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Abstract

Lateral  torsional  buckling often  controls  the  design  of  steel  bridges during  construction. The 
buckling resistance is affected by a number of factors, including the geometry of the girders and 
the  spacing  between  braces.   Steel  bridges  are  commonly  braced  by  cross-frames,  which 
commonly consist of single-angle members.  In bridges with complex geometry such as significant 
support skew, the installation and long-term maintenance of cross-frames are complicated due to 
the skewed geometry.  Lean-on bracing concepts, which selectively remove cross-frames in place 
of utilizing only top and bottom struts are becoming an attractive design option.  Lean-on bracing 
significantly  improves  the  ease  of  installation  during  erection  and can also reduce  the  fatigue 
demands  on  the  braces.   However,  there  are  several  questions  regarding  the  stability  bracing 
behavior of these systems. Recent research has shown that system behavior is greatly influenced 
by the implementation of lean-on bracing, but has not specifically addressed the impact of different 
lean-on bracing configurations on the stiffness and strength of these systems. This paper is focused 
on a methodology for quantifying the impact of configuration on lean-on bracing systems through 
the use of linear eigenvalue buckling and nonlinear imperfection analyses.
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1. Introduction 

There are a number of stages in the life of a bridge that need to be considered by designers.  The 

critical stage for lateral-torsional buckling generally occurs during early stages of erection when 

not all bracing is present or during construction of the concrete deck when the steel girder alone 

supports the entire construction load.  Stability not generally a problem in the completed bridge 

since the girders are laterally and torsionally restrained by the concrete bridge deck. The elastic 

lateral torsional buckling capacity, 𝑀𝑐𝑟, of a doubly symmetric girder is given by the following 

expression derived by Timoshenko (Timoshenko and Gere, 1961): 

 

 𝑀𝑐𝑟 = 𝐶𝑏
𝜋

𝐿𝑏

√𝐸𝐼𝑦𝐺𝐽 + (
𝐸𝜋

𝐿𝑏
)

2

𝐼𝑦𝐶𝑤 (1) 

 

Where 𝐸  is the elastic modulus; 𝐺  is the shear modulus; 𝐽  is the torsional constant; 𝐼𝑦  is the 

moment of inertia about the weak axis; 𝐶𝑤 is the torsional warping constant, and 𝐿𝑏 is the unbraced 

length defined by the spacing between braced points.    

 

Effective stability bracing of beams can be achieved by either preventing lateral movement of the 

compression flange (lateral bracing) or controlling twist of the girders (torsional bracing).  The 

most common form of bracing is steel bridges are cross-frames that fit into the category of torsional 

braces since the braces restrain twist of the girders.  Common cross-frame geometries are shown 

in Fig. 1a and 1b, which consist of X-frames and K-frames.   

 

The conventional layout of cross-

frame systems in steel bridges 

generally have braces located 

between each adjacent girder as 

depicted in Fig. 2a.  Historically, 

cross-frames were restricted to a 

maximum spacing of 25 ft. (7.62 

m.); however, in 1994, AASHTO 

removed the spacing limit in-place 

of a requirement for the spacing 

dictated by a rational analysis.  

Considering the demand during construction, a common spacing between cross frame lines in steel 

bridges are 25 ft. (7.62 m.) to 40 ft (12.19 m.).   

 

Cross-frames and diaphragms often represent the most expensive component on the bridge per unit 

weight due to the high fabrication costs.  In addition, installation of cross-frames during erection 

can be complicated by a number of factors.  The effects of support skew can often result in 

difficulty installing cross-frames. In addition, skewed girder applications also often result in larger 

live-load induced forces compared to bridges with normal supports.  The use of lean-on bracing 

concepts provide an effective means of reducing fabrication costs, improving cross-frame 

installation during erection, and also minimizing long-term fatigue damage.  Lean-on concepts 

consist of replacing full cross-frames with top and bottom struts as depicted in Fig. 2b.  The cross-

frame can be selectively positioned along the width of the bridge to minimize the live-load induced 

force and to best-facilitate installation.  

