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Abstract
The general design approach to account for geometrical and material nonlinearities within steel 
structures is made partially during the structural analysis and partially through subsequent cross- 
section and member verifications. Typically, structural analysis of steel frames is performed by 
using beam finite elements, which are capable of taking into account geometrical imperfections to 
account for second order effects but not able to capture the local buckling phenomena explicitly. 
Its assessment is therefore made through the concept of cross-section classification, creating arti- 
ficial  steps  within  the  capacity  verification  of  structural  members  by  placing  class-specific  re- 
strictions on the analysis. This simplified assumption particularly affect structural steel members 
benefiting from strain hardening and members which would need to be classified in slender re- 
gions.

To  overcome  some  of  this  code  related  shortcomings  more  advanced  design  by  analysis  ap- 
proaches are developed, combining the computational efficiency of beam-element models with the 
ability to account for slenderness-dependent deformation capacities (CSM-approach). Although, 
this approach imitates the effects of local buckling without the actual need to perform complicated 
shell based GMNIA calculations, it is only valid in the pre-buckling range. The proposed paper 
herein, presents a method to carry out beam-element analysis that accounts for the nonlinear load- 
displacement behavior in the pre- and post-buckling range of sections with various local slender- 
ness. The DNN-DSM, which makes use of machine learning techniques (deep-neural-networks –
DNN) to predict  the  nonlinear  stiffness  matrix  terms  in  a beam-element  formulation within  the 
Direct-Stiffness-Method (DSM). Based on DNN-models trained on the results from an extensive 
pool of nonlinear (GMNIA) shell element simulations, first outcomes of this method are able to 
describe the nonlinear load-displacement behavior of various SHS and RHS sections loaded by a 
normal force N acting in the cross-sectional center of gravity.

1. Introduction and Motivation
1.1 Problem Definition
Structural hollow sections are particularly suitable in a wide field of engineering applications, es- 
pecially when the need for structural efficiency and optimization demands arise. In this context the 
overall structure, the profile geometry itself or the steel grades are optimized to a level where the
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desired design optimum is reached. Due to the increasingly better and simpler possibilities of pa-
rameterizing the structural models by means of suitable software, changes can be carried out in a 
fraction of time that would have been required decades ago. Nevertheless, the calculations and 
design checks done within the software are mostly based on code provisions of EC3 or AISC 360-
16 (EN 1993-1-1 2006, AISC 360-16 2016) which imply simplifications and assumptions derived 
and designed with the goal to be suited in the framework for hand calculations. The traditional 
separation of analysis and verification, whereby both are dependent on the cross-sectional slender-
ness and corresponding classification into categories ranging from stocky to slender, affects high 
strength steel (HSS) sections in particular. These often would need to be classified as slender cross-
sections, forcing designers to take local buckling phenomena into account (EN 1993-1-5 2006). 
Available deformation capacities (Toffolon et.al. 2019a, Toffolon et.al. 2019b, Toffolon and Taras 
2019c, Toffolon and Taras 2019d, Meng et.al. 2019, Müller and Taras 2019), different material 
properties between hot rolled and cold-formed structural profiles (EN 10210-2 2006; EN 10219-2 
2006) including strain hardening and more precise material laws, proposed by (Yun and Gardner 
2017, Yun and Gardner 2018) and partially adopted in the current draft of prEN1993-1-14, are 
neglected. In reality, in spite of their lower hardening capacity and ultimate strains, even slender 
high-strength steel hollow sections display a non-negligible plastic strength component and rota-
tional capacity that exceeds these code restrictions. Thus, new formulations and methods are 
needed to do justice to the advantages of high-strength steel sections and slender sections in gen-
eral, particularly for the case of hollow structural sections, developing new design methodologies 
that make increasing use of numerical simulations (design by analysis).  
 
It is possible to carry out advanced finite element GMNIA (geometrically material nonlinear anal-
ysis with imperfections) simulations using shell elements in structural design, as these provide 
realistic and accurate solutions depending on the modelling effort and problem knowledge. Nev-
ertheless, these methods are computationally time intensive, due to the model size and complexity, 
and are not generally suitable for use in a design. For this reason, currently various efforts are 
being undertaken to combine the computational efficiency of beam-element models (which are 
already commonly used in design practice) with the ability to account for slenderness-dependent 
deformation capacities and nonlinear redistribution of internal forces in a structural truss or frame. 
Existing methods make use of beam finite element based GMNIA simulations with slenderness 
dependent strain limits imitating the effects of local buckling (CSM approach (Gardner 2008, 
Fieber 2019, Walport 2019)) or expand the beam element formulation to local buckling modes 
(GBT approach (Schard 1989, Silvestre 2005)) 
 
This paper presents the initial steps towards a novel approach to carry out a beam-element analysis 
that accounts for the nonlinear load-displacement behaviour of hot rolled and cold-formed SHS 
and RHS sections (DIN EN 10210-2 2006, DIN EN 10219-2 2006) of different local slenderness. 
The key challenge hereby is the accurate representation of the different load-displacement behav-
iour of elements of various local slenderness in the beam stiffness matrix, i.e. the question of how 
to include local buckling and plasticity in the beam structural analysis.  
 
