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Abstract 
Local and global stability are a major concern during erection and construction of steel bridge 
systems. Global stability is usually controlled by conventional lateral-torsional buckling (LTB), 
which is enhanced by reducing the unbraced length of the girders by cross-frames spaced along 
the length of bridge. Cross-frames fit into the category of torsional bracing since the braces restrain 
twist of the girder cross-sections. Effective bracing must satisfy both stiffness and strength 
requirements. The stiffness of cross-frames is a function of several components: including the 
stiffness of the brace, cross-sectional distortion, and the in-plane stiffness of the girders. While the 
current bracing provisions in the AISC Specification do not include the in-plane girder stiffness, 
this stiffness component can dominate the behavior of narrow girder units and may lead to 
inadequate bracing if not considered. Recently approved provisions in the AASHTO Specification 
make use of a relatively simple expression developed in the 1990’s for evaluating the girder in-
plane stiffness, however, the accuracy of the expression for many bridge systems is not clear. This 
paper summarizes an on-going study focused on improved bracing design guidance considering 
the in-plane stiffness of the girders. The work focuses on the warping rigidity of multi-girder 
systems and extends findings from previous investigations that have targeted the system-buckling 
mode of narrow girder systems. The paper focuses on eigenvalue buckling solutions to 
demonstrate the stiffness behavior of torsional bracing.   
 
1. Introduction 
I-shaped girders are often utilized in steel bridge systems, as they can offer structural efficiency 
and economy in many applications. However, the high strength-to-weight ratio of steel can lead to 
relatively slender elements and systems, requiring careful consideration of stability during erection 
and other construction phases. During these phases, the non-composite steel section alone supports 
the entire load. The critical limit state under these construction conditions is usually lateral-
torsional buckling (LTB), which is a limit state that involves lateral movement of the compression 
flange and twist of the section. 
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The LTB behavior of a girder can be improved by reducing its unbraced length. Effective beam 
bracing can be achieved by either restraining lateral displacement of the critical compression 
flange (lateral bracing), or by controlling twist of the section (torsional bracing). After a composite 
deck has been poured and cured, the deck generally provides both lateral and torsional restraint to 
the girders. As a result, conventional LTB is not typically a concern in the finished structure. In I-
girder bridge systems, torsional braces (such as cross-frames or diaphragms) typically serve as the 
stability braces during construction to enhance the LTB resistance of the girders. 
 
Effective bracing must satisfy both stiffness and strength requirements (Winter, 1960). The 
stiffness of torsional bracing systems is a function of the stiffness of the brace, cross-sectional 
distortion, as well as the in-plane stiffness of the girders. 
 
An in-plane girder stiffness expression was developed in the early 1990’s (Helwig, Yura and 
Frank, 1993) and was derived for a twin-girder system with a single intermediate torsional brace 
at mid-span. Recent experience utilizing this expression suggested that there are some cases in 
which the in-plane girder stiffness is over-predicted by this expression when compared to FEA 
solutions. Because in-plane girder stiffness can be the limiting factor in girder system stability 
analyses, it was deemed necessary to investigate the in-plane girder stiffness component to better 
understand its impact on the bridge behavior. 
 
The objective of this research is to develop a refined expression that more accurately accounts for 
the in-plane girder stiffness component of the total system stiffness of torsional braces in a steel 
bridge system. The investigation is focused on the impact that the number of both intermediate 
cross-frames and girders have on the in-plane girder stiffness of a given girder system. The study 
has been divided into two phases with the first phase focused on deriving a suitable in-plane 
stiffness expression based upon the system/global buckling mode of the girders. More recently, 
the second phase of the study has focused on verifying the accuracy and potential modifications 
of the phase 1 expression for predicting the torsional brace stiffness within a girder system. 
 