Figure 1: Examples of lateral torsional braces: (a) X-frame and (b) K-

frame. 
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Figure 2: Example of typical bracing system with full cross-frames (a) and using lean-on bracing (b) 

 

The concepts of lean-on bracing in steel bridges were first developed in TxDOT Study 0-1772 

(Helwig and Wang 2003) as a means to reduce live-load induced forces. The recommendations in 

the 0-1772 study have been implemented in multiple bridges including systems with both skewed 

and normal supports.  However, through the process of design, additional questions have arisen on 

the design requirements for lean-on systems.  These questions include optimum layouts for cross-

frames both within a given bracing line and the distribution along the length of the bridge.  The 

work in project 0-1772 focused on bridges with skewed supports and therefore focused on the 

distribution of braces to minimize live-load induced forces.  Recently, bridges with normal 

supports have been designed and the optimal layout of the bracing is not clear for these cases.    

 

This research paper is focused on a study related to optimal layouts for cross-frame systems in 

straight and skewed bridge systems.  The research study has included the instrumentation of two 

constructed bridges that have made use of lean-on concepts.  One of the bridges had normal 

supports, while the other had skewed supports.  The bridges were instrumented and monitored 

with a variety of loading conditions using four loaded dump trucks.  Additionally, the researchers 

had data obtained from monitoring a skewed bridge with lean-on bracing during construction.  The 

data form these bridges were used to validate a finite element model of the bridges with lean-on 

bracing.  The model is currently being used to conduct a parametric analysis of the bridge to focus 

on a number of areas on the behavior of lean-on bracing systems.  One of the aspects in the design 

is optimizing the bracing layout on the bridges, which is the focus of this paper.   

 

Following this introductory section, background information on stability bracing and lean-on 

bracing is provided.  This information includes the necessary stiffness and strength requirements 

for effective bracing. The next section of the paper outlines the finite element model including 

information on the boundary conditions, loading, and girder sizes. The final two sections provide 

an outline of the parametric studies that are being conducted using linear eigenvalue buckling and 

nonlinear geometric analyses on imperfect systems. Finally, the results of the paper are 

summarized along with future work to be conducted.   
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2. Background 

There have been a number of investigations related to bracing over the years. Two of the most 

significant efforts were conducted by Winter (1960), and Yura (2001). Winter’s work 

demonstrated the dual criteria that stability bracing systems must satisfy, consisting of both 

stiffness and strength requirements. Winter’s work also demonstrated the impact of initial 

imperfections on the brace strength requirements.  Yura (1992) extended Winter’s fundamental 

work and developed comprehensive formulations for column and beam systems.  The behavior of 

beam bracing systems is summarized in Yura (2001). 

 

As noted above, effective stability bracing requires the sufficient strength and stiffness as outlined 

in the American Institute of Steel Construction (AISC - 2016) specifications. Recent work 

documented in Reichenbach et al. (2021) resulted in ballots related to stability bracing 

requirements that have been approved for inclusion into the AASHTO Bridge Design 

Specifications (BDS).  Many stability bracing systems follow the behavior of springs in series as 

outlined in Yura et al. (1992), and presented in Eq. 1. The torsional brace stiffness of the system, 

𝛽𝑇, of the system is a function of three components: the in-plane girder stiffness, 𝛽𝑔, the brace 

stiffness, 𝛽𝑏, and the cross-section stiffness, 𝛽𝑠𝑒𝑐.  

 

 
1

𝛽𝑇
=

1

𝛽𝑏
+

1

𝛽𝑠𝑒𝑐
+

1

𝛽𝑔
 (2) 

 

The system torsional brace stiffness will be smaller than the smallest of the three components.   

