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Abstract 
This paper presents a method to perform the decomposition of the deformed shape of built-up 
members into the structurally meaningful “pure” modes: local, distortional and global modes. The 
method is based on the core concept of the authors’ modal finite strip method (mFSM) for single 
sections, which utilizes normalized strain energies to identify different buckling mode classes. The 
attention to buckling mode decomposition of built-up sections is motivated by the requirements of 
the Direct Design Method (DSM) to identify and calculate the buckling loads of the pure local and 
distortional modes. The presence of discrete fasteners in built-up sections influences the overall 
buckling behavior and changes the buckling modes. In this study, the mFSM is further developed 
to achieve a complete decomposition technique that accounts for discrete fasteners. The proposed 
method is verified against finite element and finite strip solutions through numerical examples and 
shown to be accurate. The obtained results show that the proposed method can be a valuable tool 
for the assessment of the behavior of built-up members and their design.  
 
 
1. Introduction 
Cold-formed steel (CFS) sections possess high strength-to-weight ratios and can be easily 
integrated with other construction materials, making them a versatile choice in the building 
industry. They can be utilized in a variety of applications, ranging from basic roof-sheeting to low-
rise building frames. By connecting multiple component sections to form a built-up cross-section, 
CFS sections can potentially be extended to mid-rise construction, opening up new opportunities 
for their use. CFS members are prone to the local and distortional buckling of the cross-section 
and the interaction of these modes with global buckling modes such as flexural and flexural-
torsional modes. As a result, accurately assessing the structural capacity of such members requires 
evaluating their linear buckling behavior, including identifying the relevant buckling modes and 
corresponding loads. However, analyzing the buckling behavior becomes increasingly challenging 
as the cross-section shape becomes more intricate, and it may not always be possible to determine 
the minimum buckling loads of critical modes, as typically obtained from signature curves 
generated by standard finite strip analyses. For built-up members, the problem is even more 
complex as discrete fasteners can significantly alter the local, distortional and global buckling 
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behavior of the member. To efficiently analyze and interpret the complex nature of instabilities 
encountered in thin-walled structures, decomposition and superposition techniques are required. 
They involve decomposing the deformed buckled shape of a thin-walled member into a number of 
"basic" modes that govern the failure load. The development and extension of numerical methods 
such as generalised beam theory (GBT) (Dinis, Camotim, and Silvestre 2006; Gonçalves, Ritto-
Corrêa, and Camotim 2010), constrained finite strip method (cFSM) (Ádány and Schafer 2008; 
Rendall, Hancock, and Rasmussen 2017), constrained finite element method (Ádány 2018; Ádány, 
Visy, and Nagy 2018) and modal finite strip method (mFSM) (Khezri and Rasmussen 2019b, 
2019a) have been important steps in achieving this objective. To the best of the authors’ 
knowledge, these methods are only applicable to single section members and hence, the problem 
of modal decomposition of the buckling modes of built-up members has not been yet addressed. 
In this study, the mFSM is extended to procure a complete decomposition technique that accounts 
for discrete fasteners and can be employed to built-up sections. This study is founded on the 
authors’ previous work on the compound strip method (Abbasi et al. 2018), which was proposed 
for the finite strip analysis of built-up sections, and the mFSM (Khezri and Rasmussen 2019b, 
2019a). A brief review of these methods is presented in Sections 3 and 4 to provide an insight into 
their underpinning numerical framework.  
 
Various methods have been developed to analyze the behavior of thin-walled structures, including 
the compound strip method (CSM) introduced by (Puckett and Gutkowski 1986). The CSM 
incorporates the stiffness of elastic supporting elements such as columns, and longitudinal and 
transverse beams in a direct formulation to enhance the versatility and capability of the finite strip 
method (FSM). The CSM has been employed in linear flexural (Puckett 1986) and buckling 
(Puckett, Wiseman, and Chong 1987) analyses of straight continuous flat plates over flexible 
supports. (Borković, Mrđa, and Kovačević 2013) used the CSM to study the linear transient 
vibration of stiffened plates, where the strain and kinetic energies of stiffeners were added to those 
of finite strips. (Maleki 1991) extended the application of the CSM to the analysis of folded plates 
and box girders with intermediate non-rigid supports, while (Borković et al. 2017) utilized the 
CSM for the geometric nonlinear static analysis of prismatic shells with internal supports and 
stiffeners. 
 