Fig 1 a) shows the general implementation within the elastic DSM formulation using the example 
of a truss frame, dominated by normal forces. An isolated beam element represented by the local 
elastic stiffness matrix Klocal is constructed, assembled to a global system of equations and solved 
by calculating the inverse global stiffness matrix and subsequently the associated displacements 
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Usys. Here only the terms dominated by the normal force are highlighted in red, since the first 
implementation steps presented within this paper will focus exclusively on this load case. The 
novel method denominated as DNN-DSM (deep neural network direct stiffness method) makes 
use of machine and deep learning techniques (ML and DL) to predict the nonlinear stiffness matrix 
of a beam element under different deformations and rotations acting in plane.  
 
A general overview, starting with data development up to the method implementation, is presented 
within Fig. 1 b). The developed deep neural network (DNN) models are based on data sets derived 
from a pool of numerical (LBA and GMNIA) shell elements simulations, designed in such a way 
that only local buckling is the driving instability phenomena for the investigated cross-sections (s. 
Sec. 2.1). Therefore the local length of the elements was set to the maximum of whether the height 
or the width of the cross-section. This assumption was made within a first feasibility study. Thor-
ough investigations on cross-section and load dependent buckling lengths are under way, follow-
ing up the research carried out by (Fieber 2019). The extracted data includes geometrical and me-
chanical parameters based on (DIN EN 10210-2 2006, DIN EN 10219-2 2006) as well as directly 
simulation related outputs including the cross-section dependent displacement u and the tangent 
stiffness KT. Subsequently, the resulting database is used for the training of the DNN models, with 
the tangent stiffness as the governing output parameter (s. Sec. 2.2). The DNN based prediction of 
the tangent stiffness KDNN,local is thereby evaluated for every discretized beam element within a 
global structure, assembled to a global stiffness matrix KDNN,sys and used to evaluate a differential 
force ∆Fsys, which is calculated under the consideration of incremental displacement steps ∆Usys. 
 

 
Figure 1: a) Direct Stiffness Method (elastic formulation), b) Initial formulation of the Deep Neural Network Direct 

Stiffness Method (DNN-DSM) 
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1.2 Introduction to Deep Neural Networks 
 

 
Figure 2: General representation of a neuron 

 
The concept of deep neural networks is based on findings from (McCulloch and Pitts 1943, Hebb 
1949, Minsky and Seymour 1969), in the period between the 1940s to the end of the 1960s. Now-
adays its increasing popularity (of machine learning in a general sense) is fuelled by the access to 
large amounts of data, the availability of Graphics Processing Units (GPUs), algorithmic develop-
ments and an easier accessibility to the field of machine learning due to the development of high-
level libraries/APIs. Apart from the rapid spread of ML and DL related methods within the auto-
motive industry or applications of facial recognition, the first applications are also being developed 
in the fields of civil engineering. In (D´Aniello et.al. 2014, Güneyisi et.al. 2014) DNN models are 
used to obtain the available rotation capacity and the flexural overstrength factor for steel beams. 
Fonseca implemented and evolved throughout several publications (Fonseca et.al. 2001, Fonseca 
et.al. 2003a, Fonseca et.al. 2003b) NN models to predict and estimate data for the patch load be-
haviour. In (Fonseca et.al. 2008) an additional neuro fuzzy system was implemented to consider 
the difference in the beam structural collapse behaviour (web and flange yielding, web buckling 
and web crippling).  
A common representation of an artificial neuron (Frochte 2018) is shown in Fig. 2 and can be 
written as: 
 

  ( )y x a W x b
n n

     
 

 (1) 

 
It consists mainly of three parameters: 
 

(i) The weights W, which are updated during the training of the DNN model throughout a 
preset amount of epochs (optimization steps), being also an indicator for the strength 
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of a connection within a network. A low weight value represents a weak connection, a 
high value vice versa a strong connection. 

