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Prediction of the deformation and local buckling behavior of structural sys-
tems using the deep neural network direct stiffness method (DNN-DSM)

Andreas Müller1, Andreas Taras2

Abstract
This paper presents a novel approach to carrying out a beam-element analysis that accounts for the 
nonlinear  deformation  behavior  of  various  RHS  and  SHS  sections,  ranging  from  mild  to  high- 
strength steel prefabricated by hot-rolling or cold forming. The deep neural network direct stiffness 
method (DNN-DSM), which makes use of deep neural networks (DNN), a subgroup of machine 
learning algorithms and more general artificial intelligence approaches, is used to predict the non- 
linear stiffness matrix terms in a beam-element formulation for the implementation in the direct 
stiffness  matrix  (DSM).  Those  predictions  are  made  by  trained  DNN  models  resulting  from  an 
extensive  pool  of  geometrically  material  nonlinear  simulations  with  additional  imperfections
(GMNIA) using shell based models. First implementations of this method are able to accurately 
predict  the  nonlinear  load-displacement  and  moment-rotation  behavior  of  various  sections  with 
great accuracy, combining the precision of shell analysis and the computational efficiency of beam 
element analysis. Previous published investigations already showed the feasibility and advantages 
of this method but were restricted to the small-scale prediction of the local buckling. This paper 
will go one step further and apply the DNN-DSM method to members, more specifically to col- 
umns and beams dominated ether by normal forces or bending, accompanied by comparisons with
equivalent Abaqus models.

1. Introduction and Motivation

1.1 Problem Definition
The  hypothetical  possibility  of  accounting  for  plastic  distribution  in  structural  design  was  first 
suggested by Ewing (Ewing 1899), although remaining only a theoretical approach due to the lack 
of  physical  tests  and  computational  recourses.  From  the  beginning  of  the  20th century  research 
investigations focused on the advanced plastic analysis of steel structures, in particular members 
and frames, recognizing its potential in plastic redistributions (Meyer 1908, Kazinczy 1914, Kist 
1920,  Gruning  1926,  Maier-Leibnitz  1928,  Maier-Leibnitz  1929,  Fritsche  1930,  Schaim  1930, 
Girkmann 1931, Baker 1938, Baker and Roderick 1940, Baker et al. 1956, Massonnet 1976, Dris- 
coll et al. 1965, Galambos 1968). As a result of these investigations, questions regarding available 
rotation capacities arose, leading to the known concept of cross-section classifications along with
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practice-oriented simplifications; all assumptions go back to a time period where the main goal 
was  a  practically  suited development  of  analytical  approximations  suited  for hand  calculations. 
Nowadays,  code  provisions  (EN  1993-1-1  2006,  AISC  360-16  2016)  still  incorporate  these  as- 
sumptions, leading to conservative design conclusions, especially for materials with pronounced 
hardening capacities and higher strength steel grades. The traditional separation of analysis and 
verification,  whereby  both  are  dependent  on  the  cross-sectional  slenderness  and  corresponding 
classification into categories ranging from stocky to slender, affects high strength steel (HSS) sec- 
tions in particular. These often would need to be classified as slender cross-sections, forcing de- 
signers  to  forego  all  plastic  redistribution  even  when  this  is  in  fact  not  fully  justified,  typically 
using design rules with effective widths in accordance to standards such as Eurocode 3 (EN 1993- 
1-5:2006)  or  comparable  international  codes.  Available  deformation  capacities  (Toffolon  et.al. 
2019a, Toffolon et.al. 2019b, Toffolon and Taras 2019c, Toffolon and Taras 2019d, Meng et.al. 
2019, Müller and Taras 2019), different material properties between hot rolled and cold-formed 
structural  profiles  (EN  10210-2  2006;  EN  10219-2  2006)  including  strain  hardening  and  more 
precise material laws, proposed by (Yun and Gardner 2017, Yun and Gardner 2018) are generally 
neglected in these traditional approaches.