AISC (2017) provides the following expression for the required system brace stiffness, 𝛽𝑇,𝑟𝑒𝑞:  

 

 𝛽𝑇,𝑟𝑒𝑞 =
2.4𝐿𝑀𝑢

2

𝜑𝑛𝐸𝐼𝑒𝑓𝑓𝐶𝑏
2 (3) 

 

Where 𝐿 is the span length; 𝑀𝑢 is the ultimate design moment; 𝜑 is the LRFD resistance factor 

equal to 0.75; 𝐸 is the Young’s Modulus; 𝑛 is the number of intermediate braces; 𝐶𝑏 is the moment 

gradient factor; 𝐼𝑒𝑓𝑓 is the effective moment of inertia about the weak axis given by 𝐼𝑒𝑓𝑓 = 𝐼𝑦𝑐 +

𝑡/𝑐 ∙ 𝐼𝑦𝑡 . 𝐼𝑦𝑡   is the lateral moment of inertia of the tension flange, 𝑡  is the distance from the 

centroid of the tension flange to the neutral bending axis, and 𝑐 is the distance from the centroid 

of the compression flange to the neutral bending axis. 

 

The stiffness given by Eq. 2 is essentially twice the ideal stiffness.  Providing twice the ideal 

stiffness is assumed to result in a twist at the brace location that is approximately equal to the initial 

imperfection, 𝜃𝑜, when the girder is subjected to the maximum design moment, 𝑀𝑢. Based upon 

this assumption, the stability brace moment is given by the following expression:  

 

 𝑀𝑏𝑟 = 𝛽𝑇,𝑟𝑒𝑞𝜃𝑜 =
2.4𝐿𝑀𝑢

2

𝜑𝑛𝐸𝐼𝑒𝑓𝑓𝐶𝑏
2

𝐿𝑏

500ℎ𝑜
 (4) 

 

Where ℎ𝑜 is the distance between flange centroids and the other terms are as defined previously.   
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The initial imperfection, 𝜃𝑜, in Eq. 4 comes from work documented in Wang and Helwig (2005) 

that demonstrated the critical shape imperfection involves a lateral translation of the compression 

flange at the brace location (assumed value 𝐿𝑏/500) while the bottom flange remains straight.  In 

addition to the critical shape imperfection, Wang and Helwig (2005) also demonstrated the critical 

location of the imperfections. The maximum twist should occur in the cross frame located near the 

point of maximum moment. Fig. 3 shows a typical imperfection that was used in the studies. The 

imperfection was modified slightly to provide a slight asymmetry to the shape, similar to work 

recommended by Prado and White (2015) and also used by Liu and Helwig (2019) in a study 

related to torsional brace strength requirements. 

  

 
Figure 3: Exaggerated shape of critical imperfection located in maximum moment region 

 

While the goal of effective stability bracing system is for the girder to buckle between the brace 

points, narrow girder systems are susceptible to a system buckling mode discussed in Yura et al. 

(2008) and incorporated into the AASHTO BDS in 2015. The system mode of buckling is not 

sensitive to the spacing between cross-frames since the girders tend to buckle in a mode consisting 

of a half-sine curve.  Sanchez and White (2012) demonstrated that narrow girder systems are often 

susceptible to significant second order amplification, which led to limiting the maximum moment 

during construction to 50% of the elastic critical buckling load.  Additional work was conducted 

by Han and Helwig (2019) related to the performance of system buckling on girders with an initial 

imperfection that resulted in raising the AASHTO limit from 50% to 70% of the critical system 

buckling capacity.  The imperfections utilized in Han and Helwig provided guidance on the current 

study.   

 

3. Finite Element Model and Analysis Types 

The general-purpose finite-element analysis program ABAQUS (2022) was used in the finite 

element studies conducted on representative bridge geometries. The focus of the analysis was to 

categorize the effectiveness of different cross-frame configurations with respect to the strength and 

stiffness requirements discussed in the previous section. 
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The girders were modeled using S4 

linear shell elements.  The flanges of 

the girders were modeled with one 

element on either side of the web.  