(ii) A bias b as an additional trainable nonzero value which is added to the summation of 
weighted inputs of a neuron  

(iii) a represents the activation function, with an inherent predefined threshold used to cap-
ture a linear behaviour (Step function, s. Eq.(2)) or more complex nonlinear multiclass 
or regression problems (sigmoid function s. Eq.(3) or ReLU (Rectified Linear Unit) s. 
Eq.(4)).  
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The optimization process in a neural network uses backpropagation as a technique to update the 
weights within a training procedure. Therefore, the chain rule is used to calculate the gradients of 
all nodes within a network. This enables the application of a gradient descent rule, expressed by a 
learning rate η, which controls the update step size and the derivative of the function within the 
Nabla-Operator.  
 

 ( j 1) ( j) ( j)x x f x     
 

 (5) 

 
The overall estimated accuracy of a neural network is highly dependent on the quality and distri-
bution of the input parameters. In many cases it is therefore necessary to transform or scale these 
values, using different methods like normalization (s. Eq.(6)) or standardization (s. Eq.(7)) as fol-
lows (Frochte 2018): 
 

 
(i) (i)x x(i) minx̂

(i) (i)x x
max min





 (6) 

 

 
(i) (i)x x(i)x





  (7) 

 
with: 

(i)x         Mean value of an input feature 
           Standard deviation of an input feature 
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Data transformation eliminates the major problem of multiple features having different magni-
tudes, ranges and units by scaling them down. Therefore, data normalization is used to scale the 
magnitudes of available features between the values of 0 and 1 (or -1 and 1), corresponding to the 
lowest and highest values. Standardizing the date means rescaling it, while the mean value is set 
to 0 and the standard deviation to 1. In a lot of engineering applications data standardization shows 
better performance evaluations, since outliers are taken better into account. A closer look on both 
concepts and its effects on the learning behaviour is carried out and presented in Section 3 of this 
paper.  
 
2. Data Development 
Every ML model requires data to calculate some target values. Nevertheless, the data quantity, 
structure, density, appropriate feature set or the data transformation strategy affect the accuracy of 
the output and is always dependent on the goals and specific demands. The principle applies, how-
ever, that poor data quality will lead to inferior results, in general independent on the computational 
level of the used method. It is therefore necessary to first investigate the data before choosing an 
appropriate ML model. This procedure is widely known under the term of “feature engineering” 
and includes different methods, starting with investigations on data quality and distribution fol-
lowed by unsupervised methods like principle component analysis (PCA) to reduce the feature 
dimensionality or the evaluation of the feature importance using decision tree based algorithms.  
 

Table 1: Investigated profiles (DIN EN 10210-2 2006, DIN EN 10219-2 2006) and applied parameters 
Used Profiles Number of Sections Dimension Range c/t 

SHS hot rolled 88 8.0 – 47.62 
SHS cold-formed 88 8.0 – 47.62 
RHS hot rolled 93 9.52 – 56.25 

RHS cold-formed 92 12.5 – 55.55 
Used Parameters Number of Parameters Values 

Steel grade fy 3 S355, S460, S700 
Imperfection amplitude e0 3 B/200, B/300, B/400 

 
The developed data sets for the SHS and RHS profiles are based on the geometric dimension prop-
erties from DIN EN 10210-2 (DIN EN 10210-2 2006) and DIN EN 10219-2 (DIN EN 10219-2 
2006) for hot rolled and cold-formed structural hollow sections, respectively. Thus, a total of 361 
European profiles, three different steel grades ranging from mild to high-strength (S355, S460 and 
S700) and three different imperfection amplitudes (B/200, B/300 and B/400) were taken into ac-
count, see Tab. 1. This parameters form the basis for further LBA and GMNIA simulations con-
ducted in Abaqus (Abaqus, 2016). The description of the finite element models is summarized 
within Section 2.1. The subsequent data extraction is discussed and presented in Section 2.2.  
 