Puckett and Wiseman (1991) developed a technique for the inclusion of bracing elements in the 
analysis of folded plates using the CSM. Moreover, the spline compound strip method (SCSM) 
(Chen, Gutkowski, and Puckett 1991), which is a more versatile extension of the conventional 
CSM, has been employed in the analysis of stiffened plates and braced thin-walled structures. In 
this study, the compound strip method, as developed by the authors (Abbasi et al. 2018), is 
employed for the buckling analysis of built-up cold-formed steel (CFS) members, where the 
discrete fasteners are modeled as connecting elements with adjustable stiffness properties. 
 
Modal decomposition numerical methods (e.g. cFSM, and cFEM) impose specific kinematic 
constraints formulated to suit the method being used (e.g. FSM, and FEM). However, this approach 
requires significant modification of the constraint matrices for different methods, even though they 
share the same underlying kinematic assumptions based on GBT mechanics. Recently, the authors 
proposed a novel decomposition method (mFSM) in which the pure modes are categorized based 
on the participation of specific components of the bending and membrane strain energies. The 
distinct feature of the mFSM is that because it operates on strain energy, it can be readily extended 
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to the buckling mode decomposition of members with complex cross-sections. In this study, the 
CSM and mFSM are combined and accordingly modified to derive a novel method for the modal 
decomposition of the buckling modes of built-up members. 
 
The outline of this paper is as follows. In Section 2, the semi-analytical finite strip method (FSM) 
and its application to the buckling analysis of thin-walled prismatic members is briefly reviewed. 
In Section 3, the compound strip method and its application to model discrete fasteners in built-up 
sections are explained. In Section 4, the core concept of the proposed modal decomposition method 
mFSM is clarified and the required modification in the formulation for built-up sections is set out. 
A series of numerical examples are included in Section 5 to demonstrate the accuracy and 
versatility of the mFSM in capturing the modal behavior of built-up thin-walled members. 
 
2. Finite strip buckling analysis 
2.1 The semi-analytical finite strip method 
The FSM divides a thin-walled member transversely into (ns) strips using (n) nodal lines, as seen 
in Fig. 1, and uses analytical functions such as beam eigenfunctions (Cheung and Cheung 1971) 
or trigonometric functions (Bradford and Azhari 1995) to describe the displacements of the strips 
in the longitudinal direction, while polynomial shape functions are used in the transverse direction. 
 

 
Figure 1: Strip discretization and DOFs, local and global coordinates systems, and nomenclature. 

 
The general displacement functions for an arbitrary point (x,y) on the mid-surface of the strip 
depicted in Fig. 1 can be expressed as follows: 
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in which P is the number of terms utilized in the longitudinal direction, Sα is the αth term of the 
harmonic function series, μα is the coefficient for the argument of αth term, and ds

mα and ds
bα are 

vectors of degrees of freedom (DOFs) for membrane and bending displacements, respectively.  
 
2.2 Internal elastic strain energy and strip stiffness matrices 
The flat strip shown in Fig. 1 is assumed to maintain its flatness in the presence of applied stresses 
until it reaches the point of buckling. The strip total strain energy is defined as follows: 
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and can be expressed as the sum of the strain energies associated with membrane and bending 
deformations: 
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in which s
mk  and s

bk  are the strip membrane and flexural stiffness matrices, obtained as: 
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In Eq. (4), Dm and Db are membrane and bending property matrices, respectively, and Bs
mα and 

Bs
bα are membrane and bending strain compliance matrices, respectively, (Cheung and Cheung 

1971). Using Eq. (4), the strip stiffness matrix corresponding to the half-waves α and β is obtained 
by assembling the membrane and bending components: 
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Thus, the total strain energy of the strip can be expressed as 
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2.3 Potential energy of external loads and strip stability matrices  
The reduction in potential energy of in-plane stresses σe

m caused by the buckling deformation of a 
flat strip can be expressed as: 
 

 d ,s T e
NL mV

V V  ε σ  (7) 
   

in which εNL is the nonlinear component of the membrane strain vector, defined as (Plank and 
Wittrick 1974): 
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Considering only strips subjected to longitudinal in-plane stresses, one can rewrite the Eq. (7) as 
follows, 
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Utilizing the general displacement functions given in Eq. (1), and by appropriate differentiation, 
one obtains, 
 

T T T T1 1
2 2

1 1

( ) ( ( ) d d ) ( ) ( ( ) d d ) ,

s s
m b

P P
s s e s s s s e s s s

m y m m m b y b b b

L b L b

V t x y t x y

 

       
 

