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Abstract 
Cross-frames are critical for the stability of steel bridges during construction and play an important 
role in completed bridges. Historically, brace locations have been regions of fatigue concerns, and 
each brace requires significant handling and processing during fabrication. The braces represent 
one of the most expensive bridge components per unit weight. Therefore, there are major benefits 
to minimizing the number of cross-frames in a bridge in terms of economics and structural 
performance. In the application of lean-on bracing concepts, select cross-frames are replaced in 
certain bracing lines with top and bottom struts, which allow a single cross-frame to brace several 
girders as a method of minimizing the number of cross-frames in a bridge. Lean-on concepts were 
developed for the Texas Department of Transportation (TxDOT) in the early 2000s. Previous 
studies developed design guidelines, but recent applications of lean-on bracing in TxDOT bridge 
designs demonstrated the need for improved efficiency and clarity. The primary focus of this paper 
is related to the stability stiffness and strength capacity of lean-on cross-frame lines. The impact 
of the number of cross-frames per bracing line, will be discussed in terms of stability implications. 
Future work will validate the approaches detailed in this paper to determine an expression for the 
stiffness and strength contribution of the torsional brace.  
 
1. Introduction 
I-shaped girders are often utilized in steel bridge systems as an efficient and economical solution 
in a wide range of bridge applications. Steel, as a material, has exceptional strength-to-weight 
properties, and steel girders provide significant flexibility in terms of shipping since the bridge 
girders can be fabricated in shorter lengths, shipped to the site, spliced together, and quickly 
erected. However, the high strength-to-weight ratio can lead to slender elements and systems, 
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which may prove to be troublesome during erection and other construction phases when the 
bracing conditions are highly variable. During construction stages, the steel section alone generally 
supports the full load. Construction stages are generally critical for lateral-torsional buckling 
(LTB), which is a limit state that involves lateral movement of the compression flange and twist 
of the section as depicted in Figure 1. Stability in the finished bridge is rarely a concern since the 
cured concrete deck provides continuous lateral and torsional bracing to the composite system.   
 

 
Figure 1. Lateral-Torsional Buckling. Adapted from Helwig and Wang (2003). 

 
An increase in LTB capacity is achieved by providing adequate bracing. Effective beam bracing 
can be achieved by either restraining lateral displacement of the critical compression flange (lateral 
bracing), or by controlling twist of the section (torsional bracing). Once the composite concrete 
deck has cured, the deck and shear studs provide continuous lateral and torsional restraint to the 
girder top flange and additional stability to the bottom flange. As a result, conventional LTB is not 
typically a concern in the completed bridge. As alluded to above, the critical stages for LTB are 
typically during erection and deck placement. In bridge I-girder systems, cross-frames and 
diaphragms commonly serve as stability braces during construction to enhance the LTB resistance 
of the girders. Since cross-frames and diaphragms restrain twist of the cross-section at discrete 
locations along the length of the bridge girder, they are categorized as point (discrete) torsional 
braces. Though the braces are necessary for girder stability and other functions such as restraining 
fascia girders from torsion applied by deck overhang brackets, they introduce some complexities 
into the design and require strategic placement along the length and width of the framing system. 
These complexities range from difficulties during fabrication and erection to concerns regarding 
fatigue performance of the girder system. Due to the significant handling and fabrication 
requirements, the braces are often the most expensive component of steel bridges per unit weight. 
Therefore, it is advantageous to refine the design and detailing of cross-frame systems. 
 
The AASHTO LRFD Bridge Design Specification (BDS) (2020) provides design, detailing, and 
analysis guidance for cross-frames and diaphragms, but this guidance is primarily limited to the 
fatigue limit state. Current AASHTO LRFD has no formal guidance on stability bracing 
requirements of cross-frames and diaphragms, though a recent study that investigated the stability 
bracing characteristics of conventional cross-frames in steel I-girder systems resulted in several 
ballots that were approved in June of 2021 (Reichenbach et al. 2021). Therefore, the next edition 
of the AASHTO LRFD BDS will include the stability bracing requirements. However, due to the 
absence of formal design requirements in all current and previous editions of the AASHTO BDS, 
the typical practice has been to utilize standard brace details and layouts that are specified by state 
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departments of transportation. The braces in straight bridges have historically often not been sized 
for any specific force or demand. For example, a common member size in cross-frames specified 
by many bridge owners is an L4x4x3/8 angle.  
 
