be employed as 
drivers for desired functions. Khezri et al. (2021) and Hu et al. (2021a) revisited the stability 
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problems of bars, plates and frames to identify configurations of these elements suitable for 
application in adaptive façade systems. They utilized the buckling of plates with retractable 
point-supports (Khezri et al. (2021)) to create ventilation control modules with binary (closed 
and open) states. Further, Hu et al. (2021) showed that the flexural-torsional buckling of slender 
frames has a great potential to be used for novel solutions in kinetic façades, including shading 
modules. Frames subjected to torsional loads at supports can be designed to undergo large out-
of-plane displacements when the exerted torques exceed the torsional buckling capacity of the 
frame. Developing such solutions requires a thorough understanding of the buckling behaviour 
of slender elements and efficient tools to calculate their buckling loads for a wide range of 
configurations, to provide insight into how model parameters, i.e. geometric and material 
properties, influence the system's response. Analytical buckling solutions, because of their 
computational efficiency, modal nature, and reliability, are suitable tools to procure the required 
insight and knowledge base.  
 
While the buckling of frames and arches subjected to in-plane and out-of-plane loadings has 
been extensively researched (Trahair (1993)), the buckling of frames under applied torque at 
supports has received little attention. This is due to the fact that structural frames are mainly 
subjected to gravitational and lateral forces and the loading case of torsion at supports rarely 
occurs in conventional structures. However, in the new paradigm of harnessing buckling for 
structural and morphing applications, new loading conditions are examined to achieve desired 
functions, including the torsional buckling of members and frames. With the motivation to better 
understand torsional mechanics and to use the flexural-torsional buckling of frames with end 
torques as driver for shading modules, this study derives analytical buckling solutions for three-
member space frames subjected to torques at the supports. The symmetric three-member frame 
undergoes large out-of-plane displacements when subjected to the combined actions of flexural-
torsional buckling and bending, and the pronounced resultant deflections can be configured for 
effective shading. A brief review of the existing developments on this subject is presented in the 
following.  
 
While torsion rarely is the primary action causing instability in structural frames, the 
destabilizing effects of torsion are recognized in mechanical and aerospace engineering 
applications where often slender members transfer significant torques. Hence, mechanical 
engineers are familiar with the buckling of circular shafts that experience excessive torsion and 
remedy the problem by using rotary bearings along the span to decrease the free-standing length 
of the shaft (Trahair and Teh (2001)). The buckling of shafts with circular cross-section 
subjected to concentrated end torques and axial compression has been analysed by Timoshenko 
and Gere (1961), Ziegler (1968), and Bazant and Cedolin (1991). Yang and Kuo (1991) were the 
first to determine the buckling load of frames subjected to torsional loading. They analysed the 
stability of an angled two-member frame with one fixed support and one free end under torque 
action, see Fig. 1(a). The nodal torsional loadings were treated as semi-tangential (ST) (Fig. 1(b)) 
and quasi-tangential (QT) (Fig. 1(b)) type moments, distinguished by the different moment 
increments they generate about different axes. The exact solutions for various torsional loadings 
and three distinct cross-sections were provided as benchmarks for validating numerical analyses 
and design purposes. Their results showed that the critical buckling load of an angled frame is 
dependent on the type of torque applied at the free end. Recently, Yang and Liu (2020) extended 
their analytical approach to obtain exact solutions for the lateral buckling of cantilevered circular 
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arches subjected to various torsional moments at the free end. A comprehensive review of the 
works conducted by Yang and co-workers on the nonlinear analysis of framed structures and 
curved beams considering joint equilibrium in deformed state is available in Yang et al. (2020). 

