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Abstract 

Direct Analysis Method (DAM) of ANSI/AISC 360-16 prescribes the use of a rigorous second-

order analysis to account for initial imperfections, the spread of inelasticity, P-Δ, and P-δ effects 

accurately. The second-order analysis used in DAM should be verified against benchmark 

problems to ascertain whether it can accurately model all the second-order effects of a steel frame 

with reduced stiffness and notional loads. The benchmark problems available in the literature are 

primarily for frames with gravity loads acting through second-order displacements as the source 

of geometric nonlinearity. This paper identifies two lightly loaded structures where significant 

geometric nonlinearity occurs due to the behavior of individual elements and complexity in 

geometry. 3D frames can exhibit flexural, torsional, axial deformations and buckle through sway, 

non-sway, torsional and snap-through modes. For such structures, the position and direction of 

notional loads should be chosen accordingly to trigger the most undesirable displacements in the 

structure. Geometric nonlinear analyses are necessary when cable elements support the structure, 

even when the load is lateral. The inability of an analysis software verified against existing 1D and 

2D benchmark problems in capturing the second-order effects of a cable-supported beam-column 

is illustrated in this study. The applicability of DAM on these structures is also discussed. Apart 

from software packages, a Total Lagrangian-based 3D finite element framework is also used to 

generate benchmark problems. These problems equip a designer to verify whether a second-order 

analysis software used for the DAM can accurately capture spatial behavior, flexural-torsional 

coupling, and different sources of nonlinearities consistently. 

 

 

1. Introduction 

Designers employing the Direct Analysis Method (DAM) are presented with a vexing problem of 

identifying an advanced method for the nonlinear analysis of steel frames. While the use of 

advanced analysis methods increases the modeling and computational effort, the design procedure 

gets exceedingly simplified as it omits the use of effective length factor and empirical column 

curves and identifies the effect of residual stresses, initial imperfections, and spread of inelasticity 

more consistently (Dierlein 2003; Geschwinder 2002; Shankar Nair 2007; Surovek and Ziemian 

2005). DAM is generally applicable to all frames. It has no limits on the sidesway amplification 
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factor. The components are designed for a higher moment than that of the Effective Length Method 

(ELM), which makes the design of beams and connections safe (Ingkiriwang and Far 2018; White 

and Hajjar 1997). DAM recognizes the specific advantage obtained by moving the effects of 

imperfections and stiffness reduction from the resistance side to the analysis side in the design 

equations. ANSI/AISC 360-16 explains how these are considered in the analysis by applying 

notional loads and stiffness reduction factors.  

 

The design loads for DAM are highly sensitive to the accuracy of the geometric nonlinear analysis 

used. Hence, some benchmark problems are necessary to verify whether the second-order analysis 

can be used in DAM. Structures usually proposed as benchmark problems exhibit significant 

second-order effects. There are several references in the literature regarding the development of 

benchmark problems for use in stability design. These include moment frames, braced frames, 

gable frames, unsymmetric moment frames, unsymmetric braced frames, etc. (Chen and Toma 

1994; Du et al. 2019; Surovek and White 2001; Toma et al. 1995; Vogel 1985; Ziemian and 

Ziemian 2021a; b).  

 

While most of the benchmark problems are limited to two-dimensional behavior, it should be noted 

that accurate modeling of spatial behavior is essential for the design of any structure. A few 3D 

benchmark problems exist in the literature accounting for spatial behavior (Bai et al. 2019; Du et 

al. 2019; Liu et al. 2016; Teh 2004). They account for the reference line deformation and cross-

sectional twists of the structural elements of the frame. Frames in which significant second-order 

effects develop primarily due to member twists need a different set of benchmark problems that 

account for accurate modeling of cross-sectional behavior in their analysis (Ziemian et al. 2018).  

While DAM is generally applicable to all frames, ANSI/AISC 360-16 suggests a notional load 

coefficient of 0.002 for frames that support gravity loads through nominally vertical structural 

elements. But, it is also specified that the notional load concept applies to all types of structures at 

points of intersection of members and points along members. The specifications in ANSI/AISC 

360-16 are heavily rooted in the assumption that a gravity-loaded frame develops significant 

second-order effects only when the structure fails through a sway mode.  