For cross-frames in steel bridges, conventional detailing practice is to provide braces between 
adjacent girders across the full width of the bridge as shown in Fig. 2 (A). However, in some 
applications, such a layout can lead to large live-load induced forces as well as difficulty installing 
bracing, particularly in bridges with significant support skew. Instead of providing cross-frames 
across the full width of the bridge, selectively positioning cross-frames within the bridge cross-
section and using top and bottom struts to lean other girders on the braced locations, as depicted 
in Fig 2 (B), can provide improved behavior and efficiency. This concept is referred to as lean-on 
bracing and has long been applied for bracing of frames for a variety of structural engineering 
applications. In the early 2000s, lean-on concepts were adapted for implementation into steel I-
girder bridges (Helwig and Wang 2003). Lean-on braces offer a cost-effective solution by 
combining the versatility of a torsional bracing system with the simplicity of a lateral brace. In 
these systems, torsional braces (typically in the form of cross-frames) are strategically placed 
throughout the bridge and provide the primary source of stability to the girders.  

Conventional Cross-Frame System (A)

Lean-On System (B)

Struts

 
Figure 2. Conventional Cross-Frame System (A) versus a Lean-On System (B) 

 
As noted in the previous discussion, the current AASHTO LRFD provides no guidance on the 
design of cross-frames for stability bracing requirements. The recently approved AASHTO ballots 
focus on the stability bracing requirements for conventional bracing; however, lean-on bracing 
concepts will not be provided in the 10th edition of the AASHTO LRFD BDS. Methods have been 
developed and documented that aid designers, but some of the simplifications included in the 
original research may be overly conservative in some instances and unconservative in others. 
Furthermore, there has been an abundance of research conducted over the past few decades with 
respect to LTB and the bracing characteristics of cross-frames, but studies related to lean-on 
systems have been limited outside of the original investigation and implementation (Helwig and 
Wang 2003; Romage 2008). Therefore, it is important to the design industry to address these 
potential shortcomings and refine the design procedures for wider applications of lean-on bracing. 
 
Additionally, questions about best practices for incorporating the effects of girder continuity, non-
prismatic girder sections, and multiple cross-frames in a given bracing line have recently arisen. 
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Though these do not comprise a complete list of the areas that may benefit from refinement, they 
do serve as an initial scope for the background studies reviewed in this research. The focus of this 
research is to study the behavior of lean-on bracing systems with a goal of refining and improving 
guidance that will allow designers to more easily implement lean-on bracing into steel bridge 
designs. If properly detailed and distributed along the bridge length and width, lean-on bracing 
systems can reduce the number of full cross-frames required while potentially improving the long-
term bridge behavior. A well-designed and detailed lean-on bracing system potentially offers 
significant savings in fabrication costs, simplifies the erection process, and can alleviate in-service 
cross-frame force demands in heavily skewed bridges. In short, strategic use of lean-on braces can 
serve as an efficient alternative to traditional cross-frame systems. 
 
In previous work, equations were developed for the brace stiffness of a typical bracing system and 
for a lean-on system with only one cross-frame in the brace line. As a result, this paper outlines an 
ongoing study of three approaches for the stiffness and force distribution in lean-on systems with 
multiple cross-frames per line.  
 
2. Background 
In order to understand the proposed approaches for lean-on bracing with multiple cross-frames per 
line, it is necessary to begin with the required brace stiffness of the torsional bracing system. The 
current equations for the provided brace stiffness of a typical bracing system are then discussed.  
 
2.1 Brace Stiffness Requirement Equation 
The recent ballot provisions for inclusion into the AASHTO bridge design specifications are 
generally an extension of the required brace stiffness provided in AISC (2017), and given in the 
following expression:  
 

  𝛽்  =
ଶ.ସெೠ

మ

ఝாூ್
మ (1) 

 
where 𝐿 is the span length, 𝑀௨ is the factored design moment, 𝜑 is 0.75 (LRFD), 𝑛 is the number 
of intermediate braces, 𝐸 is the modulus of elasticity, 𝐶 is the moment gradient factor, and 𝐼 
is defined as:  

 𝐼 = 𝐼௬ +
௧


𝐼௬௧ (2) 

 
where 𝐼௬ is the lateral moment of inertia of the compression flange, 𝐼௬௧  is the lateral moment of 
inertia of the tension flange, 𝑡 is the distance from the centroid of the tension flange to the neutral 
bending axis, and 𝑐 is the distance from the centroid of the compression flange to the neutral 
bending axis.  
 