 
(a) 

(b) (c) 

Figure 1: (a) two-member frame with one fixed support and one free end subjected to torque action,                        
(b) semi-tangential, and (c) quasi-tangential conservative torques 

 
To extend current knowledge and provide useful design tools, this study derives analytical 
buckling solutions for symmetric three-member frames subjected to torques at the supports. The 
derived solutions are validated using finite element analysis. The paper is structured as follows: 
In Section 2, the general problem of buckling of a three-member space frame subjected to end-
torsional moments is stated. The governing differential equations and corresponding general 
solutions and internal actions for beams under bending and/or torque are provided in Sections 2.1 
and 2.2. In Section 3, the analytical framework and methodology for calculating the buckling 
coefficients and mode shapes of symmetric three-member frames are presented. This is followed 
by a series of examples and numerical validations with finite-element (FE) solutions obtained 
using Abaqus. Section 5 concludes the paper and summarizes the main outcomes.  
 
2. Buckling analysis of single-beam and frames subjected to end-torsional moments 
The frames consist of beam elements that resist forces and moment (twisting and bending) under 
applied loads and undergo three-dimensional (3D) displacements and rotations. It is assumed that 
the deformations of the beam elements in their longitudinal directions are negligible and 
therefore not included in the proposed relations. The cross-sections of the beams are solid, and so 
the associated warping displacements are negligible and ignored in the formulation. In the 
following, the governing differential equations, general solutions and internal actions are 
presented for the following two load cases: 

1. Beam elements subjected to bending only, and 

2. Beam elements subjected to combined in-plane bending and torque. 

2.1 Governing equations 
Consider a beam element under the loading conditions shown in Fig. 2. For an infinitesimal 
element of the beam, dx, parallel to yz-plane at coordinate x, the governing differential equations 
are as follows (Yang 1989): 

T/2 
T/2 

T/4 
T/4 

T/4 

T/4 
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 0,z xEI v'''' M w'''   (1) 

 0,y x zEI w'''' M v''' M ''    (2) 

 0.zGJ '' M w''    (3) 

 
Figure 2: (a) two-member frame with one fixed support and one free end subjected to torque action,                        

(b) semi-tangential, and (c) quasi-tangential conservative torques 
 
In Eqs. (1) to (3), xM  and zM  are the external torque and out-of-plane bending moment at 
incipient buckling, which are calculated using a linear pre-buckling analysis. Each prime (΄) 
denotes one order of differentiation with respect to the longitudinal coordinate (x). Also, v and w 
are the translational displacements caused by buckling in the direction of the adopted local y and 
z axes, and θ is the twist angle about the x-axis. E is Young’s modulus, and G is the shear 
modulus. Iy and Iz are the second moments of area of the section about the y- and z-axes, 
respectively, and J is the Saint-Venant torsion constant. 
  
2.2 General solutions 
2.2.1 Members subjected to combined in-plane bending and torque 
Consider member i subjected to both out-of-plane bending ,z iM  and torque ,x iM . The general 

solutions for v, w and θ obtained by solving Eqs. (1) to (3) are as follows: 
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in which ai, bi, …, ji are constants and, 
 

 
2 2
, , , ,
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  


    (7) 

2.2.2 Members subjected to out-of-plane bending only 
For members subjected to only out-of-plane bending ,z iM , the torque ,x iM  is set to zero in Eqs. 

(4) to (6), and the general solutions for the resultant equations simplify to: 
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where ηi is deducted from ϕi by setting , 0x iM  : 

 , .z i i
i

y
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2.3 Internal actions 
Using the general solutions provided, the internal actions in the buckled configuration at location 
x are obtained by enforcing the equilibrium conditions for the infinitesimal element dx, see Fig. 
2, as follows:  

      , , ,y i i z i i x i i iF x EI v ''' x M w'' x    (12) 

        , , , ,z i i y i i x i i i z i i iF x EI w''' x M v'' x M ' x     (13) 

        , , , ,y i i y i i x i i i z i i iM x EI w'' x M v' x M x     (14) 

      , , ,z i i z i i x i i iM x EI v'' x M w' x   (15) 

      , , .x i i i i z i i iM x GJ ' x M w' x   (16) 

3. Analytical buckling solutions 
3.1 Problem Statement 
The three-member frame herein considered is shown in Fig. 3, including the torsional moments 
applied at the supports. Note that the moments are applied in directions causing symmetric pre-
buckling displacements with respect to the global XZ-plane through the centerline of the frame. 
For the boundary conditions, other than allowing twist rotations, the supports at points A and D 
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are assumed to be built-in. In this study, the semi-tangential torque (Fig. 1(b)) is selected as it is 
comparable with concentrated torques in FE simulations. 