 
 

     
g g

d G G d d G G d
 

 (10) 

 

in which gs
mαβ and gs

bαβ are the strip membrane and bending stability matrices, respectively, 
corresponding to αth and βth terms. Similar to the stiffness matrix, the strip stability matrix for the 
αth and βth terms is defined as, 
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The strip stability matrix allows the potential energy of the externally applied loads to be written 
as, 
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2.4 Global stiffness and stability matrices 
The strip stability and stiffness matrices described in Eqs. (6) and (12) were derived in the local 
coordinate system assigned to the strip. To construct the global stiffness (K) and stability (G) 
matrices for a member containing multiple strips (Fig. 1), the matrices based on local coordinates 
need to be transformed to global coordinates and subsequently assembled according to the 
connectivity of the strips. Likewise, the local strip displacement vectors dS (Eq. (6)) need to be 
transformed to global coordinates and assembled into the global displacement vector d. 
 

2.5 Buckling equation 
The total potential energy (Π) is the sum of the internal elastic energy (U) and the reduction in 
potential energy resulting from the work of external actions (V): 
 

 Π .U V   (13) 
 

Expressed in terms of the assembled global stiffness and stability matrices, the internal strain 
energy and potential energy due to the work of external loads can be written as follows: 
 

 T1
2 ,U  d Kd  (14) 

 T1
2 .V  d G d  (15) 

 

Substituting Eqs. (14) and (15) into Eq. (13), the relation for the total potential energy of the thin-
walled member is derived as, 
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where λ is a load factor that scale the stability matrix obtained for reference external loads (Gu) to 
the stability matrix of the member (G) under actual external loads. Minimizing the total potential 
energy of Eq. (16) with respect to d results in the well-known buckling eigenvalue equation: 
 

   ,u K ΛG Φ 0  (17) 
 

where Λ represents the diagonal matrix containing the eigenvalues of the problem and Φ is the 
eigenmode matrix.  
 

3. Compound strip method for the analysis of built-up sections 
The authors (Abbasi et al. 2018; Khezri, Abbasi, and Rasmussen 2017) proposed a framework for 
analyzing built-up sections with discrete fasteners (Fig. 2(a)), in which the fasteners are modelled 
as connecting elements with adjustable stiffness properties. The approach provides a simple yet 
accurate numerical tool that can accommodate any desired cross-sectional composition and 
fastener configuration, thereby facilitating extensive parametric studies and providing a useful tool 
for structural design. The fasteners are modelled as three-dimensional beam elements with three 
translational and three rotational DOFs at each end (Fig. 2(b)).  
 

(a) (b) 
 

Figure 2. (a) Schematic view of a built-up section with discrete fasteners, (b) local coordinates and degrees of 
freedom of an arbitrarily oriented connection element. 

 

The relationship between the nodal force and nodal displacement vectors for a fastener is expressed 
in the local coordinate system of the element as follows: 
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and Kc is the stiffness matrix of the connection element. Abbasi et al. (2018) assumed that the 
flexural behavior of the element is uncoupled in perpendicular planes, and therefore the flexural 
behavior in each plane can be described by its respective shear and flexural stiffness properties. 
By utilizing a general set of slope-deflection equations and assuming rigid ends, the sub-matrices 
of the stiffness matrix in Eq. (18) can be expressed in terms of the in-plane stiffness constants. The 



 7

detailed derivation of these matrices for both Euler-Bernoulli and Timoshenko beam elements can 
be found in (Abbasi et al. 2018).  
The connection element is incorporated in the finite strip model by adding its stiffness to the 
stiffness of the strips, while ensuring compatibility of displacements and rotations between the 
element and the strips connected by the element. The system being considered comprises two strips 
with parallel longitudinal axes that are linked by a connection element oriented in an arbitrary 
manner, as illustrated in Fig. 3. 
 

 
Figure 3. Three-dimensional model for connection element and adjoining constituent strips. 