Efforts were made for an element 

aspect ratio as close to unity as 

possible.  Braces were modeled using 

T3D2 linear truss elements. The 

corners of the cross-frame braces 

shared the node at the web-flange 

junctures so there was no cross-

sectional distortion from the web.  

Although cross-sectional distortion 

was not a concern, web stiffeners 

were included for completeness.  The 

stiffeners were modeled using S4 

linear shell elements located along the 

web of each brace location. 

 

The typical girder sections used for 

the parametric studies are displayed 

in Fig. 4. These sections were 

proportioned in respect to typical design ratios. The girder span to depth ratio was maintained at a 

value of 25, which is consistent with values often targeted in design for girders with simple 

supports. The web thickness was chosen to be at a depth over thickness ratio of 60 so as to avoid 

issues with web shear on the LTB behavior as outlined in Liang et al. (2022).   AASHTO (2017) 

limits the flange width to a minimum value of the girder depth over 6 (D/6), however values of 

D/4 are often targeted in design to avoid excessively slender compression flanges.  Therefore, the 

flanges widths were based upon a width to depth ratio of 1/4 or 1/6. The thicknesses of the flanges 

were based upon a total flange width to thickness ratio of 16, producing a compact flange to control 

local buckling. 

 

A uniform distributed load was applied to the top flanges of each bridge girder. The boundary 

conditions for the model were selected based upon a simply supported girder that was free to warp 

at the supports.  A pinned support that restrained vertical, lateral, and longitudinal movement was 

positioned at the bottom flange-web juncture on one end of the girder.  At the other end a roller 

support preventing vertical and lateral movement was utilized at the juncture between the bottom 

flange and the web.  Lateral movement of the web nodes were restricted at the support regions.  

With lateral movement restrained along the web, girder twist was therefore restrained at each 

support.   

 

For longer span girders, buckling was sometimes governed by the system mode of buckling.  

However, because the goal of the study was to investigate conventional and lean-on bracing, the 

decision was made to try to improve the system mode of buckling relative to conventional LTB, 

which is generally governed by unbraced segments near midspan.  The system mode of buckling 

will often be enhanced by providing a few lateral truss panels near the support regions.  To simulate 

Figure 4: Illustrations of sections used for parametric study that 

includes a 150 ft (45.72 m) section (a/b) and 250 ft (76.20 m) sections 

(c/d). The left of each pair is based upon a width to depth ratio of 1/4 

whereas the right of each pair is based upon a ratio of 1/6. 
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the lateral truss bracing, warping restraints were provided at the support regions of the girders.  

The warping restraints were achieved by defining a multi-point constraint. For the cases with 

multi-point constraints, the center node of each flange was identified as the master node (control 

point) and the other flange nodes at that location were treated as slave nodes (secondary nodes). 

This restriction causes the degree-of-freedoms of each secondary node to match the control point. 

Adding warping restraint increases the system buckling capacity of the model while preserving the 

LTB capacity. Furthermore, as system buckling modes do not provide adequate insight into the 

brace behavior, these modes need to be minimized for the parametric studies.  

 

Validation of these modelling methods were conducted by applying live load testing data of three 

bridges that made use of lean-on bracing. Two of the bridges were instrumented to gather 

validation data using loaded dump trucks.  One of the instrumented bridges had normal supports 

while the other had skewed supports. Additionally, data from an implementation study from 

TxDOT study 0-1772 (2003) was also utilized that included data during construction and 

subsequent truck loading on the finished bridge.  The validation data provided cross-frame forces 

and girder displacements at measured locations along the length of each bridge. The modelling 

methodologies were applied to construct these bridges in ABAQUS and adjustments were made 

to the modelling methodologies to minimize discrepancies between the experimental and model 

results. 

 

The analyses that are being conducted in the parametric study include linear eigenvalue buckling 

analyses and also nonlinear geometrical analyses on systems with an initial imperfection. The 

linear eigenvalue buckling is utilized to identify the ideal brace stiffness required for the bridges. 