2. Background 
While the lateral-torsional buckling (LTB) resistance can be improved by adjusting girder 
proportions, the most efficient means of increasing buckling resistance is generally by reducing 
the unbraced length of the member. For individual girders, the unbraced length is the distance 
between bracing locations, which is often highly variable during the erection process. Effective 
bracing can be achieved by controlling lateral movement of the compression flange (lateral 
bracing) or by controlling twist of the section (torsional bracing).  The focus of this investigation 
is on torsional bracing, which is the most common bracing utilized in steel bridge applications.  
The bracing of steel bridge systems is most often provided by cross-frames or plate diaphragms 
that frame between adjacent girders. Although historically, the unbraced length was taken as the 
spacing between cross-frames and diaphragms, Yura et. al (2008) identified situations where girder 
systems can buckle in a half-sine curve along the entire span. The buckling mode is not 
significantly impacted by the spacing between cross-frames and is commonly referred to as System 
or Global Buckling. The following two sub-sections distinguish between conventional LTB and 
the System modes of buckling.  
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2.1 Conventional Lateral-Torsional Buckling 
Conventional LTB is a failure mode that generally consists of a lateral translation of the section 
accompanied by a twist of the entire section. Although there are isolated cases, such as unbraced 
cantilevers when the tension flange may have the largest lateral deformation, the compression 
flange generally experiences the largest magnitude of lateral displacement. With suitable bracing, 
lateral torsional buckling generally occurs between bracing locations, i.e., over the unbraced 
length. Timoshenko (Timoshenko and Gere, 1961) derived the following exact elastic buckling 
solution for a simply supported, doubly symmetric section, accounting for both St. Venant and 
warping torsional stiffness, for the case of uniform moment loading: 
 

 (1) 
 
where E is the modulus of elasticity, Iy is the weak-axis moment of inertia, Lb is the unbraced 
length, G is the shear modulus of elasticity, J is the torsional constant, and Cw is the torsional 
warping constant as estimated by Eq. 2: 
 

  (2) 
 
where ho is the distance between flange centroids. 
 
Considering the two terms under the radical in Eq. 1, the first is related to the St. Venant torsional 
stiffness and is related to the uniform torsional resistance of the section. The second term is related 
to warping stiffness as well as to the non-uniform torsional stiffness. In the original derivation of 
Eq. 1, Timoshenko stated that both twist and lateral deformation were restrained at the brace points 
and that warping was unrestrained at the ends of the unbraced length; however, only the boundary 
condition of zero twist was enforced in the derivation. Therefore, solely preventing twist of the 
cross-section results in effective bracing against LTB. Bracing can also be achieved by stopping 
lateral deformation of the compression flange (lateral bracing), which also essentially stops twist 
of the section since the lateral deformation of the compression element generally leads to twist of 
the section. 
 
2.2 System (Global) Buckling 
The system, or global, form of LTB has been the focus of several research studies since the early 
2000’s. The studies stemmed from the collapse of one bridge and near collapse of other bridges 
during the construction. System LTB occurs when the girder system is interlinked by braces, such 
as cross-frames, and the overall system buckles as a unit. This mode often becomes more critical 
than conventional LTB (buckling between brace points) in narrow girder systems with larger Lg/W 
ratios; where Lg is the span length and W is the girder system width. Yura et al. (2008) developed 
an expression for the elastic global buckling resistance of a doubly symmetric twin I-girder system, 
which is shown in Eq. 3: 
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 (3) 
 
where Ix is the strong-axis moment of inertia, s is the girder spacing and all other variables are as 
previously defined. All section properties in Eq. 3 (Ix, Iy, J, ho) are those for a single girder. 
 
This expression is similar in form to Eq. 1 and incorporates many of the same basic assumptions. 
However, an additional assumption, critical to the development of this expression, is that the 
torsional braces have enough in-plane stiffness to maintain the same twist angle for both girders 
(as shown in Fig. 1): 

 

 
Figure 1: Rigid Body Rotation with Cross-Frame Omitted (Adapted from Yura et al., 2008) 

 
In girders with typical proportions, the St. Venant term in Eq. 3 does not significantly impact the 
behavior. Neglecting this term, Yura et al. (2008) produced the simplified expression shown in Eq. 
4, which gives the simplified buckling moment capacity for a single girder in a twin-girder system: 
 

 (4) 
 
Accounting for moment gradient, singly symmetric girder sections, and multiple girders within the 
system, Yura et al. (2008) modified Eq. 4 in to produce the expression shown in Eq. 5: 
 

 (5) 
 
where Cb is the moment gradient factor, ng is the number of girders in the system, Ieff is the effective 
weak-axis moment of inertia (Yura, 2001) and all other variables are as previously defined. 
 