Advanced nonlinear analysis methods with  shell finite elements, so called GMNIA simulations
(geometrically material nonlinear analysis with imperfections) are capable of accounting for those 
positive effects. Nevertheless, being computationally time intensive and complex these methods 
remain  not  suitable  for  the  use  in  practice  at  its  current  point.  Approaches,  which  combine  the 
efficiency  of  beam  finite  elements  and  the  ability  to  account  for  slenderness-dependent  defor- 
mation capacities and nonlinear redistribution are being developed within the CSM (Gardner 2008, 
Fieber 2019, Walport 2019) for different materials.

This paper presents the initial steps that were taken to develop  a novel approach to carry out a 
beam-element analysis that accounts for the nonlinear load-displacement behaviour of hot rolled 
and cold-formed SHS and RHS sections (DIN EN 10210-2 2006, DIN EN 10219-2 2006) of dif- 
ferent local slenderness. It build up on investigations discussed in (Müller and Taras 2022 a), Mül- 
ler and Taras 2022 b), Müller and Taras 2022 c)) and presents initial steps towards its implemen- 
tation within the DSM framework, as well as first results with exemplary comparisons with shell 
finite element results and experiments.

1.2 Proposed Method
Fig 1 a) shows the general implementation within the elastic DSM formulation using the example 
of a truss frame, dominated by normal forces. An isolated beam element represented by the local 
elastic stiffness matrix Klocal is constructed, assembled to a global system of equations and solved 
by calculating the inverse global stiffness matrix and subsequently the associated displacements 
Usys.  Here  only  the  terms  dominated  by  the  normal  force  are  highlighted  in  red,  since  the  first 
implementation  steps  presented  within  this  paper will  focus  exclusively  on  this  load  case.  The 
novel method denominated as DNN-DSM (deep neural network direct stiffness method) makes 
use of machine and deep learning techniques (ML and DL) to predict the nonlinear stiffness matrix 
of a beam element under different deformations and rotations acting in plane.

A general overview, starting with data development up to the method Implementation, is presented 
within Fig. 1 b). The developed deep neural network (DNN) models are based on data sets derived
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from a pool of numerical (LBA and GMNIA) shell elements simulations, designed in such a way 
that only local buckling is the driving instability phenomena for the investigated cross-sections (s. 
Sec. 2.1). Therefore, the local length of the elements was set to the maximum of whether the height 
or the width of the cross-section. This assumption was made within a first feasibility study. Thor-
ough investigations on cross-section and load dependent buckling lengths are under way, follow-
ing up the research carried out by (Fieber 2019). The extracted data includes geometrical and me-
chanical parameters based on (DIN EN 10210-2 2006, DIN EN 10219-2 2006) as well as directly 
simulation related outputs including the cross-section dependent displacement u and the tangent 
stiffness KT. Subsequently, the resulting database is used for the training of the DNN models, with 
the tangent stiffness as the governing output parameter (s. Sec. 2.2). The DNN based prediction of 
the tangent stiffness KDNN,local is thereby evaluated for every discretized beam element within a 
global structure, assembled to a global stiffness matrix KDNN,sys and used to evaluate a differential 
force ∆Fsys, which is calculated under the consideration of incremental displacement steps ∆Usys. 
 

 

 

 

Figure 1: a) Direct Stiffness Method (elastic formulation), b) Initial formulation of the Deep Neural Network Direct
Stiffness Method (DNN-DSM), published in (Müller and Taras 2022a), Müller and Taras, 2022b)