 

Figure 3. Considered three-member frame problem 

Fig. 1(c) illustrates the semi-tangential torque which is generated by two force couples spaced a 
unity distance apart. This type of torque generates moment increments / 2Tv  and / 2Tw  about 
the y-axis and z-axis, respectively (Ziegler (1967), Yang and McGuire (1986)). The joint 
experiencing this type of torque satisfies the following natural boundary conditions when the 
bending rotational DOFs are unrestrained: 

    , 0,
2

x i
y i i i i

M
EI w'' x v ' x    (17) 

    , 0.
2

x i
z i i i i

M
EI v'' x w' x   (18) 

Using Eqs. (17) and (18), the boundary conditions for a built-in member i, constrained at support 
j with longitudinal coordinate j

ix  are summarized in Table 1. It is noted that the twist degree of 

freedom (θ) is not constrained at the “built-in” supports, whereas the rate of twist (θ΄) is. 
 

Table 1. Boundary condition equations of two considered support types. 
 

Support Type Built-in 

Boundary Conditions 

  0j
i iv x   

  0j
i iw x   

  0j
i i

d
v x

dx
  

  0j
i i

d
w x

dx
  

  0j
i i

d
x

dx
   
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3.2 Space frame with three members 
In this section, a three-member frame subjected to end torques at supports A and D is considered 
(see Fig. 4.). All three members have the same rectangular cross-section with dimensions a × b. 
Supports at A and D are built in with conditions detailed in Table 1. The local coordinate 
systems for the members are shown in Fig. 4. The x-axes are aligned with the longitudinal axes 
of the beam, the y-axes are perpendicular to the global XY plane, and z-axes are positioned 
following the right-hand rule. As the structure is indeterminate, first, the pre-buckling 
distribution of moments and forces must be determined for the entire frame. The stiffness 
method with compatible beam elements is employed for this purpose. The pre-buckling moments 
and shears obtained from this analysis are substituted into the general buckling solutions for (v, 
w, θ) and utilised in forming the boundary and continuity conditions for the buckling analysis. 
The critical buckling coefficients are determined by substituting the general solution stated in 
Section 2.2 into the boundary conditions at A and D, and the continuity equations at joints B 
and C. 

 
Figure 4. Schematic diagram of a three-beam frame subjected to end torques 

 
3.2.1 General solutions for three-member angled frame 
The ratio of the length of member 2 (L2) to the length of member 1 (L1=L) and 3 (L3=L) is 
denoted by β, i.e.  β = L2/L. The results of the conducted pre-buckling analysis are presented in 
Fig. 5. As can be seen, the pre-buckling moments in three members are ,1=xM T , ,3 =xM T , 

 ,1 ,3= cotz zM M T   ,  ,2 = sinzM T   and ,2 =0xM . Having obtained the pre-buckling stress state, 

and noting that the twisting moment in the central member is zero ( ,2 =0xM ), the general 

solutions for members 1, 2, and 3 can be derived by substituting the corresponding actions into 
Eqs. (4) to (6) (members 1 and 3) and Eqs. (8) to (10) (member 2). The general solutions for 
members i = 1, and 3 are given as: 
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Similarly, the general solutions for member 2 are obtained as: 
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The equations for each member have ten integration constants, and hence the total number of 
unknowns in the equations equals 30. As it will be discussed later, the axial force of member 2 
appears in the developed equations and will be treated as an additional independent unknown. In 
summary, the matrix collects the coefficients for 31 unknown. 