The focus of the study is on the behavior of lean-on bracing systems relative to conventional 

bracing.  The research is considering both the stiffness performance and the strength behavior of 

the bracing.   

 

After obtaining the stiffness requirements from the eigenvalue buckling analyses, nonlinear 

imperfections analysis, utilizing the Riks Arclength method, is being used to simulate a critical 

imperfection on a system and mimic the desired mode of buckling. The imperfection is modelled 

by selecting nodes within a bounding box and translating those nodes based upon the imperfection 

equation shown in Eq. 5.  

 

 
𝑠𝑖𝑛([𝑥−(𝑥𝑐𝑟𝑖𝑡+𝐿𝑏)]

𝜋

𝐿
 − 

𝜋

2
)

2
∙

𝐿𝑏

500
 where 𝑥𝑐𝑟𝑖𝑡 − 𝐿𝑏 ≤ 𝑥 ≤ 𝑥𝑐𝑟𝑖𝑡 + 𝐿𝑏 (5) 

 

Where 𝑥𝑐𝑟𝑖𝑡  is the location of the critical cross-frame line and 𝐿𝑏/500 is the imperfection 

magnitude. Additionally, the imperfection needs to be adjusted to be slightly asymmetric to better 

allow for the system to develop the buckling shape.  This can be done by augmenting the equation 

illustrated in Fig. 5 by a skew modification. The skew modification is a normalized weight that 

decreases the magnitude of half of the critical shape imperfection causing an asymmetry. The 

equation for the skew modification’s second half is the same as the critical shape imperfection 

equation. 
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Figure 5: Illustration of critical imperfection shape produced by Eq. 5. and skew modification. 

 

A set imperfection does not guarantee a failure mode such as buckling between brace points or 

system buckling. Imperfections must be synchronized with the controlling failure mode via the 

eigenvalue buckling analysis.  

 

4. Linear Elastic Buckling Parametric Study 

Conducting linear eigenvalue analysis serves three purposes: to provide a comparison of the 

stiffness of each cross-frame configuration, to determine the ideal stiffness for the nonlinear 

imperfection analysis, and to confirm the shape of the failure mode. For the purposes of this study, 

the ideal stiffness is measured as the stiffness required to buckle between the brace points and 

reach at least 90% of the calculated 𝑀𝑐𝑟 according to Eq. 1.  

 

In order to characterize the behavior of lean-on versus conventional bracing systems a matrix of 

parameters that represent a reasonable range of typical bridge geometries were established, as 

provided in Table 1. The initial studies are focused on simply supported systems, which will be 

followed by continuous girders.  The values in Table 1 are for the simply supported girders.  Some 

minor adjustments have been made to some of the parameters to provide a reasonable geometry.  

For example, the spans considered range from 150 ft. (45.72 m.) to 250 ft (76.20 m.).  However, 

to provide a uniform spacing between cross frame lines, spans of 160 ft. (48.77 m.) and 240 ft. 

(73.15 m.) were used for the cases with 40 ft. spacings between bracing lines. Additionally, the 

cross-frames configurations that are being considered are illustrated in Fig. 6 and are based upon 

preliminary investigations. Note that the number of configurations may change based upon the 

number of available cross-frame lines and bays, but each follow the same fundamental distribution. 

Overall, these parameters and configurations produce a total of 672 bridges that are being analyzed. 

Expansions and adjustments to the parametric ranges may occur based upon study results from the 

studies.   
Table 1. Initial parametric study variables and ranges for bridges. 

Parametric Range Range 

Variable Imperial Units SI Units 

Girder Spacing {10 ft, 12 ft} {3.05 m, 3.66 m} 

# of Girders {4, 5} {4, 5} 

# of Spans {1, 2} {1, 2} 

Span Length {150 (160) ft, 250 (240) ft} {45.72 (48.77) m, 76.20 (73.15) m} 

Support Skew {0°, 30°, 60°} {0°, 30°, 60°} 

Cross-frame Spacing {25 ft, 40 ft} {7.62 m, 12.19 m} 
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Figure 6. Cross-frame configurations utilizing lean-on bracing to be used in parametric study. 