 

To push the boundaries of DAM (Chan et al. 2017; Dewobroto and Chendrawan 2018; Misiunaite 

and Juozapaitis 2015), one may need to agree that second-order effects may become significant 

even for lightly loaded systems. Other than the vertical load, which generates significant moments 

by out-of-plumbness and bowing of vertical elements, nonlinearities may arise in two ways: (i) 

When a torsional mode of frame system buckling can cause significant second-order effects, 

especially when the frame carry loads through inclined members (ii) When highly nonlinear 

structural elements like cables support the frame.  

 

In all these cases, an analysis software verified using the two benchmark problems in ANSI/AISC 

360-16 may still be incapable of capturing the nonlinearities. For a general frame, it is understood 

that the notional loads need to be identified by the designer from a linear buckling analysis. But, 

difficulties arise when there is a limit point, or the buckling loads are very close, making the system 

switch between two post-buckling paths. In such cases, notional loads which perturb the structure 

decide the path followed by the structure. Hence, the designer should determine the nature of 

perturbations, and the analysis tool should be able to do the branch switching. Section 3.1(Teh 

2004) highlights how eluding the branch switching may underestimate the design force and design 
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bending moment in DAM. Similarly, the general perception about the lack of necessity of a 

nonlinear analysis when the structure is lightweight and loading is lateral is challenged by 

structures supported by cable elements. Cables stiffen under tension and sags under compression, 

making the structure highly nonlinear. It could be seen in Section 3.2 that even a widely used 

structural analysis software cannot capture cable nonlinearities accurately. 

  

Capturing the spatial behavior needs a geometric nonlinear 3D analysis. Still, several nonlinear 

beam theories are incapable of accurately describing the deformed configuration with respect to 

the initial configuration, as they use truncated strain-displacement relations (Pai 2007, 2011). A 

geometrically exact beam theory may not be needed for all framed structures designed using DAM 

as the elements from the preliminary design are stiff enough to avoid large displacements. But, 

such restrictions regarding the flexibility of the individual elements should not be kept on 

benchmark problems. In that case, an advanced geometrically exact beam theory is needed to 

reveal their load-displacement responses. This paper summarizes an ongoing work at IIT Madras, 

a geometric nonlinear analysis framework that can model large beam-column displacements 

accurately. The analysis method used removes the problems due to shear locking, singularities 

during the description of large rotations and is appropriate to finite element modeling of flexible 

structures. The analysis method to be used in DAM need not be as accurate as the Total Lagrangian 

(TL) method in Section 2. Still, the generation of benchmark problems for verifying 3D beam 

elements should be based on methods capable of modeling large displacements. 

 

2. Total Lagrangian formulation for 3D beam elements 

This section describes a geometric nonlinear formulation that suits arbitrary elastic deformations 

and rigid body movements (Pai 2007, 2011). In a TL formulation, the deformed configuration is 

directly referenced to an inertial reference, and thus the strain-displacement relations fully account 

for rigid body displacements and elastic deformations. Hence, the complexity in formulating and 

solving the equilibrium equations gets reduced. Any large displacement formulation needs an exact 

description of the deformed configuration. In a 3D sense, spatial, sequential rotations are used to 

define the deformed shape exactly. Jaumann strains and stresses are used in the constitutive 

relation as they are independent of the rigid body movements in space. The relation between stress 

resultants and displacements is obtained using the principle of virtual displacements.  

 

2.1 Kinematic description 

Consider a 3D beam element whose undeformed and deformed shapes are shown in Fig. 1. abc is 

a fixed coordinate system, and xyz represents the undeformed coordinate system at the centroid of 

the cross-section, with x-axis representing the reference line (outward normal). ξηζ system 

represents the coordinate system of the deformed beam with ξ axis representing the deformed 

reference line and η and ζ axes representing the deformed y and z axes without considering warping 

deformations. ia, ib, ic , ix, iy, iz , i1, i2, and i3 denote the unit vectors of abc, xyz  and ξηζ system, 

respectively. s indicates the undeformed arc length along the x axis, and u, v, and w represent the 

displacement components of the centroid of the section with respect to x, y, and z axes, 

respectively. 
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Figure 1: Three coordinate reference systems for modeling (Pai 2007) 

 

The transformation matrices that relate the three coordinate systems are: 

 
1

0

2

3

,

x a x

y b y

z c z

i i i i

i T i i T i

i i i i

       
       

 = =        
       
       

 

(1) 

2.1.1 Initial transformation matrix [T0] 

If the undeformed position vector R is given as: 

( ) ( ) ( )

'( ) '( ) '( )

a b c

x a b c

R A s i B s i C s i

dR
i A s i B s i C s i

ds

= + +

= = + +
 

(2) 

Angles θ21, θ22, and θ23 are the direction cosine angles of y-axis with respect to abc system.  