 
Figure 5. Schematic diagram showing the pre-buckling moments for a three-member frame 
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3.2.2 Support boundary conditions for three-member angled frame 
The boundary conditions for the considered three-member frame are derived by substitution of 
the member number and local coordinates in the equations stated in Table 1. The five boundary 
conditions for support A and support D are determined by substituting 1 0Ax   and 3 0Dx  ,  

yielding in total ten equations. These equations are concisely presented in Table 2.  
 

Table 2: Built-in boundary conditions at the supports of a three-member angled frame  
 

Built-in BC Support A  Support D  

 0 0iv   
 1 1 1 1

1

0
a f L 




  (27)
 3 3 3 3

3

0
a f L 




  (28)

 0 0iw    1 1 0b c L    (29)  3 3 0b c L    (30)

 0 0i

d
v

dx
  1 1 1 0b g    (31) 3 3 3 0b g    (32)

 0 0i

d
w

dx
  1 1 1 0a d    (33) 3 3 3 0a d    (34)

 0 0i

d

dx
     1 1 1cot

0
TL a GJ j

GJ L

    



 (35)

  3 3 3cot
0

TL a GJ j

GJ L

    



 (36)

 
Further equations can be derived by imposing the compatibility of the displacements at joints B 
and C. Four equations are obtained by utilizing simple geometric relations between the 
displacements in the deformed configuration as shown in Fig. 6, viz. 

 
    1 2 ,v L v L  (37) 

    3 2 0 ,v L v  (38) 

      1 2cos ,w L w L    (39) 

      3 2cos 0 .w L w   (40) 

The assumption of negligible axial displacement for member 2 (i.e. u2(0) = u2(βL)) implies that 
the transverse displacements of members 1 and 2 must be the same, viz.  

    1 3 .w L w L  (41) 
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(a) (b)

 
Figure 6. Schematic diagram of displacements, slopes and twist rotations at (a) Joint B and; (b) Joint C 

 
The internal actions induced in the members during buckling are shown in Fig. 7. Considering 
joint B (see Fig. 7(c)), the equilibrium equations of forces and moment are, 
 
    ,1 ,2 ,y yF L F L   (42) 

        ,1 ,2 ,2sin cos ,z x zF L F F L      (43) 

    ,1 ,2 ,y yM L M L   (44) 

          ,1 ,2 ,2sin cos ,z x zM L M L M L       (45) 

          ,1 ,2 ,2sin cos ,x z xM L M L M L      (46) 

where Fx,2 is unknown. Likewise, for joint C (see Fig. 7(e)), the equilibrium conditions are 
 
    ,3 ,2 0 ,y yF L F  (47) 

        ,3 ,2 ,2sin cos 0 ,z x zF L F F    (48) 

    ,3 ,2 0 ,y yM L M  (49) 

          ,3 ,2 ,2sin 0 cos 0 ,z x zM L M M    (50) 

          ,3 ,2 ,2sin 0 cos 0 .x z xM L M M     (51) 
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(a)

 
(b) 

 
(c) 

 
(d) 

(e) 

 
(f)

Figure 7. Schematic diagram of the forces and moments for each member and each joint of a three-member frame 
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Thus far, we have obtained 25 equations. The remaining equations are derived by enforcing the 
slope continuity conditions at joints B and C (see Fig. 6). For joint B, we have: 
 

    1 2 ,
d d

w L w L
dx dx

  (52) 

          1 2 2sin cos ,
d d

v L L v L
dx dx

         (53) 

          2 1 1sin cos ,
d d

v L L v L
dx dx

         (54) 

and similarly, for joint C the equations are: 
 

    3 2 0 ,
d d

w L w
dx dx

  (55) 

          3 2 2sin 0 cos 0 ,
d d

v L v
dx dx

       (56) 

          2 3 30 sin cos .
d d

v L v L
dx dx

        (57) 

By substituting the internal actions given in Eqs. (12) to (16) and general solutions into Eqs. (37) 
to (57), the following equations can be obtained in terms of the integration constants considering 
μ1 = -μ3 = μ and ϕ1 = ϕ3 = ϕ: 
 

           1
1 1 1 1 1 1 2 2 2 2

cot
cos sin 0,

3
a b e f g h e f g h

    