Yura et al. (2008) applied similar modifications, as shown in Eq. 5, to Eq. 3. However, these 
adjustments only account for the in-plane flexural stiffness of the two exterior girders. Though this 
is a conservative approach, it provides an avenue for further refinement. 
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2.3 General Bracing Requirements 
The concept that effective stability braces must have both adequate stiffness and strength was first 
demonstrated by Winter (1960). Winter developed a model that demonstrated a simple means of 
determining the ideal stiffness requirements for lateral bracing systems.  The ideal stiffness is the 
minimum stiffness required that allows a member to reach a load level corresponding to buckling 
between the brace points. Winter’s model also demonstrated the impact of imperfections on the 
buckling behavior, and that a stiffness larger than the ideal stiffness was necessary to control 
member deformations and brace forces. As a result, most bracing provisions currently recommend 
using twice the ideal stiffness. Considering Winter’s model for lateral bracing of columns, 
providing twice the ideal stiffness results in the deformation of the column at the brace location to 
be equal in magnitude to that of the initial imperfection, o (i.e., total = 2o). Limiting the 
magnitude of the initial imperfection is important because the forces within the brace are directly 
related to its magnitude (Yura, 2001). Although Winter’s work focused on lateral bracing systems, 
the dual criteria of stiffness and strength are valid for all stability bracing systems, including 
torsional beam bracing. 
 
The initial imperfection assumed in the development of the current AISC design provision 
expressions is based on allowable fabrication and construction tolerances for girder out-of-
straightness, as established by the AISC Code of Standard Practice (2022). The effect of initial 
imperfection on torsional bracing was studied by Wang and Helwig (2005). They demonstrated 
that, in bridge girders, the critical imperfection (i.e., the imperfection that maximizes force 
demands on the braces) usually involves a lateral sweep of the compression flange, with the tension 
flange remaining straight (un-displaced laterally). This effectively produces an initial twist of the 
cross-section. Using a sweep tolerance as L/1000 – with a brace at midspan, the sweep would be 
2Lb/1000 = Lb/500.  Therefore, for the critical imperfection (Helwig and Wang, 2003), the 
magnitude of the initial twist imperfection is: 
 

 (6) 
 
where Lb is the spacing between torsional braces.   
 
2.4 Torsional Bracing Requirements 
The torsional beam bracing provisions in AISC (2016) provide stiffness and strength requirements 
that are a function of the design moment, Mu. The design moment that the brace should be designed 
for in a bridge will be the moment in the girder that the brace must provide stability to. As noted 
earlier, the critical stage for LTB stability is generally during casting of the concrete deck.  
Therefore, Mu will be the maximum factored construction moment during casting of the slab. The 
stiffness provisions in AISC (2016) are given by the following expression:  
 

 (7) 
 
where Φ is the stability bracing resistance factor, Cbb is the moment gradient factor within the 
critical unbraced beam or girder, and 𝑛௖௙ is the number of intermediate cross-frames.  
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The provided brace stiffness (𝛽்,௔௖௧) must be equal to or greater than the required system stiffness 
of Eq. 7, as shown in Eq. 8: 
 

 (8) 
 
As noted earlier, the system stiffness is a function of several bracing components including the 
stiffness of the brace (b), cross sectional distortion (sec), and the in-plane girder stiffness (g). 
Like many bracing systems, torsional bracing follows the fundamental equation for springs in 
series, such that the actual torsional system stiffness is given by the following expression: 
 

 (9) 
 
There are a number of sources that discuss the brace stiffness and the effects of cross-sectional 
distortion (AISC 2016, Yura 2001). The focus of the research in this paper is on the in-plane girder 
stiffness component, which is discussed in more detail in the next section. 
 