 

The total strain energy of this system can be calculated as the sum of the strain energies of the flat 
component strips and the connection element(s), i.e. 
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where ПSi and ПSj are the strain energies of the connected strips, NC is the number of connection 
elements, and ПCk is the strain energy of the kth element in its local coordinate system, viz. 
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To calculate the strain energy (ПCk), it is first necessary to express the displacements of the 
connection elements in terms of the global nodal displacements of the strips. This is achieved by 
the multiplication of the transformation matrix R, obtained by superposition of three single-axis 
rotations of the local coordinate system (Chen, Gutkowski, and Puckett 1991; Wiseman and 
Puckett 1991). In the next step, the displacements in the global coordinate system XYZ  (Fig. 3) 
are then transformed to local strip coordinates using the RGL matrix. As the strips are assumed to 
be parallel to the Z  axis, the arrays of the RGL matrix are functions of the orientation angles (γi, 
γj) of the connected strips, (Fig. 3). The last step involves the interpolation of the displacement 
values of the connection elements based on the displacement field of the strips using interpolation 
matrices ψm

μ and ψn
μ (μ = i, j), followed by the conversion of the resulting components into the 

global coordinate system. The interpolation matrices are formed by using the strip shape functions 
in the transverse direction and the chosen longitudinal functions for the terms m and n. The above 
steps can be summarized using matrix notation as follows: 
 

      T T TTnm n m
c GL GL c GL GLK R ψ R R K R R ψ R  (22) 

 

The detailed derivation of the aforementioned transformation and interpolation matrices can be 
found in (Abbasi et al. 2018).  The stiffness matrices for the connection elements can be assembled 
into the stiffness matrix of the system by adding their rows and columns in correspondence with 

Si 

Sj 
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the global degrees of freedom. As a numerical strategy, which will facilitate the modal 
decomposition for the built-up sections, we form a separate matrix (Kcnts) with the same size as 
the stiffness matrix for the whole system, to store the stiffness contributions of the connection 
elements. Thus, for a built-up member consisting of N single sections, the system stiffness matrix 
TK can be obtained as follows: 
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or, 
 

 cnts TK K K  (24) 
  
in which, nt is the total number of DOFs.  
 
4. Modal finite strip method (mFSM) 
Fundamentally, modal decomposition methods are based on the premise that any arbitrary 
displacement field can be expressed as a linear combination of modes in pure deformation spaces. 
These deformation spaces comprise a collection of structurally meaningful "pure" modes that 
constitute an orthogonal basis, capable of spanning the entire displacement space. Prior research 
endeavors have utilized the principles and mechanical assumptions of the Generalized Beam 
Theory (GBT) to formulate these base vectors and to classify them into distinct categories, such 
as global (G), distortional (D), local (L), shear (S), and transverse extension (TE) spaces (Ádány 
and Schafer 2014a, 2014b). These spaces can be further divided into subspaces as presented in 
Table 1.   
 

Table 1: Mechanical criteria for mode classes (Ádány and Schafer 2014a, 2014b) 

    G   D   L   S   TE 

  GA GB GT     LP LS  SBt STt SDt SCt SBw STw SDt SCw SSw  TEP TES 
εx= 0  Y  Y  Y  Y  N 
γxy= 0  Y  Y  Y  N  N 

Trans. Eq.  Y  Y  N  Y Y Y N Y Y Y Y Y  N 
εy= 0  N  N  Y  Y Y Y Y N N N N N  Y 
κx= 0  Y  N  N  Y Y N N Y Y Y Y Y  N Y 
κy= 0  Y Y N  N  N N  Y N N N Y Y Y Y Y  N Y 
κxy= 0   Y N N   N   N N   N N N N Y Y Y Y Y   N Y 

      

The present study employs the same mechanical criteria for modal identification and classification 
of deformation modes as those utilized in the generalized constrained Finite Strip Method (cFSM) 
and in the previously proposed mFSM (Khezri and Rasmussen 2019b, 2019a, 2018). In the 
generalized cFSM, a set of constraint matrices (RM) is defined for each of the deformation sub-
spaces, which facilitate the mapping of the general deformation space (d) to the constrained space 
(dM), i.e. 
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 M Md R d . (25) 
 

The columns of the constraint matrix RM represent the base vectors of the constrained space and 
are determined based on the criteria for each mode class. As an eigenmode is a general 
displacement vector, Eq. (25) can be applied to all eigenvectors in the matrix Φ, as follows: 
 

 .M MΦ R Φ  (26) 
 

Thus, using Eq. (26), the constrained eigenvalue problem, for subspace M can be obtained as 
 

    ˆˆ, or in short, ,T T
M M M M u M M M M M M   R KR Λ R G R Φ 0 K Λ G Φ 0  (27)  

 

in which K and Gu are the global stiffness and stability matrices, respectively, and ˆ
MK  and ˆ

MG  
are the stiffness and stability matrices of the constrained problem, respectively. To enforce the 
criteria defined in Table 1, which are mainly defined as zero strains (derivatives of displacements), 
for each space (M), the relations between associated degrees of freedom are established such that 
the considered strains become zero. It should be noted that following the cFSM approach, the 
computation of constraint matrices is reliant on the specific choice of general displacement 
functions and type of element, or more broadly, the numerical method.  
 