           (58) 

         3
3 3 3 3 3 3 2

cot
cos sin 0,

3
a b e f g h f

    


         (59) 

            1 1 1 1 1 2 2 2 2sin cos cos sin cos 0,a b c d e a b c d               (60) 

         3 3 3 3 3 2 2sin cos cos 0,a b c d e b c           (61) 

              1 3 1 3 1 3 1 3 1 3sin cos 0,a a b b c c d d e e            (62) 

 
    
 

1
1 22

2 cos sin 6
0,

sin
z z

EI TL EI
e e

  
 


   (63) 

 
     1 1 2 22 cot sin

0,xTh T j j L F

L

    


   
  (64) 

         1 1 1 1 1 2 22 / 2 cot csc 0,yEI e L g h T T i j T i j          (65) 
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           1 2 1 1 1 2 2 22 cot 2 3 cos sin

0,z zT L d d TL EI e EI h e h GJ j

L

      


      
      (66) 

 
         1 1 2 2 2 2cot sin 2 sin 3

0,zGJ j T L d d GJ j EI e h

L

    


    
  (67) 

 
    
 

3
3 22

2 cos sin 6
0,

sin
z z

EI TL EI
e e

  
 


   (68) 

 
     3 3 2 22 cot sin

0,xTh T j j L F

L

    


  
  (69) 

        3 3 3 3 3 22 / 2 cot csc 0,yEI e L g h T T i j T i         (70) 

 
        3 2 3 3 3 2 22 cot 2 2 cos sin

0,z z zT L d d TL EI e EI h EI h GJ j

L

      


      
  (71) 

 
        3 3 2 2 2cot sin 2 sin

0,zGJ j T L d d GJ j EI h

L

    


   
  (72) 

          1 1 1 1 2 2 2cos sin 2 cos sin 0,a b d e a b d              (73) 

 
           
       

2 2 2 2 2 2 2 2

1 1 1 1 1 1

sin cos 3 2 cot sin

sin cos cot 2 0,

a b e g h i j

a b e g h

    
    

      
     

  (74) 

        
        1 1 1

1 1 2 2 2
1 1 1 1

cot sin cos
sin csc 2 3 0,

cot 2
a b

e g h e
g h i j

       


            
 (75) 

     3 3 3 3 2 2cos sin 2 0,a b d e a d           (76) 

             3 3 3 3 3 3 2 2 2 2sin cos cot 2 sin cos 0,a b e g h b i g                 (77) 

        
      3 3 3

3 3 2
3 3 3 3

cot sin cos
sin csc 0.

cot 2
a b

e g
g h i j

       


          
 (78) 

Having determined the BCs and continuity equations, the coefficient matrix can be formed by 
collecting the respective terms of the integration constants and the unknown axial force Fx,2 as 
follows: 

 

2

0

0
.

0xF

 
   
            

     
      

1

2
1 2 3 4

3C

d

d

d
C C C C

d



   (79) 
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The determinant of the matrix is obtained using Matlab and equated to zero to obtain the 
buckling loads. The complete forms of the coefficient matrix C (31×31) and solution vector d 
(31×1) are given in (Hu et al. 2021b) but not stated herein. 
 
4. Example: Three-member frame subjected to torques at supports 
In this section, the application of the developed buckling analysis of a symmetric three-member 
space frame subjected to torques at the supports is demonstrated through an example. The beam 
members are all placed in the global XY-plane, as shown in Figure 8. The frame is assumed to be 
symmetric with respect to the central YZ-plane passing through the origin of the coordinate 
system. Member 1 and Member 3 are positioned with angle α with respect to the global X-axis, 
while Member 2 is parallel to this axis. All members have a solid rectangular cross-section with 
dimensions a × b. Dimension b is measured in the Z direction.  
  