2.4 In-Plane Girder Stiffness 
When multiple girders are connected by bracing, such that they act as a unit, the in-plane (i.e., 
major axis) flexural stiffness of the individual girders contribute to the determination of overall 
stiffness of the torsional bracing system. The stiffness contribution of the girders was first 
investigated for twin-girder systems by Helwig, Yura, and Frank (1993). As shown in Fig. 2 when 
the girders are subjected to a twist, the internal moment that is subsequently developed in the cross-
frame is equilibrated by vertical shear forces acting at the ends of the brace. The vertical forces on 
the adjacent girders cause one girder to deflect upwards and the other to deflect downwards leading 
to a rigid body rotation. These deformations reduce the effectiveness of the brace. With a wider 
system, this displacement is reduced, as demonstrated by the four-girder system shown in the 
figure. 
 

 
Figure 2: In-Plane Girder Stiffness (Fish, 2021) 
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This behavior was initially quantified by Helwig, Yura and Frank (1993) for a two-girder system 
and was expanded to multiple-girder systems by Yura (2001) as shown in Eq. 10: 
 

 (10) 
 
The in-plane girder stiffness contribution is generally the most significant in narrow systems, such 
as two or three-girder bridges, and is tied to the system buckling mode, which was discussed in 
Section 2.2 (Yura et al., 2008; Han and Helwig, 2016). Considering Eq. 9, if 𝛽௚ is less than 𝛽்,௥௘௤, 
full bracing cannot be achieved, regardless of the stiffness of the brace that is utilized. This 
situation is closely tied to the system buckling mode. From a buckling perspective, if the in-plane 
stiffness of the girder is insufficient, the system mode will generally control over buckling between 
the brace points. Because the system mode of buckling is closely tied to the in-plane stiffness 
requirements, a system mode approach is a logical methodology for deriving a more accurate 
expression. The following section outlines a potential expression for consideration.   
 
3. Derivation of a Refined In-Plane Girder Stiffness Expression 
The derivation of the expression for the in-plane girder stiffness is outlined in Fish (2021).  The 
expression was developed considering the input of multiple girders interconnected by cross-frames 
or plate diaphragms. The derivation made use of the buckling solution for continuously torsionally-
braced girders developed by Taylor and Ojalvo (1966), given in the following expression: 
 

 (11) 
 
where Mo is the buckling capacity of an unbraced girder which is equal to the Mcr of Eq. (1),  βത୘ 
is the continuous torsional brace stiffness (units of moment/rad/unit length), and the other variables 
are as previously defined.  
 
A refined system buckling expression was developed that accounted for all of the girders’ in-plane 
stiffness contributions. This expression was set equal to the Taylor and Ojalvo expression (Eq. 11) 
providing an explicit solution for the in-plane girder stiffness. 
 
3.1 Derivation of a Refined System Buckling Capacity Expression 
The differential equations used in the development of Timoshenko’s buckling expression (Eq. 1) 
are equally applicable for multiple girder systems if the same basic assumptions are met (Yura et 
al., 2008). In order to satisfy these assumptions for multi-girder systems, a few modifications of 
Eq. 1 are necessary. The effect of multiple girders was accounted for by evaluating the lateral 
bending, torsional, and warping rigidities of the system. Three assumptions, associated with the 
bracing (cross-frames in this case), must also be considered: 
 

1. The cross-frames are stiff enough in their own plane that they maintain the same angle of 
twist for adjacent girders (Fig. 1). 
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2. The cross-frame members are assumed to act as truss members (pin-connected) thereby 
precluding Vierendeel truss action. 

 
3. There are enough cross-frames along the length of the girder that the rigid body rotation 

described by Fig. 1 can be assumed along the entire length (no system distortion). 
 
There were a few adjustments made to the aforementioned rigidity components. The lateral 
bending system rigidity is simply a summation of the lateral-bending rigidities of the individual 
girders and is, therefore, the rigidity of a single girder multiplied by the number of girders in the 
system (ngEIy). The same is true for both the uniform torsional system rigidity (ngGJ) and the 
lateral-warping system rigidity (ngECw). 
 