The expression shown in Eq. 1 approximately provides twice the ideal stiffness and is assumed to 
limit the twist at the brace location to a value equal to the initial imperfection, 𝜃. Therefore, the 
resulting brace moment (𝑀) is given by the following expression: 
 

 𝑀 = 𝛽் ᇱௗ𝜃 =
ଶ.ସெೠ

మ

ఝாூ್
మ

್

ହబ
  (3) 
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2.2 Cross-Frame Stiffness Equation 
The provided brace stiffness must meet or exceed the required brace stiffness:  
 
 𝛽் ≥ 𝛽்ᇱௗ (4) 
 
where 𝛽் is the total brace stiffness of the torsional system and is generally a function of three 
stiffness components. Most stability bracing systems follow the equations for springs in series as 
given by the following expression: 
 

 
ଵ
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ଵ
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+

ଵ

ఉ
+

ଵ

ఉೞ
   (5) 

 
where 𝛽  is the stiffness of the brace, 𝛽 is the in-plane girder stiffness, and 𝛽௦ is the stiffness of 
the cross section related to cross sectional distortion. Eq. 5 indicates that 𝛽் is less than the smallest 
of the three individual stiffness components, which are assumed to interact as springs in series. 
From this relationship, it is evident that an otherwise stiff cross-frame can be adversely affected 
by poor in-plane girder stiffness or significant distortional effects in the girder webs. Thus, the 
overall stiffness of a torsional brace is effectively limited by the most flexible component in Eq. 
5. 
 
2.3 In-Plane Girder Stiffness, 𝛽 
The in-plane (i.e., vertical) flexural stiffness of the bridge girders themselves contribute to the 
overall stiffness of the torsional bracing system. The stiffness contribution of the girders was first 
shown in twin-girder systems (Helwig et al. 1993). As shown in Fig. Figure 3, when the girders 
are subjected to a twist, the internal moment in the cross-frame is equilibrated by vertical shear 
forces acting at the ends of the brace. The vertical forces on the adjacent girders cause one girder 
to deflect upwards and the other to deflect downwards leading to a rigid body rotation. These 
deformations reduce the effectiveness of the brace. With a wider system, this displacement is 
reduced, as demonstrated by the four-girder system shown in the same figure. 

s2Mbr 
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2Mbr 
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Mbr Mbr

Δ

2Mbr 
s

2Mbr 
s

s s s

4Mbr 
3s

4Mbr 
3s  

Figure 3. In-Plane Girder Stiffness. 
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This behavior was quantified for a twin-girder system in Eq. 6 (Helwig et al. 1993):  

 𝛽 =
ଵଶ௦మாூೣ

య
  (6) 

 
Where 𝐸 is the modulus of elasticity, 𝐼௫ is the in-plane moment of inertia of the girder, and 𝐿 is 
the span length. For a framing system with more than two girders, Eq. 7 is instead used (Yura 
2001; Helwig and Yura 2015):  
 

 𝛽 =
ଶସ൫ିଵ൯

మ
௦మாூೣ

య
  (7) 

 
where 𝑛 is the number of girders in the system. The in-plane girder stiffness contribution is most 
critical in narrow systems, such as two or three-girder bridges, and is tied to a mode of buckling 
that is often referred to as the system buckling mode (Yura et al. 2008; Han and Helwig 2016). If 
𝛽 is less than 𝛽் ᇱௗ, full bracing cannot be achieved regardless of the stiffness of the stiffness 
of the brace that is utilized. From a buckling perspective, the system mode will control over 
buckling between the brace points. As noted previously, design guidance for the system failure 
mode has been incorporated into AASHTO LRFD (2020). A modified expression for the in-plane 
stiffness has been developed and proposed by Fish (2021), which is based upon the system 
buckling model.  
 