 

 
Figure 8. Schematic diagram showing the coordinate systems of a three-member frame  

 
A series of analyses is conducted for frames with β (L2 / L1) ratios of 0.5, 1.0, 2.0 and 10.0. In 
these analyses, the aspect ratio ζ = b/a of the cross-section is equal to 1, 5, and 10, and the angle 
α is varied from 5° to 90°. The acquired results using the analytical method are presented in 
Figure 9, Figure 10, and Figure 11, corresponding to the aspect ratios ζ = 1, 5, and 10, 
respectively. The solutions obtained are normalized using the buckling coefficient K, defined as: 
  

 1 .
z y

TL
K

EI EI
  (80) 

The same figures compare the results with FE linear buckling solutions obtained using Abaqus, 
indicating that for all considered values of β, the analytical and numerical solutions are in 
excellent agreement.  
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Figure 9. Comparison of buckling coefficients (K) obtained from analytical solutions and FEA for a three-member 

frame with aspect ratio ζ = 1 

 
Figure 10. Comparison of buckling coefficients (K) obtained from analytical solutions and FEA for a three-member 

frame with aspect ratio ζ = 5 
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Figure 11. Comparison of buckling coefficients (K) obtained from analytical solutions and FEA for a three-member 

frame with aspect ratio ζ = 10 
 
It is evident from Fig. 9, Fig. 10, and Fig. 11 that frames with lower β-values (shorter relative 
lengths (L2) of the central member) have higher buckling capacity. In some curves, slope 
discontinuities can be observed. For example, in Figure 10, the curve representing β = 0.5 shows 
a sudden change of slope when the angle α reaches 75°. This suggests a change in the symmetry 
of the buckling mode, which is further studied in the following. 
 
Having validated the analytical solutions for specific cases of frames with different β- and α-
values, the analytical method is next utilized to analyze a wide range of three-member frame 
problems. The three key parameters, namely α, β, and ζ, are varied over practical ranges, and 
solutions for the resultant combinations are obtained. The values of β vary from 0.1 to 10, and 
the selected values of ζ are 1, 2, 5 and 10. The possible combinations of β and ζ are analysed for 
specific values of α varying from 15° to 90° in 30° increments, viz. α = 15°, 45° and, 75° and 
90°. The results obtained are normalized using Eq. 80 and are presented in Fig. 12, Fig. 13, and 
Fig. 14. 
 
The general trend in Fig. 9 to Fig. 10 is that frames with larger α-values but same aspect ratios ζ 
and member length ratios β have higher buckling capacities for all the six considered modes. A 
close inspection of the graphs reveals that in some cases, the curves for consecutive modes, e.g. 
one and two, or three and four, assume the same values. For example, considering the graphs for 
α = 45°, ζ = 10 (Figure13(d)), the curves for modes 1 and 2 are coincident when β = 0.72, and 
likewise for modes 3 and 4 when β = 1.13, which implies mode shape changes at these points. 
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Figure 12. Buckling coefficient (K) versus β ranging from 0.1 to 10 for a three-member frame with angle α = 15° for 
aspect ratios (a) ζ=1; (b) ζ=2; (c) ζ=5; (d) ζ=10. 
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Figure 13. Buckling coefficient (K) versus β ranging from 0.1 to 10 for a three-member frame with angle α = 45° for 
aspect ratios (a) ζ=1; (b) ζ=2; (c) ζ=5; (d) ζ=10. 
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Figure 14. Buckling coefficient (K) versus β ranging from 0.1 to 10 for a three-member frame with angle α = 75° for 
aspect ratios (a) ζ=1; (b) ζ=2; (c) ζ=5; (d) ζ=10. 
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5. Conclusions 
The paper presents analytical buckling solutions for three-member frames subjected to end 
torsional moments. The three-member frames are assumed to be symmetric about the centerline 
with members rigidly connected at angles varying between 0 and 90º. Distinctly different 
buckling loads are obtained depending on the angle between members and the aspect ratio of the 
cross-section. The solutions are obtained by solving the governing equations and as such can be 
considered exact. They therefore also serve as benchmarks for checking the accuracy of future 
numerical analyses. Throughout the study, the cross-section is assumed to be solid and warping 
effects are ignored.  
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