 

As noted earlier, the eigenvalue 

buckling analyses provide an 

indication of the ideal brace stiffness 

required.  The ideal stiffness is 

determined from a load–stiffness 

curve. Due to moment gradient, 

unbraced segments adjacent to the 

critical segment often have moment 

levels below the critical moment. As a 

result, these adjacent segments provide 

warping restrain to the critical 

segment. However, similar to design 

specification that generally neglect 

warping restraint, the selected 

approach targets the stiffness necessary 

to reach 𝑀𝑐𝑟  based upon Eq. 1. The 

process is demonstrated by the curve 

shown in Fig 7. As the cross-frame 

stiffness is varied, the buckling 

capacity increases. The ideal stiffness 

is identified as the stiffness required to 

reach 𝑀𝑐𝑟 on the curve. 

 

The results from various lean-on bracing configurations are compared with the behavior of the 

girder system with conventional bracing to evaluate the effectiveness of various cross-frame 

layouts.   

 

Figure 7. Example of a load-stiffness curve and the results of an 

included datapoint.  
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5. Nonlinear Imperfection Parametric Study 

A nonlinear geometrical parametric study is conducted in this 

investigation to evaluate brace forces that develop in the 

system.  As noted in the last section, the eigenvalue buckling 

analyses are carried out to determine the ideal brace stiffness 

behavior.  In practice, a stiffness larger than the ideal value is 

necessary to control brace forces.  In general, the “target” 

increment on the ideal stiffness is one that results in a rotation 

at the brace location that is equal in magnitude to the initial 

imperfection, 𝜃𝑜 (total rotation is 2𝜃𝑜).  Fig. 8 demonstrates the 

target girder moment-twist curve at the critical brace location.  

Therefore, the brace moment under these conditions is 𝑀𝑏𝑟  =
𝛽𝑇𝜃𝑜.  In this study, the likely increment on the ideal stiffness 

will be 2𝛽𝑖𝑑𝑒𝑎𝑙.  A complication associated with bridge 

geometry occurs in skewed girder systems. For skew angles larger than 20 degrees, AASHTO 

requires the cross-frame lines to be perpendicular to the longitudinal axis of the girders.  As a 

result, the bracing lines intersection adjacent girders at different locations along the length.  The 

braces therefore serve as both torsional and lateral bracing systems, which are often much more 

efficient compared to pure torsional bracing systems.  As a result, the ideal stiffness behavior for 

skewed systems are determined from the normal bridge systems.  The analysis will demonstrate 

the improved efficiency that occurs in terms of bracing performance in heavily skewed systems 

compared to systems with normal supports.   

 

The results will be normalized with respect to the load applied to each system ( 𝑀𝑐𝑟 ) and 

comparisons done between configurations will be normalized with respect to the conventional 

bracing case. 

 

6. Conclusions and Future Work 

The research paper provides an overview of an ongoing study on the performance of lean-on 

bracing systems.  The study is considering a wide range of bracing configurations to develop 

modifications to design recommendations for lean-on bracing.  The study is currently evaluating 

the efficiency of various bracing layouts for girder systems with both normal and skewed supports.  

A parametrical study is underway to evaluate the performance.  The system is currently evaluating 

girders with normal supports with skewed girder system also to be evaluated.  The finite element 

models for the system have been developed and validated using data from field instrumentations 

on three bridges with lean-on bracing. 

 

The research team is currently in the process of completing the parametric studies described in the 

paper.  Once completed, the research team will compare the results of each bridge configuration 

and grade each configuration based upon the stiffness and strength performance. Economic 

considerations such as the percentage of cross-frames to total bay locations will also be noted in 

the parametric study.  

 

  

Figure 8. Example of normalized 

moment-twist curve. 
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