Helwig and Wang (2003) recommended the reduction of the in-plane girder stiffness by 50% when 
utilizing lean-on bracing as compared a system only utilizing traditional torsional bracing 
concepts, as expressed in Eq. 8. It is assumed that a lean-on system would have an in-plane girder 
stiffness between that of a twin-girder system and of a traditional cross-frame layout, and finite 
element analysis solutions showed reasonable correlation with the 50% reduction. However, this 
equation can potentially be adjusted for increased precision and although not covered in this paper, 
is being investigated in the present research study. 
 

 𝛽 =
ଵଶ൫ିଵ൯

మ
௦మாூೣ

య
  (8) 

 
2.4 Cross-Section Stiffness, 𝛽௦ 
If the braces are relatively shallow compared to girder depth, the stiffness of the cross-section, 
𝛽௦, may have a significant effect. Yura and Helwig (2015) derived Eq. 9 for full-depth web 
stiffeners when the distance from the top cross-frame to the top of the girder is the same as than 
the distance from the bottom of the cross-frame to the bottom of the girder. This form is included 
in AISC Appendix 6: 
 

 𝛽௦ =
ଷ.ଷா

ೢ
(

(ଵ.ହೢ)௧ೢ
య

ଵଶ
+

௧ೞೞ
య

ଵଶ
)    (9) 

 
where ℎ௪ is the height of the web, 𝑡௪ is the thickness of the web, 𝑡௦ is the thickness of the stiffener, 
𝑏௦ is the width of the stiffener. The first term in the equation accounts for the effective moment of 
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inertia for the part of the web assumed to participate in the distortion, and the second term accounts 
for the moment of inertia of the stiffener, taken about the centroid of the web. 
 
Only the region outside of the brace depth contributes to the cross-sectional distortion. Because 
most cross-frames in bridge I-girder applications are relatively deep with respect to the girder 
depth, the cross-section stiffness component tends to be a large value, such that it is not usually a 
significant concern in Eq. 5. Language in the approved ballot for AASHTO allows 𝛽௦ to be taken 
as infinity for braces deeper than 80% of the web depth, which is relatively common in most 
bridges. This provision recognizes the significant stiffness for relatively deep braces. As a result, 
𝛽௦ can often be ignored.  
 
2.5 Torsional Brace Stiffness, 𝛽 
Torsional bracing systems typically utilize cross-frames or diaphragms to help bridge girders resist 
LTB. Cross-frames can be found in the form of X-shapes, K-shapes, and occasionally Z-shapes. 
(Fig. 4) X-type braces work well with deep girders, such as in built-up I-girder bridges, while K-
type braces or diaphragms are better suited for shallower girders. The torsional stiffness (i.e., the 
stiffness response of the brace when subjected to an in-plane moment) of the brace can be estimated 
based on an idealized truss model (Yura 2001; Helwig and Wang 2003). Equations have been 
derived for each brace type and the derivation process is discussed in the next section.  
 

 
Figure 4. Various Forms of Cross-Frames. 

 
3. Current Torsional Brace Stiffness Derivations 
Two particularly relevant derivations are accepted for bracing stiffness: one for a single cross-
frame, and one for a cross-frame line with a single cross-frame and lean-on struts. Both are 
discussed in the following sections.  
 
3.1 Twin Girder System Derivation 
Yura (2001) developed an equation to estimate the torsional brace stiffness of a Z-type cross-frame 
or a tension-only X-type cross-frame, for which the compression diagonal is conservatively 
neglected (assuming that member might buckle). In many cases, cross-frames are constructed with 
slender angle sections whose compression load-carrying capacity is relatively small and therefore 
neglected. Virtual work was used to derive the expression. The idealization of this system is shown 
in Fig. 5.  
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Figure 5. Twin Girder Brace Stiffness Idealization 

 
In this approach, Eqns. 10 and 11 are combined to result in Eqn. 12, indicating that the 
displacement of the critical girder is the basis for calculating the provided stiffness.  
 