In mFSM, an alternative approach is utilized to generate the constraint matrices, or modal base 
vectors. In this approach, the modal base vectors for each mode class are obtained by solving a 
generalized eigenvalue problem, which determines the ratio of the elastic strain energy developed 
under mode M deformations to that of general displacements, i.e., 
 

 .
T
M M M

M T
M M

 
H K H

H K H
 (28) 

 

In Eq. (28), HM represents a matrix of base vectors for the general displacement space, while KM 
represents the stiffness matrix for mode M, constructed based on the kinematic criteria for that 
mode. It is important to note that additional criteria, such as transverse equilibrium and 
orthogonality of mode classes, are also satisfied in this method through appropriate adjustments 
and modifications to the HM matrix. To obtain the strain energy ratios required in Eq. (28), the 
following generalized eigenvalue problem must be solved:    
 

     T T .M M M M M M M  H K H H KH Θ 0  (29) 
 

The eigenmodes matrix, denoted by ΘM, is obtained as the solution of the generalized eigenvalue 
problem described in Eq. (29). The constraint matrix (RM) for mode class M is then obtained by 
extracting the columns of the ΘM matrix that satisfy the necessary criteria and correspond to zero 
associated strain energy ratios. 
 

To obtain the modal stiffness matrix (KM) that only includes terms associated with specific strains, 
the internal strain energy is first decomposed into individual terms representing the contributions 
of each strain component: 
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The total stiffness matrix of the member can be obtained by adding the stiffness sub-matrices given 
in Eq. (31), which can be expressed as: 
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 (32) 

 

The derivation of the member stiffness sub-matrices allows direct enforcement of the criteria in 
Table 1 that are imposed on strains. The detailed procedure to obtain the required modal base 
vectors for the defined subspaces, can be found in (Khezri and Rasmussen 2018, 2019b, 2019a).  
 

In this study, the formulation for single section members is extended to built-up members. For a 
built-up member composed of N single sections, the member stiffness sub-matrices associated with 
each strain component can be obtained as: 
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In order to obtain the modal base vectors for mode class M for the built-up member, two 
adjustments need to be made to the generalized eigenvalue problem defined by Eq. (28): (1) In 
forming the modal stiffness matrix (KM), the contributions of all sections of the built-up member 
are incorporated using Eqs. (33) and (34), but the fasteners stiffness terms are not added to the KM 
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matrix; (2) The system stiffness matrix TK, which is obtained using Eq. (24) and accounts for the 
stiffness of fasteners Kcnts, replaces the member stiffness matrix K in the equation. Thus, the 
equation that determines the ratio of the elastic strain energy developed under mode M 
deformations to that of general displacements for a built-up member can be derived as: 
 

 .
( )

T T
M M M M M M

M T T
M M M cnts M

  


H K H H K H

H TK H H K K H
 (35) 

 

The process of separating pure modes is similar to that explained for single section members 
analyzed using mFSM (Khezri and Rasmussen 2019b, 2019a). As the global axial space is always 
the first space to be separated, and no condition of orthogonality with other spaces is required, a 
suitable choice for the initial HM (M = GA) matrix is the range of the eigenmodes matrix Φ. The 
eigenmodes matrix is a full rank matrix and thus its range obtained by singular value 
decomposition (SVD) (Strang 1993) has the same dimensions as Φ. For the problems considered 
here, the Φ matrix is obtained by solving the buckling problem for the built-up member, i.e. 
Eq. (17). Selection of this range ensures that the space in which modal decomposition is conducted, 
is a space compatible with the deformation modes of the built-up member. It is noted that in order 
to obtain pure modes that satisfy the GBT basic assumptions, the Poisson’s effect must be ignored. 
This can be achieved simply by setting the Poisson’s ratio to zero (Ádány et al. 2009). By doing 
this, the global sub-matrices that account for the interaction of strain components will vanish. 
   

5. Numerical examples 
5.1 General 
In this section, we investigate the applicability of the proposed modal Finite Strip Method (mFSM) 
for built-up sections through a series of numerical examples. Initially, the buckling behavior of a 
single section is evaluated, followed by the utilization of the Compound Strip Method (CSM) to 
analyze the buckling characteristics of a built-up section composed of multiple single constituent 
sections. Then, the mFSM is applied for the modal decomposition of the buckling deformations of 
the single and built-up sections.  
 