2.1 Finite Element Modelling 
The developed Abaqus models are making use of isoparametric shell elements with reduced inte-
gration of type S4R, with a mesh density of around 60 elements in circumferential and (depending 
on the total member length) 50 – 100 elements per meter in longitudinal direction. The geometry 
of the profiles is based on code provisions of (DIN EN 10210-2 2006, DIN EN 10219-2 2006) 
with a local length L (longitudinal direction) set as the bigger value of ether the width W or the 
height H of the cross-section. Therefore, the loads and deformations are applied through defined 
reference points (RF-Points) which are located at the upper and lower edge of the cross-section (s. 
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Fig. 3). These are connected through multiple point constraints (MPC-Beam formulation) to asso-
ciated node sets along the upper and lower profile outer edge (s. Fig. 3 a) shown exemplary for the 
quarter range of the cross-section). This definition implies a rigid connection between the nodes 
at the extremity and a reference node at the centroid of the respective sections. All boundary con-
ditions were set as fixed, except for the deformation in the longitudinal direction. Throughout this 
study an elastic-ideal plastic material model was used, with an infinite yield plateau assumed at a 
stress level σvon-Mises = fy, without an explicit consideration of residual stresses within the Abaqus 
models. The validation of the Abaqus model is based on an extensive analytical, numerical and 
experimental campaign, conducted between the years of 2017 and 2019 at the University of Bun-
deswehr Munich, in the context of the EU-funded (RFCS) project HOLLOSSTAB (Grand Nr. 
2015-709892). The reader is referred to the references of the project for further details in (Toffolon 
et.al. 2019a, Toffolon et.al. 2019b, Toffolon and Taras 2019c, Toffolon and Taras 2019d, Meng 
et.al. 2019).  
 

 
Figure 3: a) Finite element model of an RHS section; b) Deformation in the direction of the longitudinal axis 

 
The basic simulation process for the generation of the required data sets is always performed in 
two steps. In a first step an LBA analysis is carried out in order to identify the elastic critical 
buckling resistance of the cross-section and the eigenshape as the critical imperfection form. In a 
second step a GMNIA simulation is performed to determine an elasto-plastic buckling load – the 
realistic buckling resistance that considers both material and geometric nonlinearities – of the 
cross-section as well as the courses of the pre- and post-buckling range. The nonlinear calculations 
in Abaqus were performed using the static general stress analysis.  
 
2.2 Data Extraction 
The parameters from Tab.1 lead to a total amount of 361 LBA and 3249 GMNIA simulations 
conducted in Abaqus. This data basis is subsequently used for the extraction of the input features 
used for the training of the DNN models. Therefore, the LBA analysis output from Abaqus is used 
to extract the cross-section dependent elastic critical buckling load. The GMNIA analysis results, 
on the other hand, are used to determine the incremental deformation steps ∆un and an associated 
differential force ∆Fn, see Fig. 4 a). These values are subsequently used to calculate an incremental 
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tangent stiffness KT,n, see Eq.(8) for the whole displacement range u of a cross-section in the pre- 
and post-buckling range.  
 

 
F
nK

T,n u
n





 (8) 

 
This procedure leads to a first estimated amount of 145377 data rows, including all investigated 
parameters from Tab.1, summarized within the feature representation in Fig. 4 b). Additional in-
formation on feature importance, data structure and distribution, as well as their effect on the model 
behaviour and accuracy (feature engineering) are presented within the following Section 3 in more 
detail. 
 

 
Figure 4: a) Data extraction from Abaqus simulations, b) Overview of selected features 

 
3. Feature Engineering 
The process of data analysis and interpretation is not structurally defined and does not necessarily 
follow a fixed sequence of operations. Since this process is highly iterative and many parameters 
are constantly changed, no clear hierarchy can be named within the individual modifications. 
Therefore, according to the principle of an ascending complexity, the most important adjustments 
are pointed out and summarized in the following subsections. 
 
3.1 Data Expansion and Splitting  
Based on own investigations carried out to analyze the data density, structure and its influence on 
the performance on different DNN models, a clear outcome is obtained and presented in Fig. 4. 
The left side shows two load-displacement diagrams and the right side an associated frequency 
distribution of the tangent stiffness. The Abaqus GMNIA simulation is described by the black 
dotted curve and is considered here as the benchmark resistance. Each dot represents one increment 
of the numerical simulation. For the purpose of a better representation, the points were connected 
through interpolated lines. The red dotted line from Fig. 4 a) symbolizes the predicted resistance, 
calculated with one DNN model by using the raw data set. This means that the displacement u had 
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the same incremental distribution as provided by the Abaqus simulations. A profound difference 
between the black and the red curve can be obtained, especially in areas of small displacement in 
the pre-buckling range, i.e. high tangent stiffness. Due to this premature softening behaviour, the 
maximum load is predicted very inaccurately though. On the other hand, the course obtained in 
the post-buckling range is more precise, although the overall resistance is predicted too low. Fig. 
4 b) shows the frequency distribution of the tangent stiffness of the whole data set, including all 
investigated cross-sections.  
 