The adjustment to, what is being called, the vertical warping system rigidity was developed by 
accounting for the effect of each of the girder pairs within the system. The system rigidity for a 
single pair of adjacent girders is shown in Eq. 12: 
 

 (12) 
 
To evaluate the vertical warping rigidity of a girder system, girders are idealized to be “paired” 
with a counterpart that is an equal distance from the centroid of the system. Eq. 12 can be modified 
for any girder pair by using the appropriate distance between the two girders. It is assumed that 
the centroids of the girder pair and the system coincide. For a system with an even number of 
girders, the centroid is located midway between the girder pairs; while a system with an odd 
number of girders will have a centroid that is coincident with the center girder. The distance 
between a given girder pair (si) is found by multiplying the girder spacing (s) by the number of 
spaces between them. Figs. 3 and 4 show that the distance between any girder pair is the overall 
width of the system (sng-s) decreased by two girder spaces (2s) for each girder pair moved toward 
the center of the system. 
 

 
Figure 3: Example Girder Pairs for an Even Number of Girders (Fish, 2021) 
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Figure 4: Example Girder Pairs for an Odd Number of Girders (Fish, 2021) 

 
From this, a system warping stiffness factor was developed and is as follows: 
 

 (13) 
 
where the index (i) represents each odd number that is less than 𝑛௚. 
 
The first five system warping stiffness factors are provided in Table 1. 
 

Table 1: System Stiffness Warping Factors (𝛼௫) 

Number of Girders1 
Associated 
Values of i 𝛼௫ 

   
2 1  1 
3 
4 
5 
6 

1 
1,3 
1,3 

1,3,5 

 4 
10 
20 
35 

1. Eq. 13 can be used to determine factors for systems  
with more than 6 girders. 

 
Multiplying the system warping stiffness factor (Eq. 13) by the system rigidity for a single pair of 
girders (Eq. 12) results in the vertical warping rigidity of a system of multiple girders. 
 
Substituting all three of the modified system rigidities into Eq. 1, and dividing by the number of 
girders in the system, leads to the following expression for system buckling capacity on a per girder 
basis (Eq. 14): 
 

 (14) 
 
Note that, for a single girder system, ng = 1 and s = 0. In this case, Eq. 14 reduces to Mo and is 
equivalent to Eq. 1. 
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As described regarding the development of Eq. 4, the effect of the St. Venant term in Eq. 14 is 
generally small and can be considered negligible. Neglecting this term, Fish (2021) produced the 
simplified expression shown in Eq. 15 which gives the simplified buckling moment capacity for a 
girder in a system comprised of any number of girders: 
 

 (15) 
 
3.2 Derivation of a Refined In-Plane Girder Stiffness Expression 
There are two common ways of computing the buckling capacity of beams. The system buckling 
capacity derived in the previous section (Eq. 14) is similar to Timoshenko’s solution (Eq. 1), which 
is the most common approach. The other common way is to utilize Eq. 11, which relates the 
buckling capacity of a beam(s) to the total system stiffness. Recalling Eq. 9, it can be seen that, by 
isolating the in-plane girder stiffness component, Eq. 11 can be used to develop an expression for 
the in-plane girder stiffness.  
 
To develop an expression for the in-plane stiffness using a continuous bracing approach, an 
assumption was made that the brace and cross-sectional distortion stiffness components were 
significantly larger than the in-plane stiffness component, g. In such a case, the equation for 
springs in series tends to the following:  
 

 (16) 
 
where 𝛽̅௚ is the continuous in-plane girder stiffness (with units of moment/radian/unit-length) and 
𝛽்̅ is as previously defined. 
 
By substituting Eq. 16 into Eq. 11, the critical buckling capacity becomes a function of the 
continuous in-plane girder stiffness alone (Eq. 17): 
 

 (17) 
 
By setting Eq. 14 and Eq. 17 equal to one another, an expression for the continuous in-plane girder 
stiffness can be derived explicitly (Eq. 18): 
 

 (18) 
 
𝛽̅௚ is, again, a continuous stiffness. In order to discretize this so that it can be attributed to a single 
brace location, an adjustment of Lg/ncf was used. The resulting expression is: 
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 (19) 
 
4. Verification Studies 
Two finite element studies were utilized in the investigation to evaluate the accuracy of the 
solutions. The program mBrace3D (2021) was used in the first study while Abaqus (2022) was 
used in the second. The results of the first study are provided in Fish (2021). This paper primarily 
focuses on the results from the second study that targeted the system stiffness behavior. In both 
the mBrace3D and Abaqus models, the girders were interconnected with torsional bracing in the 
form of cross-frames. The models therefore represent the common critical loading stage during 
deck placement when the steel sections alone resist the full construction loading. 
 
