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Abstract 

In the research reported herein a computationally efficient numerical method is introduced for the 

buckling analysis of tubular structures. The method uses Fourier-series approximations for the 

displacement functions. The strain-displacement relationship directly considers the curved 

geometry of the tubular shell. The implementation allows for arbitrary support conditions. In the 

solution developed to date four pure loading situations, uniform along the member length, are 

considered: normal force, bending moment, torque, and shear force. However, these four basic 

cases can arbitrarily be combined, as is commonly occurring in wind turbine support towers. The 

applied methodology results in a computational advantage compared to shell FEM, fast enough to 

be utilized in preliminary or code-based designs, while still maintaining much more generality and 

applicability compared to common analytical solutions. In this paper the method is briefly 

presented, then illustrated by proof-of-concept examples.  

 

 

1. Motivation 

The supporting structures of wind turbines are tubular steel cantilevers. Since they are slender, 

buckling is important. Analytical buckling solutions are available in textbooks (see e.g., Donnell, 

1933, Timoshenko and Gere, 1961, Flügge, 1962), but limited only for simple cases, i.e., members 

with simple supports subjected to simple loading such as pure compression or pure bending. Shell 

finite element calculation is available, too, but it requires a fine discretization (Mahmoud at al., 

2017), and can lead to a large number of shell finite elements and degrees of freedom, especially 

if the analyzed member is long. Thus, shell FEM is computationally expensive, and can be 

demanding even with today’s computers. Moreover, customizability of commercial FEM software 

is limited, hence it is usually impossible to control the underlying mechanical assumptions. These 

are some of the reasons there is still ongoing research effort to develop computationally efficient 

numerical methods for shells, see e.g., Sadovsky (2019). 

 

A newly developed numerical stability analysis tool is introduced herein. The primary role of the 

method is the linear buckling analysis of tubular structures; however, it was supplemented with 

added features, such as spectral analysis, or buckling length calculation. These added features can 
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be employed not only on buckled shapes, but on any displacement field, including measured 

geometric imperfections of real tubes or displacements from a collapse analysis by FEM. 

 

In this paper the focus is on linear buckling analysis. The method uses Fourier-series 

approximation for the displacement functions. The Fourier-series approximation does not require 

discretization; however, in our method longitudinal discretization can optionally be applied, i.e., 

the member can be divided into segments, and between the segments continuity criteria can be 

prescribed. Though this feature of the method is not discussed in this paper, it is beneficial, since 

it can enhance the numerical stability of the calculations, as well as it makes it possible to model 

non-uniform member geometry (i.e., tapering, a typical characteristics of wind turbine towers, see 

Ding at al., 2022) and/or non-uniform load distribution along the member length (again, typical 

for wind turbine towers).  

 

In the following, first, the method is briefly introduced, then its application is illustrated by 

performing a large number of linear buckling analysis on simple uniform tubular members; 

however, these examples consider both pure and combined loads across a wide range of 

geometries. Further features of the developed method (e.g., tapered members, spectral analysis, 

etc.) will be presented in subsequent papers. 

 

 

2. Brief summary of the method 

 

2.1 The displacements 

The studied tubular member is geometrically defined by its radius, R, thickness, t, and length, L, 

where the radius is interpreted as the mean of the radii of the outer and inner surfaces, see Fig. 1. 

For the description of the displacements we introduce a coordinate system. Three displacement 

functions are involved, u, v, and w, where v is longitudinal, i.e., in the y-direction, and u and w 

are transverse displacements: u being circumferential translation, and w being radial translation 

(in the x- and z-direction, respectively). Note, that x is a circumferential coordinate, i.e., the x-axis 

is curved. 

 

 
Figure 1: Coordinates, basic terminology 

 

The displacement functions are approximated identically, by full Fourier series. Thus, any d 

displacement is approximated as:  

 

 𝑑(𝑥, 𝑦) = 𝑑𝑥(𝑥) ∙ 𝑑𝑦(𝑦) (1) 
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with 

 𝑑𝑥(𝑥) = 𝑎0 + ∑ (𝑎𝑠,𝑖 𝑠𝑖𝑛
2𝑖𝑥

𝜋
+ 𝑎𝑐,𝑗 𝑐𝑜𝑠

2𝑖𝑥

𝜋
)

𝑝
𝑖=1  (2) 

 𝑑𝑦(𝑦) = 𝑏0 + ∑ (𝑏𝑠,𝑗𝑠𝑖𝑛
𝑗𝜋𝑦

𝐿
+ 𝑏𝑐,𝑗 𝑐𝑜𝑠

𝑗𝜋𝑦

𝐿
)