( ) ( ) ( )21 22 23cos cos cosy a b c

z x y

i i i i

i i i

  = + +

= 
 

(3) 

Hence, the initial transformation matrix [T0] is given by: 

0

21 22 23

23 22 21 23 22 21

' ' '

cos( ) cos( ) cos( )

'cos( ) 'cos( ) 'cos( ) 'cos( ) 'cos( ) 'cos( )

A B C

T

B C C A A B

  

     

 
   =   
 − − − 

 

(4) 
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Also,  
03 2

0

3 1

2 1

0

0

0

x x x x
T

y y y y

z z z z

i i k k i i
Td

i k i k k i T i
ds s

i i k k i i

−         
             = = − =                  −         

 

k1, k2, k3 denote the initial curvatures of the undeformed configuration with respect to x, y, and z 

axes, respectively, and are functions of undeformed arc length s.  

 

2.1.2 Transformation matrix of the deformed configuration [T] 

Two successive Euler angles α and ϕ, and a vector n is used to describe the deformation of the 

beam element (Fig. 2). xyz is rotated by an angle α about n axis (perpendicular to x-axis) to an 

intermediate configuration ξy1z1. Then ξy1z1 is rotated by an angle ϕ about the ξ axis to obtain ξηζ 

system.  

 
Figure 2: Description of deformed configuration (Pai 2007) 

 

The components of transformation matrix [T] are expressed in terms of the displacements, 

displacement gradients, and initial curvatures as given below: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2 3 1 2 1

11 12 13
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13 12 13
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11 11
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T T
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   
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+ +   

   
= + − = −   
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T T T T
   
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= − + − = + +       
+ + + +       

 

(5) 
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Also, 
 

 
 

               ( )     

1 1 3 2 1

2 2 3 1 2

3 3 2 1 3

0

0

0

x x

y y

z z

T T T T

i i i i i
Td d

i K i i i T i
ds s ds

i i i i i

K T T T k T K T T k T T k T

 

 

 

−           
          

= = − = +                     −           

= + = − +

 

ρ1, ρ2, ρ3 denote the curvatures of the deformed configuration with respect to ξ, η, and ζ axes 

respectively. 

 

2.2 Equilibrium equations 

After describing the final configuration using deformations, slopes, and curvatures, the total strain 

energy of the system is represented using virtual displacements and virtual rotations. The principle 

of stationary potential energy is used to obtain the governing equation of the beam element. 

 

( ) 0W − =  (6) 

The dot product of the variation of unit vector in deformed axes and the unit vector perpendicular 

to it gives the virtual rotation about the axis perpendicular to the plane of the axes considered. 

These rotations ( , 1, 2,3i for i = ) are infinitesimal and hence assumed vectorial and mutually 

independent. Then, 

    3

2

'

(1 ) '

(1 ) '

e u u

e T v T k v

e w w

  

  

  

     
     

+ = −     
     − +     

 

(7) 

Variation of curvatures with respect to deformed axes are: 

 
1 1 1

2 2 2

3 3 3

( ) '

( ) '

( ) '

k

  

  

  

     
     

= −     
     
     

 

(8) 

Strain measures are defined with respect to the deformed coordinate systems ξ, η, and ζ. The total 

displacement will have rigid body displacements and elastic deformations. The elastic deformation 

of the system is calculated by subtracting components of rigid body displacements from total 

displacement. The strains are given by: 

11 2 3 12 1 13 1

22 23 33

1 1
, ,

2 2

0, i i i

B e z y B z B z

B B B k

   

 

= + − = − =

= = = = −

 

(9) 

where ki is the initial curvature of the beam. If Jij represents the stresses, the total variation of 

potential energy is: 
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 ( )    

  

   

1 2 3 1 2 3

0
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ds
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     
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
 

where,  

( ) ( ) ( )

( ) ( )

1 11 1 13 12 2 11 3 11

2 3 2 1 1 2 6 3 2 3 1 1 3 5

. , . , . , . ,

1 1
' , '

1 1

A A A A

F J dA M J y J z dA M J z dA M J y dA

F M M M q F M M M q
e e

   

= = − = = −

= − − + − = − + +
+ +

   
 

(10) 

q1, q2, q3 are distributed loads along x, y, and z axes, and  q4, q5, q6 are distributed moments along 

ξ, η, and ζ axes, respectively. Setting the coefficients of δu, δv, δw, and δθ1 to zero yields the 

following governing equations which are entirely dependent on u, v, w, T21, and T23. 