5.2 Buckling analysis of a single channel section 
This example involves the analysis of a single channel section, denoted as C2.0-90-75 and depicted 
in Fig.4 (a), under uniform compression. The dimensions of the channel section as well as the 
relevant elastic material properties are specified in Table 2 and Table 3, respectively.  
 

 

(a) 
 

(b) 

Figure 4: (a) General geometry of a lipped channel section (b) buckling signature curve for the considered section 
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The investigation considers the end boundary conditions as simply supported. The cross-section is 
partitioned into strips, with twelve strips employed for the web, eight strips allocated for each 
flange, and four strips used in each lip. The results obtained for the buckling signature curve (m = 
1) are shown in Fig. 4(b), where the load factor (λ) is the elastic buckling load Pcr normalized with 
respect to the yield load Py = A∙fy. Fig. 4(b) illustrates that the section signature curve exhibits 
distinct local and distortional minima at lengths of Ll = 80 mm and Ld = 450 mm, respectively. The 
results of the FS analysis using only one term indicate that the section under consideration is 
susceptible to both local and distortional buckling. This is due to the fact that the elastic local 
buckling load is greater than the lowest distortional buckling load, which in turn means that the 
buckling mode transitions from local to distortional as the length of the member increases. 
 

Table 2: Dimensions of channel section. 

Section 
h t b d 

(mm) (mm) (mm) (mm) 
C2.-90-75 90 2.0 75 12 

 
Table 3: Elastic material properties for cold-formed steel. 

Material 
E υ fy 

(MPa) (-) (MPa) 
G450 210×103 0.3 450 

 
In order to gain a deeper understanding of the buckling behavior of the single section under 
consideration, the FSM analysis has been repeated with an increased number of longitudinal terms, 
determined using the feature in CUFSM (Schafer and Adany 2006) that recommends the suitable 
longitudinal terms for each length. The results obtained are verified against finite element (FE) 
simulations obtained using ABAQUS software, see Fig. 5. The linear shell element with reduced 
integration (S4R) was assigned to all plate components. While the enforcement of end boundary 
conditions in the FSM is achieved by using analytical functions that satisfy the support conditions 
a priori, in FE models, the boundary conditions must be prescribed explicitly. In this study, the 
modelling procedure described in (Abbasi et al. 2018) was used to specify simply supported 
boundary conditions in the FE model. It allows free in-plane expansion of each plate component 
at the supports and enables direct comparison with buckling loads obtained from a FS analysis.  

 
Figure 5: Buckling load curves of the channel section obtained using FSM and FE analyses. 

 

As can be seen in Fig. 5, the inclusion of a larger number of longitudinal terms captures another 
two local and distortional minima (L2, and D2) in addition to those depicted in the signature curve. 
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The FSM analysis reveals that the buckling loads for these modes (L2, and D2) are nearly the same 
as those obtained for L1, and D1, respectively. The observed local and distortional buckling mode 
shapes at these minima are shown in Fig. 6(a), and (b), respectively.  

 L1  D1 

 L2 
(a) 

D2 
(b) 

Figure 6: Comparison of (a) local buckling mode shapes; L1 at L = 80 mm, and L2 at L = 160 mm, (b) distortional 
buckling mode shapes; D1 at L = 445 mm and D2 at L = 890 mm. 

  
5.3 Buckling analysis of built-up I-section  
The analysis is focused on single-span built-up columns made from two constituent channel 
sections connected back-to-back using M4.8 fasteners. The constituent sections are the same as 
that analyzed in section 5.2. Fig. 7 shows the geometry and FS discretization of the built-up I-
section.  
 

 
(a) 

 

(b)

 

 
Figure 7: Built-up I-section: (a) geometry and fasteners placement, (b) finite strip discretization. 

 

The fasteners are assumed to be spaced 50 mm apart longitudinally. This spacing is less than 
typical fastener spacings used in practice, chosen to be shorter than the local buckling half-
wavelength so that the fasteners may influence both the local and distortional buckling modes. The 
distance between the first rows of fasteners and the member ends is set to 5 mm. Thus, the shortest 
built-up member considered is 60 mm long. The compound finite strip method with 40 longitudinal 
terms is utilized to analyze the buckling behavior of the considered built-up section. The CSM 
results are presented in Fig. 8 and compared with the FE solutions obtained using Abaqus. As can 
be seen, in both the compound strip and finite element analyses, the inclusion of discrete fasteners 
leads to curves that deviate from the single section curve in the local, distortional and global 
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buckling regions. It is noted that in the FE buckling analysis, the fastener are modelled using 
cartesian connection elements with elastic behavior. According to the graphs presented in Fig. 8, 
a good agreement between the FE and CMS results is achieved.  