𝑞
𝑗=1  (3) 

Accordingly, the u, v, and w translations are expressed as: 

 

 𝑢(𝑥, 𝑦) = ∑ 𝑢𝑘𝑓𝑘(𝑥, 𝑦)𝑛
𝑘=1   𝑣(𝑥, 𝑦) = ∑ 𝑣𝑘𝑓𝑘(𝑥, 𝑦)𝑛

𝑘=1    (𝑥, 𝑦) = ∑ 𝑤𝑘𝑓𝑘(𝑥, 𝑦)𝑛
𝑘=1  (4) 

 

where the f(x,y) functions are trigonometric functions coming from the product of the x- and y-

directional Fourier series, and n is the total number of Fourier terms, calculated from the number 

of terms in the circumferential and meridian directions (p and q, respectively): 

 

 𝑛 = (𝑝 + 1)(𝑞 + 1) (5) 

 

2.2 The strains 

From the displacements the strains are calculated by directly considering the curved nature of the 

geometry. In particular, strains are similar to those in Silvestre (2007), (which are based on 

Sanders, 1963); however, with some modifications. To calculate the strains, first, the slopes (𝛽) of 

the displacement functions are defined as the surface is rotated around the x-, y-, and z-axis: 

 

 𝛽𝑥 = −
𝜕𝑤

𝜕𝑦
     𝛽𝑦 =

𝑢

𝑅
−

𝜕𝑤

𝜕𝑥
     𝛽𝑧 = −

𝜕𝑢

𝜕𝑦
 (6) 

 

From the slopes the curvatures (𝜅) are: 

 

 𝜅𝑥𝑥 =
𝜕𝛽𝑦

𝜕𝑥
     𝜅𝑦𝑦 =

𝜕𝛽𝑥

𝜕𝑦
     𝜅𝑥𝑦 =

𝜕𝛽𝑥

𝜕𝑥
+

𝜕𝛽𝑦

𝜕𝑦
+

𝛽𝑧

𝑅
 (7) 

 

The linear strain components are as follows: 

 

 𝜀𝑥
𝐿 =

𝜕𝑢

𝜕𝑥
+

𝑤

𝑅
+𝑧 𝜅𝑥𝑥     𝜀𝑦

𝐿 =
𝜕𝑣

𝜕𝑦
+𝑧 𝜅𝑦𝑦       𝛾𝑥𝑦

𝐿 =
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
+𝑧 𝜅𝑥𝑦  (8) 

 

The nonlinear components are as follows: 

 

 𝜀𝑥
𝑁𝐿 = 0      𝜀𝑦

𝑁𝐿 =
1

2
(𝛽𝑥

2 + 𝛽𝑧
2)      𝛾𝑥𝑦

𝑁𝐿 = 𝛽𝑥𝛽𝑦  (9) 

 

It can be observed that the second-order (nonlinear) hoop strains are disregarded, since these can 

be assumed to be fairly small for the considered loading cases; nevertheless, the nonlinear hoop 

strains can be added later. 

 

2.3 Total potential 

Isotropic, linear elastic material is considered. The internal part of the total potential is, therefore: 

 

 Π𝑖𝑛𝑡 =
1

2
∫ ∫ ∫ 𝛆𝑳

T𝐃𝛆𝑳d𝑥d𝑦d𝑧
+𝑡/2

−𝑡/2

2𝑅𝜋

0

𝐿

0
 (10) 
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where 

 𝐃 = [
𝐸 𝜈𝐸 0

𝜈𝐸 𝐸 0
0 0 𝐺

] (11) 

 𝛆𝑳
T = [𝜀𝑥

𝐿 𝜀𝑦
𝐿 𝛾𝑥𝑦

𝐿] (12) 

 

and E and G are the Young’s and shear modulus, respectively, and 𝜈 is the Poisson’s ratio. 