 

 
Figure 4: a) Prediction based on raw data set, b) Histogram showing KT based on raw data set, c) Prediction based on 

extended data set, d) Histogram showing KT based on extended data set 

The highest frequency is clearly reached around the value of zero. This range is attributed to the 
area near the maximum force of the load-displacement diagram exemplary represented in Fig. 4 
a). The peak can be explained by the smaller increments chosen within the Abaqus simulation to 
achieve equilibrium in non-linear areas. On the other hand, relatively large incremental steps are 
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made in the elastic range at the beginning of the calculation. Therefore, the different incremental 
step sizes along the load-displacement curve lead to an uneven distribution of data, resulting in 
predictions that are more accurate for regions with higher density. For this reason, high values of 
the tangent stiffness KT ≈ Ke, extracted from the start of every Abaqus simulation, are seen as 
outliers by the DNN models and are therefore difficult to predict precisely. Fig. 4 c) shows an 
updated prediction, which is more accurate in representing the resistance within the pre-buckling 
range. An additional data enlargement was carried out by interpolating linear between the incre-
ments in the elastic range, i.e. the very first increments. Thus, leading to an artificially increased 
data density for the tangent stiffness of KT >> 0, as shown in the histogram of Fig. 4 d).  
 
Based on the outcomes of further DNN model performance evaluations, additional adjustments 
were made with regard to the data structure. It was obtained that a further splitting between hot 
rolled and cold-formed SHS and RHS profiles and the pre- and post-buckling range led to a sig-
nificantly better performance. Especially the prediction of the cross-section dependent maximum 
load Fmax was met with higher accuracy as further presented in Section 4 of this paper. Subse-
quently a general data expansion between all increments in the pre- and post-buckling range lead 
to better accuracies and prediction results. In addition, a deformation limit umax of six times the 
deformation at the point of reaching the maximum load Fmax was specified. This assumptions and 
adjustments lead to a separation of data sets as summarized in Tab. 2.  
 

Table 2: Updated data subsets 
Profiles Data set size (rows) 

SHS hot rolled, pre-buckling 97394 
SHS hot rolled, post-buckling 177721 
RHS hot rolled, pre-buckling 105811 
RHS hot rolled, post-buckling 201969 

SHS cold-formed, pre-buckling 103360 
SHS cold-formed, post-buckling 183217 
RHS cold-formed, pre-buckling 86792 
RHS cold-formed, post-buckling 207561 

Total amount: 1163825 

 
3.2 Data Transformation 
The performance of a neural network (gradient descent solver) is highly dependent on the dimen-
sion of the input parameters, its magnitude and distribution. It is therefore necessary, but always 
dependent on the data structure, to transform and scale the input parameters. This can be done for 
example by normalization (s. Eq.(6)) or standardization (s. Eq.(7)) (Frochte 2018) in general cases. 
Fig. 5 shows the difference between the performances of several DNN models based on normalized 
and standardized inputs. In each case six randomly chosen feature combinations were taken into 
account. These will not be commented on further, as they serve for demonstration purpose only. 
The x-axis represents the number of epochs. These are in a general sense the number of repetitions 
in the training procedure. The y-axis describes the network accuracy using the measure r-squared 
(s. Eq.(9)), a statistical measure of the unexplained and the total variation.  
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ˆy , y , y
i i i

       Actual output, predicted output, standard deviation 

 
The performance of DNN models with standardized feature combinations are summarized in Fig. 
5 a). First, it can be noted that the r2 value increases steeply straight from the beginning of the 
optimization process. Already after less than 50 epochs the value of r2 = 0.90 is exceeded. After 
approximately 200 epochs, even the value of r2 = 0.95 is passed for most feature combinations. On 
the other hand, Fig. 5 b) shows the DNN model performance using normalized data sets. A direct 
comparison shows that the overall model accuracy is lower. Due to a flatter course between the 
first 200 epochs from the beginning, an r2 = 0.95 can only be reached by the end of the optimization 
process around 1500 epochs. This difference underlines the choice of data standardization within 
further investigations and results presented in Section 4.  
 
An additional influence on the model performance is attributed to the chosen format of the pre-
dicted value within the output layer. Depending on its distribution within the data set, the accuracy 
can vary greatly within the predicted values. The frequency distribution of the raw values of the 
tangent stiffness KT, for hot rolled SHS profiles in the pre-buckling range, is shown in Fig. 6 a).  
 