4.1 In-Plane Girder Stiffness from a System Buckling Perspective 
The following subsections briefly describe the verification study performed by Fish (2021). This 
study, which is described in detail in Fish (2021), used the program mBrace3D to verify the newly 
developed continuous in-plane girder stiffness expression’s (Eq. 18) ability to predict the system 
buckling capacity of a range of girder systems.  
 
4.1.1 Finite Element Model 
The finite element program mBrace3D (2021) was used to study the buckling behavior of multi-
girder systems that utilize torsional braces (cross-frames in this case) for stability and linear-elastic 
materials were used in all cases.  
 
The same boundary conditions were used for all models and are illustrated in Fig. 5. All girders 
were simply supported in-plane and all cross-frames were connected perpendicular to the girders. 
At the supports, all girders were pinned in the out-of-plane direction at the top and bottom web-
to-flange intersection. This restraint prevents girder twist while allowing for warping, which 
matches the assumptions made when deriving both Eqs. 1 and 14. 
 

 
Figure 5: Assumed Finite Element Model Boundary Conditions (Fish, 2021) 
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The four cross-sections considered are shown in Fig. 6, which consist of doubly-symmetric I-
shaped sections. There have been recent studies on the effects of girder mono-symmetry on the 
LTB behavior (Reichenbach et al., 2020) and it is expected that the results of those studies are 
similarly applicable here. 
 

 
Figure 6: I-Girder Cross-Sections Analyzed in Initial Study (Fish, 2021) 

 
 
4.1.2 Effect of Number of Cross-Frames 
As stated previously, a few assumptions were made in the development of Eq. 14. Chief among 
them is that there are enough cross-frames supplied along the length of the girder such that system 
distortion between the brace locations can be assumed to be negligible. 
 
Fig. 7 shows the comparison of finite element analysis results as compared to the predicted results 
of Eq. 14 for the given system. The vertical axis represents the critical system buckling moment 
on a per-girder basis (Mcr), normalized by the critical buckling moment of a single, unbraced girder 
(Mo) and the horizontal axis represents the number of girders the system has across its width. 
 
Fig. 7 also shows that, when the cross-frame spacing is small, the new in-plane girder stiffness 
expression almost exactly predicts the system buckling capacity. However, when there are very 
few cross-frames (or when cross-frame spacing is large), the derived expression tends to 
overestimate the buckling capacity. This overestimation can become significant for wide systems 
with very few cross-frame lines. 
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Figure 7: Normalized Buckling Capacity as a Function of Number of Girders and Cross-Frames  

 
 
4.1.3 Effect of Brace Stiffness 
Another assumption that was made during the derivation of the new equations is that the brace 
stiffness is large enough that its impact on the overall system stiffness is negligible. Though there 
are, indeed, many cross-frame details that provide stiffness values that would satisfy this 
assumption, the general assumption is not universally true. So, it was also important to assess the 
impact of a range of brace stiffness values on the accuracy of these new equations. 
 
To do this, a comparison of the current and new in-plane girder stiffness expressions was made by 
substituting each of them into Eq. 11. The two resulting expressions are below. Eq. 20 corresponds 
to the per-girder buckling moment predicted when using the current in-plane girder stiffness 
expression (Eq. 10) while Eq. 21 corresponds to the new expression (Eq. 19). 
 

 (20) 
 

 (21) 
 
Examples of the predicted behavior using Eqs. 20 and 21 are shown in Fig. 8. 
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Figure 8: Current In-Plane Girder Stiffness Expression Compared to the New Version 
 
An overall trend is that the current expression (Eq. 20) has good agreement for the case with only 
two cross-frames but becomes more unconservative as more cross-frames are added. This trend is 
plausible since the current in-plane girder stiffness expression was derived for a twin-girder system 
with a single cross-frame at mid-span. Another trend is that the new expression (Eq. 21) works 
well as more cross-frames are added. Although only cases with two and three intermediate cross-
frame lines are shown in Fig. 8, these trends became more significant with increasing numbers of 
cross-frame lines. 
 