 

The external part of the total potential is calculated from the stresses and the nonlinear strains, as: 

 

 Π𝑒𝑥𝑡 = −𝑡 ∫ ∫ 𝛆𝑵𝑳
T𝛔d𝑥d𝑦

2𝑅𝜋

0

𝐿

0
 (13) 

 

where 

 𝛆𝑵𝑳
T = [𝜀𝑥

𝑁𝐿 𝜀𝑦
𝑁𝐿 𝛾𝑥𝑦

𝑁𝐿] (14) 

 

 𝛔T = [𝜎𝑥 𝜎𝑦 𝜏𝑥𝑦] (15) 

 

The x-direction (hoop) normal stresses are disregarded, for the other two components uniform 

distribution is assumed in the longitudinal direction. In the circumferential direction the stress is 

assumed to be either constant or sinusoidal. Practically, 4 basic loading situations are considered: 

 uniformly distributed 𝜎𝑦 stress creates pure compression (marked as ‘N’, or ‘pure N’); 

 sinusoidally distributed 𝜎𝑦 stress creates pure bending (marked as ‘M’, or ‘pure M’); 

 uniformly distributed 𝜏𝑥𝑦 stress creates pure torsion (marked as ‘T’, or ‘pure T’); 

 sinusoidally distributed 𝜏𝑥𝑦 stress creates pure shear force (marked as ‘V’, or ‘pure V’); 

Note, the internal stresses are defined without performing a formal linear static analysis, i.e., 

similarly to the finite strip method, see Cheung and Tham (1997), we assume the internal stresses 

and connect them directly to section-level actions, as opposed to common numerical stability 

analysis where loads are applied and these are used to find the internal stresses. Another remark is 

that the above loads/stresses can arbitrarily be combined. 

 

2.4 Stiffness matrices, buckling analysis 

By using the theorem of stationarity of the potential energy, we need to take the partial derivatives 

of the potential energy function with respect to the Fourier coefficients, which leads to a system 

of n linear equations. The equation system is homogeneous, and can be identified as a generalized 

eigen-value problem. It can be expressed as follows: 

 

 𝐊𝐞𝚽 − 𝚲𝐊𝐠𝚽 = 𝟎 (16) 

 

where 𝐊𝐞 and 𝐊𝐠 are the elastic and geometric stiffness matrices. The 𝐊𝐞 matrix is derived from 

the displacement functions, while 𝐊𝐠 is dependent on the involved stresses. Dependency of the 

geometric stiffness matrix on the stresses is linear, therefore it can be expressed as 𝜆𝐊𝐠 where 𝜆 is 

a load multiplier. Moreover, 𝚽 is the displacement vector containing the displacement degrees of 

freedom (which in this solution are the Fourier coefficients), and 𝚲 is a diagonal matrix which 

contains the 𝜆 critical load multipliers. 
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When constructing the stiffness matrices, the effect of supports must be considered. Two 

approaches are implemented. In the first approach the supports are modelled by linear springs, 

which can be defined at arbitrary positions over the cylindrical surface. If this approach is 

followed, additional stiffness terms are added to the elastic stiffness matrix. (Note, unlike in classic 

FEM, even one single spring means added stiffness in all the elements of the elastic stiffness matrix 

due to the Fourier series.) The second approach applies constraint equations to ensure zero (or: 

arbitrary non-zero) displacement at a given, arbitrary location. The constraint equations reduce the 

problem size, i.e., the effective DOF number is reduced. Note, for the second approach when the 

constraint equations are introduced, the DOF solved for are no longer directly associated with the 

Fourier coefficients and a secondary step to transform back to the unconstrained DOF is required 

to process the results in a general form. 

 

 

3. Sample results 

The developed method is able to perform linear buckling analysis for a wide range of problems, 

for pure or combined loading, with virtually arbitrary supports, for an extremely wide range of 

tube geometries. The numerical experience is that the necessary number of Fourier terms is small, 

i.e., the resulting number of displacement degrees of freedom (DOFs) is much smaller compared 

to that required in a shell FEM analysis. However, what Fourier terms are “necessary”, is strongly 

dependent on the problem; namely, it is dependent on the load type, on the member length, on the 

support conditions, and on whether we want to focus on the first buckling mode only or want to 

have higher modes, too. In the following subsections sample results are shown. In all the examples 

standard steel properties are used: E = 210 GPa, 𝜈 = 0.3. 

 

3.1 Pure load cases, first buckling mode 

To study the first buckling modes, we have considered a wide range of R/t ratios between 10 and 

500, as well as an extremely wide length range. In Fig. 2 first-mode critical loads for various pure 

loads are plotted with respect to the Ω non-dimensional length parameter, defined as: 

 

 Ω = 𝐿 𝑅⁄ √𝑡 𝑅⁄  (17) 

 

In Figs. 3-6 sample buckling shapes are presented. (Note, according to Ding et al, 2022, practical 

wind turbine tower segments are characterized by R/t between 30 and 150; typical L/R ratio for a 

tower segment is between 5 and 20, while it is between 40 and 70 for a whole tower. Thus, e.g., 

practical tower segments have Ω non-dimensional length between 0.5 and 5. ) 
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Figure 2: Critical stresses for pure loads 