 
Figure 8: Comparison of buckling load curves of built-up I-section obtained from the compound finite strip and 

finite element analyses 
 

The buckling mode shapes of the built-up member with lengths of 110 mm, 660 mm, and 3020 
mm are shown in Fig. 9, Fig. 10, and Fig. 11, respectively. In the figures, the first buckling mode 
shapes obtained using CSM are compared with the results of FE analyses. The results in Fig. 9 
indicate similar local buckling modes are obtained using FEM and CSM. For L = 660 mm, the 
buckling mode is distortional, and again the FEM and CSM analyses yield similar buckling mode 
shapes, see Fig. 10. The same applies to the global (torsional) buckling modes obtained for L = 
3020 mm, as shown in Fig. 11. The agreement between the FEM and CSM results shown in Fig. 
8 – Fig. 11, confirm the capability of the proposed CSM analysis to predict the buckling capacity 
and mode shapes of built-up CFS sections with discrete web fasteners. 
 

(a) (b) 

Figure 9: Comparison of the first buckling mode shape of the built-up member at L = 110 mm: (a) FEM, (b) CSM. 
 

  (a)   (b) 
Figure 10: Comparison of the first buckling mode shape of the built-up member at L = 660 mm: (a) FEM, (b) CSM. 
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(a) (c) 

(b) (d) 
Figure 11: Comparison of the first buckling mode shape of the built-up member at L = 3020 mm: (a,b) FEM, (c,d) 

CSM. 
 

The results presented in Fig. 8 demonstrate that the constituent section (single section) experiences 
global buckling when the member length exceeds 1100 mm, whereas for the built-up member, 
global buckling becomes critical when the member length increases above 2500 mm. This 
confirms the effect of composite action between the constituent sections and highlights the 
importance of considering the presence of fasteners in the analysis.  
 

5.4 Modal decomposition of buckling modes for single channel section 
In this example the critical buckling loads of the lipped C-section columns with the cross-section 
shown in Fig. 4 are obtained. The material properties are as follows: E = 210 GPa, G = 105 GPa, 
ν = 0, and fy = 450 MPa. 
 

 
Figure 12: Critical buckling curves for lipped channel columns with pin end conditions using one longitudinal term. 

 

The critical buckling loads for all-modes (solution obtained using Eq. 17) and pure modes 
calculated for pinned simple support conditions are presented in Fig. 12. Using the signature curve 
for pin-ended columns, the buckling lengths for the local and distortional minima are obtained as 
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LCr,L = 80 mm and LCr,D = 450 mm, respectively. The results obtained using mFSM for the pure 
local and distortional deformation modes give identical results, as shown in Fig. 12.  
 

 
 L1 

 
L2  

 
L3 

(a) 

 

 
D1 

 

 
D2 

(b) 

 

 
G1 

 

 
G2 

 

 
G3 

(c) 
Figure 13: Decomposed mode shapes of single C-section at L = 110 mm, (a) Local (b) Distortional (c) Global modes 
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L2  
 

L3 
(a) 
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Figure 14: Decomposed mode shapes of single C-section at L = 660 mm, (a) Local (b) Distortional (c) Global modes 
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The corresponding pure deformation mode shapes obtained using the mFSM are shown in Fig. 13 
and Fig. 14 for the lengths of 110 mm and 660 mm, respectively. As can be seen, only two 
distortional modes are feasible for the considered section, when only one longitudinal term is used 
in the analysis. It can be concluded that the mFSM is able to decompose the buckling solution of 
the section into “pure” modes. 
 

5.5 Modal decomposition of buckling modes for the built-up I-section 
This example analyses the built-up I-section column defined in Section 5.2 using the proposed 
mFSM method. The material constants are as follows: E = 210 GPa, G = 105 GPa, ν = 0, and fy 
= 450 MPa. As there are no other numerical methods available to decompose the buckling modes 
of built-up members with discrete fasteners, the results obtained using mFSM can be only verified 
by studying the all-mode buckling loads and buckling mode shapes. Comparisons are made with 
mFSM results obtained for single section to assess the buckling behavior of the built-up member 
and the obtained pure buckling mode curves. 