 
Figure 5: Training results using a) standardized features; b) normalized features 
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Figure 6: Output distribution for SHS hot rolled profiles a) raw values of the tangent stiffness KT; b) transformed values 

of the tangent stiffness divided by the elastic stiffness KT/Ke 

As already mentioned briefly in Section 3.1, values concentrated around zero represent the tangent 
stiffness (KT << Ke) near the maximum reached resistance. However, all other values can be a 
combination of KT ≈ Ke or KT < Ke, attributed to the elastic initial range or an intermediate range 
with a propagating nonlinear behaviour. This mixed tangent stiffnesses on the one side and the big 
difference in its magnitude (ranging between 0 and 1e7) on the other side for the direct prediction 
of KT (s. Fig. 6 a)), significantly affect the optimization process of the DNN model. Thus, in the 
investigations carried out, an r2 = 0.95 was reached after approximately 1000 and an r2 = 0.98 after 
approximately 6000 epochs. Fig. 6 b) shows the frequency histogram of the tangent stiffness KT 
divided by the elastic stiffness Ke. The resulting distribution in this case is completely different 
from before, being clustered in mainly three parts due to the transformation. Values around zero 
are still attributed to the area near the maximum resistance. However, the cross-section dependent 
tangent stiffness in the elastic range (KT ≈ Ke) is now located close to the value of one. All other 
values of KT < Ke are in between these boundary ranges and are assigned to an increasing nonlinear 
local behaviour. The prediction accuracy in this case is significantly higher. Thus an r2 = 0.99 is 
already reached after approximately 200 epochs using the same DNN model architecture. Alt-
hough the difference between the estimated accuracies is less than 2%, a much higher scatter is 
obtained within the predicted stiffnesses using the raw output data in Fig. 6 a). It must also be 
pointed out that the optimization process, measured in terms of the required epochs and the esti-
mated associated model accuracy, was slower compared to the performance of DNN models based 
on the transformed data from Fig. 6 b).  
 

3.3 Feature Importance 
ML and DL methods offer several approaches to detect features that have the most influence on 
the learning process. This has the advantage that input parameters that have no significant impact 
on the predictions are eliminated. Therefore, the calculation effort is reduced while the optimiza-
tion process depends on fewer parameters. The most common way to seek for these parameters is 
the application of tree based algorithms. Decision trees are based on the logical structure of a tree, 
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predicting the values through a sum of individual choices. Starting with the input values in a so 
called root, the data is split within different possible decisions (categorical decision for classifica-
tion and quantitative decisions for regression problems). Following this principle to the end nodes 
of the model, a condition or value is proposed. This procedure is highly powerful but prone to 
problems connected to data quality and tree complexity leading to an effect called overfitting. It 
occurs when the algorithm starts to capture noise, being too accurate on the training data due to a 
very deep tree structure. Therefore, the general approach goes lost, which leads to poor predictions 
on the base of unseen test data.  
 

 
Figure 7: Evaluation of feature importance and comparison between the Random Forest model and the XGBoost 

model a) pre-buckling range of SHS profiles; b) post-buckling range of SHS profiles; c) pre-buckling range of RHS 
profiles; d) post-buckling range of RHS profiles  
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For this reason, two methodologies (Random Forest Regressor (Breiman 2001) and XGBoost 
Regressor (Chen and Guestrin 2016)) were used in the following, which proved to be successful 
in the case of the present data sets. The random forest algorithm is based on the general idea of a 
decision tree with the main difference of using not only one big tree to represent the problem, but 
rather a high number of simpler trees which are more general and therefore not as much affected 
by overfitting. The whole dataset is first subsampled (bootstrap sampling), meaning that a ran-
dom number of features and data rows is used to build smaller data sets. This leads to a higher 
variety and a different data density. In the following, individual trees are build parallel leading to 
a large number of different predictions, which are gathered and averaged (bootstrap aggregating). 
In contrast, the XGBoost algorithm builds the trees not parallel to each other but rather uses a 
boosting technique. Therefore, the trees (weak learners) are built sequentially so that each new 
tree corrects the error of the previous one (boosting). Both algorithms were used to evaluate and 
plot the importance of the features of the SHS and RHS profiles in the pre- and post-buckling 
range, see Fig. 7 and Tab. 3. The abbreviation RFR is attributed to the Random Forest algorithm, 
while XGB is attributed to the XGBoost algorithm.  
 
The output of the feature importance is exemplary explained by Fig. 7 a), using the data set of the 
SHS profiles (hot rolled and cold-formed) in the pre-buckling range. All features are sorted ac-
cording to their importance and displayed on the y-axis. The importance itself is shown along the 
x-axis with the mean decrease impurity (also known as Gini index) computed for the Random 
Forest (RFR) and XGBoost structure (XGB). It is calculated as the total reduction of the impurity 
within a split, made by one selected feature on average over all trees within the forest. Apart from 
their order, the three most important features are initially the same, represented by the displace-
ment u, the steel grade fy and the height H or width B. In terms of SHS profiles the values for B, 
H and L are identical. This also explains one main difference between these methods based on 
their structure. Since the Random Forest algorithm uses many individual trees, linear dependent 
features are not necessarily eliminated, as they are used independently within reduced data sets. 
For this reason, features B, H and L are listed with approximately the same importance (Fig. 7 a) 
RFR). On the other hand, XGBoost (Fig. 7 a) XGB) uses one sequential build of trees. Therefore, 
equal features are eliminated throughout the process.  
 