4.1.4 Adjustment to the New In-Plane Girder Stiffness Expression 
The results in the last section demonstrated that the current expression provides reasonable 
predictions of the global buckling moment of systems with relatively few cross-frames but 
becomes unconservative with increasing number of cross-frame lines. On the contrary, the new 
solution is unconservative for cases with few cross-frame lines and becomes more accurate with 
increasing bracing lines. Therefore, a linear transition adjustment (Cn) was developed such that a 
proposed expression would agree with the current one (Eq. 10) for cases of one intermediate cross-
frame and agree with the new expression (Eq. 19) when there are many intermediate cross-frames. 
In this adjustment expression, it is assumed that the full transition from Eq. 10 to Eq. 19 is achieved 
when the system has more than four intermediate cross-frames. 
 

  (22) 
 
Applying this modification to Eq. 19 results in the following expression:  
 

 (23) 
 
The next subsection documents the verification process of this proposed expression (Eq. 23).  
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4.2. Finite Element Study on In-Plane Girder Stiffness 
As discussed earlier, the current in-plane girder stiffness expression (Eq. 10) was derived for a 
twin-girder system with a single brace at midspan. Therefore, the accuracy of the current equation 
for multiple girder systems with multiple intermediate braces needs to be verified. In this section, 
parametric studies were carried out in Abaqus (2022) to investigate the in-plane girder stiffness of 
various I-girder systems. 
 
 
4.2.1 Finite Element Model 
The variables considered in the study included number of girders, number of intermediate cross-
frames (ncf), girder spacing, and flange width-to-web depth ratio (b/d). Table 2 presents the range 
of each parameter, which are representative of values used in practice. 
 

Table 2: Parameters considered in the parametric study 

Parameter Range of Values 

Span length [ft] 160 
Number of girders 2, 3, 4, 5 

Number of ncf 1, 2, 3, 4, 5 
Girder spacing 8, 10, 12, 40 

Span-to-depth ratio 25 
Flange width-to-web depth ratio 1/6, 1/4 

 
In the FE models, the cross-sections of the girders (i.e., web, flanges, and stiffeners) were modeled 
with shell elements, and cross-frames were modeled with truss elements. A representative section 
is shown in Fig. 9. The girders were simply supported with twist restrained by preventing lateral 
movement at the top and bottom of the webs. The analysis consisted of eigenvalue buckling 
analyses to study the stiffness behavior of the cross-frame system. The girders were subjected to 
uniform moment loading by providing a force couple at the ends of the beams. A major aspect of 
the FEA studies was developing a methodology of separating the effects of cross-sectional 
distortion, brace stiffness, and in-plane girder stiffness and to determine the ideal brace stiffness 
for the bracing system. The effects of cross-sectional distortion were eliminated by using full depth 
cross frames. However, the system still is impacted by both the brace stiffness and the in-plane 
stiffness. The following subsection outlines the procedure of isolating the stiffness of the brace 
from the in-plane stiffness of the girder. 
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Figure 9: An I-Girder Cross-Section Analyzed in Verification Study 

 
4.2.2 In-Plane Girder Stiffness 
This section discusses the method by which the in-plane girder stiffness component was isolated 
from the entire bracing system stiffness using FE models. As noted previously in Equation (9), the 
total brace stiffness is a combination of 𝛽௕, 𝛽௦௘௖, and 𝛽௚. As noted in the last section, full depth 
cross-frames were utilized so that web distortion did not impact the behavior. In the balloted 
AASHTO bracing provisions, cross-sectional distortion can be ignored provided the braces are 
deeper than 80% of the web depth, which is consistent with the modelling used in this study. 
Because the in-plane girder stiffness increases with wider girder spacing, selecting a large girder 
spacing can result in the in-plane stiffness to be suitably large to be considered “infinite”.  To 
achieve this, a girder spacing of 40 ft. was selected, which allowed the total brace stiffness to be 
considered equal to the cross-frame stiffness (𝛽௕ ) alone, since 𝛽௦௘௖  and 𝛽௚  are assumed to be 
infinity. For the other spacing systems (i.e., 8, 10, and 12 ft spacing systems), 𝛽௚ can be obtained 
by the following expression: 
 

  (24) 
 
where 𝛽் is the ideal cross-frame stiffness from 40ft spacing system from FEA, 𝛽௕,௜ௗ௘௔௟ is the ideal 
cross-frame stiffness from FEA, and 𝛽௚ is the calculated in-plane girder stiffness. 
 