 𝑀 = 𝐹ℎ   (10) 

 𝛽 =
ெ

ఏ
  (11) 

 𝛽 =
ிమ

∆ೝ
  (12) 

 
where 𝑀 is the moment applied to the system, 𝐹 is a unit load applied at the top and bottom of 
each girder in the directions shown, ℎ is the height of the brace, 𝜃 is the rotation of the girder, and 
∆௧ is the critical displacement of the girder (here, ∆்ଶ + ∆ଶ). From the virtual work procedure, 
∆௧ is calculated, resulting in Eqn. 13 for 𝛽. This is the equation currently accepted for typical 
bracing. 
 

 𝛽 =
మௌమா

మಽ
య

ಲ
ା

ೄయ

ಲೞ

  (13) 

 
where 𝑆 is the girder spacing, ℎ is the depth of the cross-frame, 𝐿ௗ is the length of the cross-
frame diagonal members, 𝐴ௗis the cross-sectional area of the cross-frame diagonals, and 𝐴 is the 
cross-sectional area of the cross-frame struts. 
 
From Eq. 13, it is evident that the stiffness of the brace is a function of the axial stiffness of its 
individual members when the cross-frame is subjected to a moment. Although not explicitly 
presented, the inherent flexibility of the connections should also be considered in the evaluation 
of the overall brace stiffness, similar to what is done for cross-section distortional effects or in-
plane girder flexibility. 
 
For many cross-frame applications, single-angle or tee sections are attached to connection or 
gusset plates along only one leg or flange, respectively. This, in turn, introduces an eccentric load 
path through the connection that can significantly impact the stiffness of the brace. In lieu of a 
more refined assessment of these softening effects, AASHTO LRFD (2020) recommends a simple 
reduction factor based on experimental and analytical studies conducted by Battistini et al. (2013; 
2016) and Wang (2013). For stability bracing applications, a fixed factor of 0.65 can be applied to 
the cross-sectional area of the diagonals and struts in the development of Eq. 13. This reduction 
factor was calibrated to represent these softening effects for a wide range of common cross-frame 
configurations, connections, and member sizes. 
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3.2 Lean-On Bracing Derivation 
Helwig and Wang (2003) derived a generalized equation for the brace stiffness contribution in a 
lean-on bracing system based on the idealization developed by Yura (2001). The expression is: 
 

 𝛽 =
మௌమா

ಽ
య

ಲ
ା

ೄయ

ಲೞ
൫ିଵ൯

మ
  (14) 

 
where 𝑛 is the number of girders per cross-frame. In this expression, the number of cross-frames 
per bracing line is assumed to be one, so 𝑛 is effectively the number of girders. As an example, 
the idealization of a four-girder system is shown in Fig. 6. The freebody diagram shows the 
accumulation of forces that develop across the width of the bridge. The bracing demand from the 
girders results in force couples that lead to the forces indicated in the figure. Some designs that 
have made use of Eq. 14 have included more than one brace in a given line, which results in an 
erroneous estimate of the stiffness demand since the resulting value of 𝑛 in those cases is not 
representative of the force distribution across the cross-frame line. 
 

 
Figure 6. Lean-On Bracing Stiffness Idealization 

 
The calculated brace stiffness of this system is shown in Eq. 15  
 

 𝛽 =
మௌమா

రಽ
య

ಲ
ା

వೄయ

ಲೞ

  (15) 

 
4. Approaches for Lean-On Systems with More than One Cross-Frame per Bracing Line 
Currently, designers that have utilized lean-on bracing concepts often make use of more than one 
cross-frame in each line in their application of lean-on bracing. Using more than one brace per line 
is done in an attempt to reduce the demand on the cross-frame. However, the resulting 𝑛 that is 
used is not representative of the stiffness derivation for Eq. 14. It is therefore necessary to develop 
an expression for the brace stiffness that accounts for the additional cross-frame relative to the 
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Helwig and Wang expression in Eq. 14. Three potential approaches are described in the following 
sections in the context of a four-girder system. In the future, the best approach will be generalized 
to account for various bridge configurations. 
 
4.1 Cross-Section Slice Approach 
The first approach is the “Cross-Section Slice,” where a redundant cross-frame is essentially 
ignored. This is shown for a four-girder system with two cross-frames in Fig. 7, where the left 
cross-frame is not considered in determining the brace stiffness. This results in ∆௧ equal to the 
sum of ∆்ଷ, ∆்ସ, ∆ଷ, 𝑎𝑛𝑑 ∆ସ. The brace stiffness of the configuration is then calculated using Eq. 
15 or virtual work for a three-girder system, resulting in Eq. 16.  
 