 

In the case of ‘pure N’, the well-known results are reproduced: if the member is very short, the 

barrel-type (axisymmetric) mode comes first, for large lengths the member buckles in the global 

(flexural) mode, while for a wide range of intermediate lengths we observe buckling with a varying 

number of circumferential and meridian lobes. The critical load results are slightly dependent on 

the end supports, but for classic hinged supports the critical load values from the method coincide 

with classic analytical solutions. The numerical experience is that it is enough to consider 5-6 

Fourier terms in the longitudinal direction and 6-8 modes in the circumferential direction to get 

the first critical load with high precision. 

 

  

  

short  intermediate long 

Figure 3: Sample buckling shapes: pure N, first modes 
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short  intermediate long 

Figure 4: Sample buckling shapes: pure M, first modes 

    

short intermediate long 

Figure 5: Sample buckling shapes: pure T, first modes 

     

short intermediate long 

Figure 6: Sample buckling shapes: pure V, first modes 
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In the case of ‘pure M’, unless the member is extremely long, the first buckling mode is 

characterized by one single circumferential lobe: if the member is very short, there is one single 

meridian lobe, otherwise the number of meridian lobes is proportional with the member length 

(while the half-wavelength and critical load being nearly constant). Though it is rarely reported in 

the literature, a global mode does exist, which is a lateral-torsional buckling (but with extremely 

small twisting rotation). However, the global mode can be the first one only if the member is 

extremely long (e.g., if R =100 mm and t =1 mm, the member length should be more than 100 m!); 

that is why this mode has little practical relevance. For the necessary number of Fourier terms, the 

numerical experience is as follows. In the circumferential direction numerous terms are necessary: 

the shorter the member, the more terms are needed; 20-25 terms are practically enough even if the 

member is very short. In the longitudinal direction only a few terms are necessary, however, those 

terms which have half-wavelength approximately identical to the characteristic length of the 

buckling lobe are needed. For the local mode this length is a small one (and can well be predicted 

analytically), for global mode this length is a large one (in the vicinity of the member length). 

 

In the case of ‘pure T’, the lowest buckling mode is characterized by one lobe in the longitudinal 

direction, while the number of circumferential lobes is inversely proportional to the member 

length. In the case of short members the inclination of the buckling lobes is approx. 45 degree, and 

as the member length increases, the lobes are less and less inclined (w.r.t. the longitudinal axis). 

At very large lengths the buckling is global, i.e., without cross-section distortion; the shape of the 

longitudinal system line is helical. The number of necessary Fourier terms in the circumferential 

direction is proportional to the number of circumferential lobes; this means that more and more 

terms are necessary as the member length decreases (without bound). Practically, 30-40 terms are 

sufficient for nearly any, even very short member. In the longitudinal direction: unless the member 

is long enough to have the helical mode, the number of necessary Fourier terms increases with the 

length. Numerically, the most demanding situation is, therefore, when the member is long, but not 

as long to experience helical buckling. 

 

In the case of ‘pure V’ the behavior is essentially similar to that for ‘pure T’. Unless the member 

length is very large, there are multiple circumferential lobes; however, they are not uniform along 

the circumference. It is little known (if reported at all) that global buckling mode exists if the 

member is sufficiently long. This global mode is visually similar to a flexural buckling mode in 

the lateral direction (i.e., with translations perpendicularly to the shear force). 

 

3.2 Combined load cases, first buckling mode 

In this Section combined loading cases are demonstrated. In Fig. 7 interaction surfaces are 

presented for two tubular members. The surfaces represent the critical load factors, calculated by 

systematically varying the ratio of 3 selected loads (while keeping the fourth one equal to zero). 

The surface is generated by using normalized stresses, so that the load factor for the pure cases 

would be equal to one.  

 

Sample buckled shapes are shown in Fig. 8. These buckled shapes are the first modes of a member 

with dimensions R = 100 mm, t = 1 mm, L = 400 mm, and with end cross-sections clamped. In the 

figure, e.g., 0.6N+0.4V should be interpreted as the stress in the member is combined from 0.6 

times the critical stress to pure N and 0.4 times the critical stress to pure V. 
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                          N+M+T, V=0, R/t=30, L/R=23.3                                      N+M+V, T=0, R/t=120, L/R=15.5 

Figure 7: Interaction surfaces for LBA in the case of combined loading 
 

    
pure N pure M pure T pure V 

    
0.6N+0.4V 0.8M+0.2T 0.5V+0.5T 0.25N+0.55M+0.05T+0.3V 

Figure 8: Sample first-mode buckling shapes for various load combinations 

 

From the numerical studies it is observed that the handling of combined loading does not require 

any particular difficulty. The necessary number of Fourier terms can be determined from those of 

the pure cases (as discussed above), considering the member geometry and the loads from which 

the resultant loading is combined. Further, the interaction surface is nonlinear, thus the stability of 

a tube under combined loading is best considered under the actual loading state, as opposed to 

simple superposition of the pure load cases. 