Table 3 shows an example of the calculations of in-plane girder stiffness based on the FEA results. 
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Table 3: Example of in-plane girder stiffness calculation [k-in/rad] 

System 𝛽௕,௜ௗ௘௔௟ from FEA 𝛽் (ൌ 𝛽௕,ସ଴௙௧) 𝛽௚ 

8ft 25,107 

14,978 

37,125 
10ft 20,091 58,852 
12ft 18,055 87,874 
40ft 14,978 ∞ 

 
4.2.3 Parametric Study Results 
In-plane girder stiffness results from three different girder systems are presented in this section 
(Figs. 10 through 12). The plots below compare the in-plane girder stiffness from: FEA solutions, 
the current expression (Eq. 10), the unmodified expression (Eq. 19), and the proposed expression 
(Eq. 23). Each of the subject systems was analyzed at girder spacings of 8, 10, and 12ft. The graphs 
show the impact of the adjustment factor, Cn. For the case in Fig. 10 with a single cross-frame at 
midspan, the current expression (Eq. 10) and the proposed expression are coincident.  The other 
two graphs in Figs. 11 and 12 show respective results for the cases with 3 and 5 cross-frames.  In 
the case with 5 cross-frames, the proposed solution is coincident with Eq. 19.    
 

  
Figure 10: In-Plane Girder Stiffness Predictions for a 3-Girder System with 1 Intermediate Cross-Frame 
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Figure 11: In-Plane Girder Stiffness Predictions for a 3-Girder System with 3 Intermediate Cross-Frames 

 

 
Figure 12: In-Plane Girder Stiffness Predictions for a 5-Girder System with 5 Intermediate Cross-Frames 

 
In the three previous figures, the FEA results are considered to be an accurate representation of 
the true in-plane girder stiffness attributed to each girder within the system. Any predicted results 
by the derived solutions that are greater in magnitude than those of the FEA results are 
overpredicting the available in-plane girder stiffness and are, therefore, unconservative. The 
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opposite is also true; any results predicted by the derived expressions are considered to be 
conservative if they are less than those of the FEA results. 
 
As noted above, when the system being analyzed has only one intermediate cross-frame, the 
current and proposed in-plane girder stiffness expressions are nearly identical to one another, and 
the predictions will typically be somewhat conservative. In general, when there are multiple cross-
frames present, the current expression tends to be unconservative and gets more so as cross-frames 
are added. 
 
For narrow girder systems, the proposed expression (Eq. 23) tends to become more accurate as 
cross-frames are added. However, as the system becomes less narrow, the proposed expression 
becomes somewhat unconservative. Though this is currently the case, the proposed expression is 
much less unconservative than the current expression. Work is ongoing to better refine this 
expression.   
 
5. Conclusions 
In this paper, a new in-plane girder stiffness expression was derived, and its accuracy was 
investigated. This proposed expression was also compared to the current in-plane girder stiffness 
expression, which is being considered for inclusion in the upcoming AASHTO edition. The current 
expression was found to be accurate for situations in which there was one intermediate cross-frame 
in the system. This was in-line with expectations since the current expression was derived for a 
twin-girder system with a single cross-frame at mid-span. However, the current expression proved 
to be unconservative in many cases with multiple intermediate cross-frames. 
 
The proposed expression has thus far shown good agreement with finite element analysis solutions, 
particularly when the system is narrow. There have been cases identified where the proposed 
expression is unconservative, however it is consistently much less unconservative than the 
proposed expression. Though work is ongoing, the proposed expression has shown better 
agreement with finite element analysis results than its current counterpart and is, therefore 
considered to offer a more accurate solution. 
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