Table 3: Estimated feature combinations 
 Pre-buckling data sets Post-buckling data sets 

SHS hot rolled 
and cold-formed 

H, Wel, Wpl, Iy, fy, u, Fcr H, t, Wel, A, Iy, Imp, fy, u, Fcr 

RHS hot rolled 
and cold-formed 

H, B, Wpl, Iy, fy, u, Fcr H, B, Wel, Iy, Imp, fy, u, Ke, Fcr 

 
Subsequently, the procedure of feature engineering requires the use of different methods, since the 
output can vary strongly and only the sum of reasonable results lead to a general tendency for the 
choice of important features and their combination. Furthermore, additional combinations of the 
selected features within the DNN models should be tested to determine differences in the perfor-
mance and overall accuracy. Tab. 3 summarizes the chosen feature variations based on the output 
of Fig. 7 and additional accuracy evaluations from DNN models.  
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4. DNN Model Development and Results 
 

Table 4: Estimated hyperparameters 
Model Parameters Selection 

Hidden layer 1 (neurons) 27 
Hidden layer 2 (neurons) 27 
Hidden layer 3 (neurons) 18 
Hidden layer 4 (neurons) 9 

Activation function ReLU 
Optimizer Adam 

Learning rate 0.0005 

 

 
 

 
Figure 8: a) Simulation (KT-GMNIA) vs .prediction (KT-Predicted) for SHS profiles; b) Simulation (Fmax-GMNIA) vs .prediction 
(Fmax-Predicted) for SHS profiles; c) Simulation (KT-GMNIA) vs .prediction (KT-Predicted) for RHS profiles; d) Simulation 
(Fmax-GMNIA) vs .prediction (Fmax-Predicted) for RHS profiles 
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In general two types of parameters are distinguished within a deep neural network (feed forward 
network). The trainable parameters, which are changed throughout the optimization process, in-
cluding the weights and the biases. The preset hyperparameters, which do not change throughout 
the optimization process. This includes the general model architecture (amount of neurons and 
hidden layer), the chosen optimizer, an associated learning rate and the activation functions within 
the hidden layer, the batch size and additional regularization techniques. Without appropriate in-
formation on the DNN model performance, the computational effort needed for the estimation of 
possible hyperparameters is immense. For this reason, the problem was considered systematically 
by first exploring the parameters in a coarse pattern to come up with possible, still rough ranges 
of values. Consequently, these values were adjusted in finer intervals until suitable values were 
found. Therefore, a total of 193 individual combination was tested within the framework of pre-
liminary investigations using the Random Search Method. Random Search is in terms of ML one 
method to estimate decisive parameters, which can be suitable but do not necessary have to, since 
not all possible combinations are taken into account. The opposite would be the Grid Search 
Method were each parameter combination is tested. However, as there is not only one specific 
solution but rather a potential solution space of possible combinations of hyperparameters, this 
workflow is suitable in order to detect the overall tendencies within the DNN architecture. All 
calculations were performed on the basis of a train and test philosophy, meaning that a specific 
data amount was used for the training (80%) and an additional independent amount for the valida-
tion process (20%). This procedure is crucial to detects problems like overfitting and the interpre-
tation of the overall behaviour, assessing transferability to “unseen” data. Tab. 4 summarizes the 
selected hyperparameters from these initial investigations.  
 
First results of the accuracy of the estimated DNN models are presented within Fig. 8, where the 
x-axis is representing the simulated values and the y-axis the predicted values. Fig. 8 a) and c) 
show exemplarily the overall prediction of the tangent stiffness KT for hot rolled and cold formed 
SHS as well as RHS profiles in the pre-buckling range. This values are used as initial inputs for 
the calculation of a force accumulated over the deformation (s. Eq.(10)): 
 
 F F K u

n n 1 T,n n
    (10) 