 

3.3 Pure load cases, higher buckling modes 

Calculation of higher buckling modes is obviously possible. The only practical issue is that higher 

modes typically needs more Fourier terms to be calculated with high precision. The number of 

necessary Fourier terms is highly dependent also on how many modes are intended to be 

calculated.  
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As an example, Fig. 9 shows how the critical loads increase with mode number, in the case of 

various pure loads. The plots show the first 400 modes for a tubular member with R = 100 mm, 

t = 1 mm, L = 800 mm. As is well-known, in the case of pure compression there is a very large 

number of modes with nearly identical critical loads. In the case of other loads, the critical load 

values are increasing much more rapidly as higher and higher modes are considered.  

 

It is also known that, if the member is in pure compression, and if the member is infinitely long, 

and if a particular shell theory is applied, the member has infinite number of modes with a critical 

load value equal to that of the first mode. If the associated longitudinal and circumferential 

buckling lengths (i.e., half-wavelengths) are plotted in a specific relative (non-dimensionalized) 

coordinate system, the solutions form a half-circle, known as Koiter-circle (Koiter, 1945). In 

practical cases (i.e., finite member length with some boundary conditions), there are finite number 

of modes, and the critical loads are not identical, still, the solutions can be plotted just as the Koiter-

circle, and the solutions will scatter around a half-circle (Spagnoli, 2003). Such plot is shown in 

Fig. 10, created from the results plotted on Fig. 9 for ‘pure N’. 

 

 
Figure 9: Critical stresses for higher buckling modes 

 

 
Figure 10: Representation of higher buckling modes by the Koiter-circle 
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4. Discussion 

An advantage of the method developed herein is that it leads to an equation system much smaller 

compared to a shell finite element solution, while at the same time much more general than 

available analytical solutions. A potential further advantage of the method is that spectral analysis 

of the results can readily be performed since the solution is obtained in the form of Fourier series. 

This feature is already implemented, though not discussed in this paper. Moreover, the 

implemented spectral analysis can be utilized for any displacement field, e.g., for measured 

geometric imperfections of real tubular members. In fact, such work has already been initiated, 

and will be reported in future publications. 

 

The method herein was also supplemented by a tool to determine the shape of the buckling lobes. 

From the shape, the characteristic buckling lengths in any direction can be calculated. The notion 

of ‘buckling length’ is classical, widely used in buckling analysis of columns, beams, and frames, 

but hardly applied to shell buckling. The developed tool makes it possible to discuss the shell 

buckling problem from the aspect of buckling length. Moreover, again, the same tool can and was 

extended to study other displacement fields, such as geometric imperfections of real tubular 

members; the results of which will be reported in future papers. 

 

Finally, it is to mention that though the Fourier-series approximation does not require 

discretization, the here introduced method was extended so that the member can optionally be 

discretized longitudinally. The longitudinal discretization is numerically beneficial since the 

number of longitudinal Fourier terms within a segment can be reduced which makes the calculation 

faster and numerically more reliable. Moreover, it is known that practical wind turbine towers are 

globally (slightly) tapered and change in dimension “can” by “can” along their length, hence the 

longitudinal discretization enables the consideration of the cross-section changes, i.e., makes it 

possible to describe the geometry of practical wind turbine towers more exactly. Finally, the 

discretization makes it possible to consider non-uniform loading along the length, which again 

provides with the opportunity of having a more realistic model of practical wind turbine towers.  

 

 

5. Conclusions 

In this paper a newly developed numerical method was presented for stability analysis of tubular 

members under any combination of compression, bending, torsion, and shear with arbitrary end 

boundary conditions. The method uses full Fourier series to approximate the displacements of the 

tube. The advantage of the developed method is that it leads to an equation system much smaller 

compared to a shell finite element solution, while at the same time much more general than 

available analytical solutions. A series of examples illustrate the potential of the approach. Open 

source software, and various extensions to the method’s use for improving the efficiency of the 

design of wind turbine support towers, are underway.  
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