 
Figure 7. Cross-Section Slice 

 

 𝛽 =
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యಷಽ
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ಲೞಶ

  (16) 

 
4.2 Displacement Combination Approach 
The “Displacement Combination” approach is similar to the “Cross-Section Slice,” but the 
displacement of the second girder is accounted for differently. In the “Cross-Section Slice,” the 
displacement is ignored, whereas in “Displacement Combination” the displacement is accounted 
for by adding the second girder from the first cross-frame to the result obtained in the “Cross-
Section Slice.” This is shown in Fig. 8, and the resulting stiffness is Eq. 17. In this approach, ∆௧ 
is equal to the sum of ∆்ଶ, ∆்ଷ, ∆்ସ, ∆ଶ, ∆ଷ, 𝑎𝑛𝑑 ∆ସ. 
 

 
Figure 8. Displacement Combination 
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  (17) 
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4.3 Stiffness Superposition Approach 
The “Stiffness Superposition” is the least conservative of the three approaches. In this idealization, 
the cross-frame line is essentially broken into two single-cross-frame systems, and the respective 
stiffnesses of each system are added together. This is shown for the four-girder, two-cross-frame 
system in Fig. 9, with the resulting brace stiffness equation shown in Eq. 18.  

 

 
Figure 9. Stiffness Superposition 

 

 𝛽 = 𝛽ଵ + 𝛽ଶ =
ிమ

రಷಽ
య
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  (18) 

 
5. Comparison of Results 
The impact of each approach was quantified for realistic bridge geometries based on an existing 
bridge utilizing lean-on bracing. The bracing stiffness was calculated for a bridge with four girders 
spaced at 2.4 meters (8 feet) and 3.0 meters (10 feet), with two cross-frames tested with depths of 
1.75 meters (69 inches) and 2.4 meters (96 inches). The impact of each of the three approaches 
was similar for all four configurations. The results for 2.4 meter (8 foot) spacing and 1.75 meter 
(69 inch) cross-frame depth are shown in Table 1 for the brace stiffness, as well as the overall 
bracing system stiffness based on constant in-plane girder and cross-section stiffnesses. The results 
are normalized against the Helwig and Wang equation (Eq. 15) for only one cross-frame.  
 

Table 1: Comparison of Results 
Approach 𝛽 𝛽௧ 

Helwig and Wang – 1 CF 1.00 1.00 

Cross-Section Splice 1.72 1.06 

Displacement Combination 1.67 1.05 

Stiffness Superposition 2.72 1.10 

 
The values in the table indicate that the various approaches can result in an increase of up to 10% 
in the total provided stiffness. The Stiffness Superposition approach results in the most significant 
increase in the brace stiffness, since the stiffness of two systems are added together, resulting in 
some redundant bays. The Cross-Section Splice and Displacement Combination approaches result 
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in similar values, with the Displacement Combination approach being the more conservative. This 
makes sense because a greater critical displacement is considered in that approach due to how the 
second girder is accounted for. The three different methods are being considered with respect to 
accuracy as well as simplicity in application 
 
6. Conclusion and Ongoing Work 
In this work, a gap was identified in the existing literature for lean-on bracing design with multiple 
cross-frames per bracing line. Equations have been accepted for typical bracing and lean-on 
bracing with one cross-frame. There is no existing expression for the brace stiffness provided by 
lean-on systems with multiple cross-frames in a bracing line.  
 
In response to this knowledge gap, three approaches to quantify the brace stiffness of these systems 
were developed: Cross-Section Slice, Displacement Combination, and Stiffness Superposition. 
Initial comparisons were made by applying these approaches to a typical bridge section. The 
Displacement Combination method was the most conservative, while the Stiffness Superposition 
method was the least.  
 
In future work, all three approaches will be evaluated using finite element analysis in order to 
determine an appropriate equation for this design scenario. Model displacements will be used to 
calculate the stiffness of the system, and the best approximation will be selected. The 
approximation will then be generalized to apply to different numbers of cross-frames and braces.   
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