 
1 1 1

2 2 2

3 3 3

[ ] [ ]T T

F F q

k T F T F q
s

F F q

      
       

− =            
      

 

(11) 

2.3 Finite element formulation 

The weak form of the system is given as: 

    
0

.
L T

D ds  =   
(12) 

where  

               1 ( ) ( )

2

3

0 0 0

0 0 0
, , ,

0 0 0

0 0 0

i ii
ij

j

EA

GI
D U U N q N q

EI U

EI


 

 
 

 = =   = =  = 
  
 
 

 

(13) 

where [N] is a 5×16 matrix of shape functions of Hermite cubic polynomials and linear 

polynomials, and [∂] is a 13×5 matrix of differential operators. 

 

For a two noded beam element,  

 ( )

21 23 21 23{ } , , , ' , ' , ' , , , , , , ' , ' , ' , ,
j j k k

T
i

j j j j j j k k k k k kq u v w u v w T T u v w u v w T T=  
(14) 

For a structure discretized into ne elements with element length Li =L/ne,  

        ( ) ( ) ( )

1

en
TT i i i

i

q K q q k q  
=

 = =    
(15) 
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where      ( ) ( ) [ ]{ }.

i

T Ti i

L

k q N D ds  =      

The global nodal load vector {R} is obtained using:- 

       ( ) ( )

1

e
Tn

Ti i

i

W q R q R  
=

= =  
(16) 

The equations of equilibrium in matrix form are: 

   { }K q R=  (17) 

The above system of equations is solved using incremental-iterative solutions based on arc-length 

methods. This TL formulation (Pai 2011) eliminates singularity and shear locking problems 

encountered in analyzing flexible beams or large displacement problems. Hence, this method is 

suggested to generate benchmark problems to verify the capabilities of a second-order analysis 

method. This method is highly accurate but rigorous to be used in the design using DAM. Still, a 

nonlinear method or software verified against benchmark problems generated using this 

formulation will have enough capabilities to capture the complexities in behavior and sources of 

nonlinearity in a structure. 

 

3. Benchmark problems 

A set of calibration problems are defined for the designers to assess the capabilities of a geometric 

nonlinear analysis computer program to identify the sources of nonlinearity in a structural system. 

Two examples have been proposed. A hexagonal frame (Teh 2004) is adopted to establish the 

effect of one notional load and a pair of equal and opposite notional loads on the stability of the 

frame—the structure switches from a translational mode to a rotational mode in the post-buckling 

region. In order to identify the highly nonlinear behavior of a beam-cable system, a 2D beam-

column supported by a single set of cables is provided. Even though the structure resists only 

lateral load and has no self-weight,  it could be seen that the behavior is highly nonlinear under 

large displacements and structural analysis software like SAP2000 cannot accurately capture the 

nonlinearity. 

 

3.1 Hexagonal space frame  

This example may be used as a benchmark problem to ascertain the capabilities of a second-order 

analysis software for DAM under the following conditions: 

(i) When the frame supports gravity load through inclined structural elements  

(ii) When the frame has coincidental or nearly close post-buckling paths, and there is a chance of 

switching between them  

 

A 3D hexagonal dome is provided to detect the capabilities of a second-order analysis method in 

identifying the branch switching of a structure between different post-buckling paths. While the 

second-order analysis chosen for DAM must satisfy the requirements given in Section C1 of 

ANSI/AISC 360-16 (2016), the section does not define the clauses when the frame switches 

between the post-buckling paths.  
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Table 1: Geometry of the frame in Fig. 3 

Coordinates of the points - (x,y,z) 

O (0,0,6.1)   

A (12.57,0,4.55) A’ (24.38,0,0) 

B (6.285,-10.885,4.55) B’ (12.9,-21.115,0) 

C (-6.285,-10.885,4.55) C’ (-12.9,-21.115,0) 

D (-12.57,0,4.55) D’ (-24.38,0,0) 

E (-6.285,10.885,4.55) E’ (-12.9,21.115,0) 

F (6.285,10.885,4.55) F’ (12.9,21.115,0) 