 
Figure 15: Critical buckling curves for built-up columns with pin-ended support conditions 

 

The normalized critical buckling loads are calculated using the proposed mFSM and presented in 
Fig. 15. As it can be observed in the local region, the enhancement in the buckling capacity of the 
built-up member in comparison to the single section is insignificant. The difference is attributed 
to the small but finite separation of the webs of the two channel sections which produces shear 
deformations of the fasteners as the web buckles. The closeness of the local buckling loads of the 
single and built-up sections is in agreement with previous results for built-up sections (Abbasi, 
Khezri, and Rasmussen 2017; Abbasi et al. 2018; Khezri, Abbasi, and Rasmussen 2017) and 
analytical studies focused on the influence of fasteners on the buckling load of built-up members 
(Rasmussen et al. 2020). The pure local buckling mode shapes for the built-up member of length 
110 mm are shown in Fig. 16. As it was previously shown in Fig. 9, the critical buckling mode for 
this length is a local mode. A comparison of the modes shown in Fig. 16 with those shown in Fig. 
13(a) for the single section member of the same length reveals that local buckling mode shapes are 
not discernably influenced by the presence of discrete fasteners. It is also noted that the warping 
displacement for local modes is negligible and thus the fasteners are not engaged in the 
longitudinal direction to transfer shear. These observations confirm the mFSM results and the 
conclusion that the built-up section has similar local buckling capacity as the single section. The 
pure distortional buckling mode shapes for the same length (L = 110 mm) are presented in Fig. 17. 
It is noteworthy that the number of distortional buckling modes for the built-up member is 
increased to four modes (here only the first three are shown) from only two modes for the single 
section. This indicates that the mFSM has correctly picked up other possible distortional modes of 
the built-up member. 
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(a) (b) 
(c) 

Figure 16: Pure local mode shapes of built-up I-section at length L= 110 mm (a) first (b) second, and (c) third modes 
 

(a) (b) (c) 
Figure 17: Pure distortional mode shapes of built-up I-section at length L= 110 mm (a) first (b) second, and (c) third 

modes 
 

   

(a) (b) 

 

(c) 
Figure 18: Pure distortional mode shapes of built-up I-section at length L= 660 mm (a) first (b) second, and (c) third 

modes 
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(a) 

 

(b) 

 

(c) 
Figure 19: Pure global mode shapes of built-up I-section at length L= 660 mm (a) first (b) second, and (c) third 

modes 
 

The pure distortional and global buckling mode shapes for the built-up member of length 660 mm 
are shown in Fig. 18 and Fig. 19, respectively. The all-mode buckling analysis of the member of 
this length presented in Fig. 10 indicates that the critical buckling mode is distortional. As can be 
seen in Fig. 15, the buckling capacity of the built-up member in the distortional range is enhanced 
in comparison to the buckling capacity of the single section. In the distortional dominated region 
of the curve, the enhancement increases as the member length increases. This can be explained by 
noting that the warping displacements in distortional modes are not negligible and are proportional 
to the member length. This means that the fasteners are engaged in the longitudinal direction when 
the member undergoes distortional buckling and therefore, the buckling load is increased. Because 
of the composite action between the sections, the range over which distortional buckling occurs 
increases significantly when compared to the single section. The pure uncoupled global buckling 
modes for this length shown in Fig. 19 are those expected for a doubly symmetric sections and 
indicate that the mFSM can correctly predict the pure global buckling modes of a built-up member. 
 

6. Conclusions 
The paper presents a novel method for calculating “pure” buckling modes for cold-formed steel 
built-up sections, termed the modal finite strip method (mFSM). It produces the buckling loads 
and modes of pure local, distortional and global modes, defined to satisfy the specific kinematic 
constraints of these modes. The method first uses the confined strip method CSM) to determine 
the buckling loads and associated buckling modes of a built-up section, accounting for the 
constraints imposed by discrete fasteners, as previously presented by the authors. It subsequently 
uses these buckling modes as input to the modal finite strip method (mFSM), also previously 
developed by the authors, with selective addition of the stiffness terms associated with fasteners..  
 

Examples are provided of CSM and mFSM analyses of a single and a built-up section, constructed 
from the same lipped channel section, the latter by joining two sections back-to-back to form a 
complex I-section. The CSM results are shown to agree with results obtained from finite element 
analyses of the built-up section. The mFSM results of the built-up section are shown to produce 
the pure modes expected of a doubly symmetric complex I-section.  
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