 
Despite the high r2 values shown in Fig. 8 a) and c), a certain scatter is present which might imply 
inaccuracies in the calculation of the forces (s. Eq(10)). Therefore, the load-displacement curves 
of the considered SHS and RHS profiles were calculated within the pre-buckling range by using 
the trained DNN models. Fig. 8 b) and d) show a summary of these results by isolating the maxi-
mum load Fmax, which is calculated from an accumulation including all predicted values of the 
tangent stiffness from the steps before. Thus, it was assumed that the overall error is most present 
by the end of every cross-section dependent load-displacement curve. It can be seen that the out-
liers has in general no influence on the estimated maximum force Fmax. The associated r2 value lies 
in both cases around 0.999 for training and testing data. This can be attributed to the fact that the 
predicted values of KT, originating from the data development using Eq(8), are based on the incre-
mental distribution from Abaqus simulations. The data sets were additionally expanded further (s. 
Tab. 2) reducing the incremental step size. This results in the fact that deviations within the tangent 
stiffness lead to very small differences in the accumulated force, as long as the step size remains 
small. Nevertheless, this initial outcome underlines specifically two conclusions. The data struc-
ture can be processed by the model well enough and used for predictions i.e. a predictable problem 



 17

suited for ML applications. The trained DNN model is “general” enough and does not tend to 
overfitting problems meaning that r2

train ≈ r2
test. 

 

 

 
Figure 9: Predicted pre- and post-buckling range for a) hot-rolled SHS profiles; b) hot-rolled RHS profiles; c) cold-
formed SHS profiles; d) cold-formed RHS profiles 
 
Fig. 9 shows additionally the prediction of 792 hot-formed SHS, 792 cold-formed SHS, 837 hot-
formed RHS and 828 cold-formed RHS profiles. A normalized representation was chosen within 
the axes. This definition has the considerable advantage that all curves are displayed and compared 
in a scale independent manner. Therefore, the pre- and post-buckling range is plotted along its 
local slenderness, the predicted force NPred divided by the plastic cross-section capacity Npl and 
the corresponding displacement u divided by upl, the theoretical plastic deformation. A solid red 
line along the reached maximum loads split the ascending from the descending branch. Thus, Fig. 
9 illustrates in a first step (by taking into account only the longitudinal deformation) that the pre- 
and post-buckling range of various SHS as well as RHS profiles of different slenderness, steel 
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grade and manufacturing process can be predicted with high accuracy. Subsequently, this three-
dimensional information forms the basis for the implementation into a DSM based beam formula-
tion. Further research on the implementation of local redistribution capacities within the beam 
finite element formulation is under way. 
 
4. Conclusions and Outlook 
The presented paper describes first findings and results towards a novel method (DNN-DSM), 
combining the computational advantages of beam-element models with the accuracy of numerical 
shell-element based simulations. The connection is made by using predictive models based on the 
concepts and techniques from machine and deep learning, trained and tested on data sets derived 
from a pool of Abaqus shell element simulations. For this reason, this paper first introduces the 
finite element modeling and the subsequent extraction and compilation of the required data sets. 
Basic principles of feature engineering are presented and applied to the presented data sets. Since 
a large part of the actual work lies in the preparation (post processing) of the data, the focus within 
this paper is placed on this in particular. For this purpose, three processing steps, the data expan-
sion, the data transformation and the concepts of feature importance are presented and their impact 
on the DNN model performance is described. Subsequently, further steps towards the development 
of appropriate DNN models, including hyperparameter tuning, are described and summarized. Fi-
nally, the accuracy of the DNN models is demonstrated by first the prediction of the main output 
parameter KT (tangent stiffness) and second by the resulting forces (s. Eq.(10)) calculated from it. 
In both cases very precise results are achieved, reaching values of r2

train and r2
test of 0.99 and 0.98 

for training and testing data sets, respectively (s. Fig. 8). Fig. 9 underlines subsequently the poten-
tial of this approximated solution methods, predicting all investigated 3249 hot rolled and cold-
formed SHS and RHS profiles. However, this computational procedure and implementation is un-
der development it will be shown on a larger scale in future publications. 
 
The focus of further research is laid on the implementation of current results into the beam finite 
element (DSM) formulation, being able to predict the nonlinear behaviour and possible slender-
ness dependent redistributions within a truss structure, subjected exclusively to normal forces. The 
validation of these calculations is to be carried out with the help of developed benchmark models 
from own investigations and literature. In a next step the data sets will be further developed to 
account for additional transverse deformations vz and rotations φy, enabling the prediction of a full 
beam structure. This would enhance the full range of deformation and rotation combinations within 
a beam formulated DSM approach. Additional feature engineering approaches need to be investi-
gated to narrow the used features and reduce the overall dimensionality of the data using unsuper-
vised approaches like principle component analysis (PCA: a method to remove redundant or highly 
correlated features) or autoencoder (an unsupervised artificial neural network that compresses and 
reconstructs the data in terms of dimensionality reduction). 
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