 

A number of researchers have analyzed the dome whose geometry is given in Fig. 3. Detecting the 

limit point is possible by these methods, but most of the methods eluded the fact that the structure 

switches between post buckling paths. The frame is restrained against displacement and rotation 

at supports. A vertical load is applied at the apex (O) , and vertical displacements are measured to 

obtain the load-displacement response. The system's two different post-limit point paths 

correspond to two different responses. The first path in which the structure is more stiffer is the 

one obtained when a notional force is applied at D. The second path is obtained when the structure 

is acted upon by a pair of equal and opposite forces on A and D. The TL formulation in Section 2, 

software packages like SAP2000 and ABAQUS can predict both the displacement responses 

accurately. 
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B 
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X 

C 
D 

F 

E 

B’ 

A’ 

F’ 

E’ 

D’ 

C’ 

Figure 3: Hexagonal frame (Teh 2004) 
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Figure 4: Load-displacement graph for the dome in Fig. 3 

 

The updated Lagrangian (UL) formulation provided by Lip Teh (2004) can identify the branch 

switching through corrector matrices. From the perspective of a designer opting for DAM, the 

notional loads should be chosen such that the structure is driven to all the secondary paths possible. 

For software packages used in this work, perturbation in the form of a force and a couple lead to 

two different post-buckling paths. If DAM is to be applied for a frame with inclined members 

(dome), the second-order analysis should not elude the branch switching in the behavior. It should 

be noted that the methods identified in the literature that elude the second post-buckling path give 

good results when verified against the two benchmark problems in ANSI/AISC 360-16.  

 

To understand how eluding the rotational mode about a vertical axis through the frame apex  will 

lead to underestimation of design loads, the applicability of DAM and ELM on the frame is 

discussed. Effective length factor was determined using analysis softwares and alignment charts. 

Three separate analyses are required and parameters of each model are tabulated in Table 2.  
 

Table 2: Modeling parameters for analysis of hexagonal frame 

 Parameter ELM DAM 

Model I Model II Model III 

D
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m
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a
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o

n
 o

f 
P

u
 

&
 M

u
 

Reduced stiffness, E* E 0.8E 0.8E 

Notional loads No One notional 
load 

A pair of equal and opposite 
notional loads 

Effective length factor (K) 0.748 1 1 

D
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m

in
a

ti
o

n
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f 

m
em

b
er

 

st
re

n
g

th
 

Nominal compressive strength 
(Pn) (kN) 

190.92 148.49 148.49 

Nominal bending strength (Mn) 
(kNm) 

189.13 189.13 189.13 
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Figure 5: Comparison between design loads predicted by ELM and DAM based on ANSI/AISC 360-16 

 

For models I, II, and III, Fig. 5 shows the intersection of Pu-Mu curves for the inclined member 

AA’ of Fig. 3 with the interaction curves for ELM and DAM. For the model I, PuI and MuI 

correspond to the second-order member forces in AA’ and represent the true response of the 

structure under applied loads. For model II, PuII and MuII represent the design loads predicted by 

DAM under a single notional load. In model III, a pair of notional loads are applied, and the design 

loads are PuIII and MuIII. It is assumed that the member has sufficient yield stress, so that yielding 

never precedes instability.  

 
Figure 6: Comparison between design loads predicted by ELM and DAM using non-dimensionalized parameters 
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In DAM, applying a single notional load predicts second-order moments (MuII) less than that of 

ELM (MuI). The difference in the design moments between models I, II, and III are significant, but 

moments calculated by DAM with a pair of notional loads (MuIII) are generally conservative and 

closer to MuI. The agreement between the analysis results of model I and model III is made clear 

in the non-dimensionalized interaction curve given in Fig. 6. It should be noted that the 

denominator Pn in Fig. 6 for models II and III are the same but different from Pn of model I. Mn 

remains the same for all three models. 

 

If branch switching is unaccounted in the analysis, then DAM will result in design strengths, which 

are unconservative. In this problem, application of a pair of equal and opposite notional loads in 

DAM brought out the true behavior of the structural system. Hence, it is suggested that when the 

behavior is not clearly understood by the designer, application of a few combination of notional 

loads may be tried by the designer to reveal the entire spectrum of deformation responses of the 

structure to the applied loads. 

 

3.2 Cable supported beam column 

This example may be used as a benchmark problem to ascertain the capabilities of a second-order 

analysis software for DAM in a system: 

(i) When highly nonlinear elements like cables support the structure 

(ii) The structure is lightweight and subjected to lateral force, yet the response is nonlinear 

 

A  2D equivalent beam column model of a guyed mast supported by two cables, as shown in Fig. 

7, has been solved using a nonlinear finite element analysis by Schrefler et al.(1983), who modeled 

the cables and the equivalent beam-column using parabolic line elements. The same problem was 

solved using SAP2000 and ABAQUS. Fig. 8 compares the load-displacement responses predicted 

by different nonlinear analyses  

 

Figure 7: A 2D equivalent beam column model of a guyed mast under lateral load(Schrefler et al. 1983) 

 

. The SAP2000 model uses an in-built nonlinear cable analysis to determine unstretched length. 

The ABAQUS model uses second-order quadratic hybrid beam elements with 'no compression' 
 

15.25 m 15.25 m 

45.75 m  

Hs 

yL 

Δ
L
 

Cables: 40 mm diameter 

wc = 81 N/m 

Ec = 151.8 GPa 

Mast: 0.672×0.144 m  

Rectangular  section 

Em = 200.1 GPa 

T
0
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property for cables and quadratic second-order beam elements for the equivalent beam-column. 

Self-weight of cables was applied as distributed line loads on the beam elements used to discretize 

the cable. SAP2000 uses a nonlinear large deformation analysis, yet the software fails to capture 

nonlinearity beyond a specific load (1200 kN). The structure behaves stiffer in SAP2000. The 

SAP2000 results are helpful when the deflections are small, and even though cables are highly 

nonlinear elements, the structural response is linear. But, when the deflection is large, the behavior 

is accurately predicted by ABAQUS.  

 

 

 

Figure 8: Load-displacement response of guyed mast 

 

A comparison between capabilities of SAP2000 and ABAQUS for benchmark problems available 

in the ANSI/AISC 360-16 and present study is tabulated in Table 3. 

 
Table 3: Comparison of capabilities of analysis softwares 

Source Benchmark problem SAP2000 ABAQUS 

ANSI/AISC 

360-16 

Major axis bending of a simply supported column     

(P – δ effects) 
✓ ✓ 

Major axis bending of a cantilever (P – Δ effects) 
✓ ✓ 

Present 

study 

Hexagonal frame (Branch switching) 
✓ ✓ 

Cable supported beam-column (Cable nonlinearity) 
 ✓ 

 

The nonlinearity in the structure is by virtue of the large axial load acting on the structure from the 

cables, even though the external vertical load acting on the structure is zero. If DAM is to be used 

on cable-supported beam systems, it is essential to ensure that the analysis tool can capture cable 

nonlinearities even under large displacements. This benchmark example serves this purpose. 

 

4. Conclusions 

This paper presents two benchmark problems to ensure that a second-order analysis could capture 

critical deformation mode for use in DAM. It also discusses the concept of notional loads defined 

only for gravity-loaded frames with vertical elements in ANSI/AISC 360-16. For 3D structures 
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with inclined members, the analysis method should accurately capture the spatial behavior, and 

interaction between bending and twisting of the frame. When the primary buckling mode is not a 

sway mode, the designer should make appropriate judgments regarding the pattern of notional 

loads used. If a structure has coincidental or very close buckling modes, structure may switch 

between modes. The analysis tool used by the designer should be able to accurately capture the 

entire spectrum of nonlinear post buckling paths. The guidelines in ANSI/AISC 360-16 associate 

gravity loads acting through out-of-plumbness and bowing of vertical members as the primary 

source of geometric nonlinearity. A 2D guyed mast with no gravity load is still highly nonlinear 

owing to the cable behavior and thus might need a rigorous second-order analysis. 

Approximate P-Δ and P-δ analyses may be sufficient for use in DAM for simple geometries. But, 

the generation of benchmark problems needs a rigorous second-order analysis tool to reveal the 

critical nonlinear behavior under large displacements and rotations. The paper adopts a TL 

formulation for a 3D beam element. The deformed geometries are modeled using mechanical 

variables instead of Euler rotation variables, thereby removing the problem of singularity and shear 

locking, and thus is suited for large displacement analysis of spatial structures. The paper also 

generates benchmark problems, and the capabilities and a few shortcomings of the widely used 

nonlinear analysis packages and tools are also discussed from a designer’s perspective. 
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