2. Finite Element Model Assumptions
The developed Abaqus models make use of iso-parametric shell elements with reduced integration
(type S4R in Abaqus), with a mesh density of around 60 elements in circumferential and (depend- 
ing on the total member length) 50 – 100 elements per meter in longitudinal direction. The geom- 
etry of the profiles is based on European standards (EN 10210-2:2006, EN 10219-2:2006) with a 
local length L (longitudinal direction) set as the bigger value of either the width W or the height H 
of the cross-section. Therefore, the loads and deformations are applied through defined reference 
points (RF-Points) which are located at the upper and lower edge of the cross-section (s. Fig. 2).
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Figure 2: a) Finite element model of an RHS section; b) Deformation in the direction of the longitudinal axis 
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These are connected through multi-point constraints (MPC-Beam formulation) to associated node 
sets along the upper and lower profile outer edge (s. Fig. 2 a) shown exemplary for the quarter 
range of  the  cross-section).  This definition implies  a  rigid  connection  between  the nodes at  the 
extremity and a reference node at the centroid of the respective sections. All boundary conditions 
were set as fixed, except for the deformation in the longitudinal direction. For the purposes of this 
study, an elastic-ideal plastic material model was used, with an infinite yield plateau assumed at a 
stress level σvon-Mises = fy, without an explicit consideration of residual stresses within the Abaqus 
models. The validation of the Abaqus model is based on an extensive analytical, numerical and 
experimental campaign, conducted by the authors and other researchers between the years of 2017 
and 2019 at the University of Bundeswehr Munich, in the context of the EU-funded (RFCS) project 
HOLLOSSTAB (Grand Nr. 2015-709892). The reader is referred to the references of the project 
for further details in (Toffolon et.al. 2019a, Toffolon et.al. 2019b, Toffolon and Taras 2019c, Tof- 
folon and Taras 2019d, Meng et.al. 2019).

The  simulation  process  for  the  generation  of  the  required  data  sets  is  always  performed  in  two 
steps. In a first step an LBA analysis is carried out in order to identify the elastic critical buckling 
resistance  of  the  cross-section  and  the  eigenmode  shape  as  the  critical  imperfection  form.  In  a 
second step, a GMNIA simulation is performed to determine an elasto-plastic buckling load – the 
realistic  buckling  resistance  that  considers  both  material  and  geometric  nonlinearities  –  of  the 
cross-section as well as the courses of the pre- and post-buckling range. The nonlinear calculations
in Abaqus were performed using the static general stress analysis.

3. Data Development
The developed data sets for the SHS and RHS profiles are chosen taking into account parameters 
found  in  EN  10210-2:2  2006  and  EN  10219-2:2006  for  hot-finished  respectively  cold-formed 
structural  hollow  sections.  A  total  of  361  European  profile  shapes  was  taken  into  account.  All 
additional properties for this study are summarized in Tab. 1. This parameters form the basis for 
further LBA and GMNIA simulations conducted in Abaqus (Abaqus, 2016).

Table 1: Investigated profiles (DIN EN 10210-2 2006, DIN EN 10219-2 2006) and applied parameters
Used Profiles  Number of Sections  Dimension Range c/t

88SHS hot rolled 8.0 – 47.62
8.0 – 47.62SHS cold-formed 88
9.52 – 56.25RHS hot rolled 93
12.5 – 55.55RHS cold-formed 92

ValuesNumber of ParametersUsed Parameters
Steel grade fy 3 S355, S460, S700 

Imperfection amplitude e0 B/200, B/300, B/4003

 
The parameters from Tab.1 led to a total amount of 361 LBA and 6492 GMNIA simulations for 
the load case of pure compression N and pure bending M. This data basis is subsequently used for 
the extraction of the input features used for the training of the DNN models. Therefore, the LBA 
analysis output from Abaqus was used to extract the cross-section dependent elastic critical buck-
ling load. The GMNIA analysis results, on the other hand, were used to determine the incremental 
deformation steps ∆un and an associated differential force ∆Fn, see Fig. 3 a).  
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Figure 3: a) Data extraction from Abaqus simulations, b) Overview of selected features 

 
These values were subsequently used to calculate an incremental tangent stiffness KT,n, for the 
entire displacement and rotation range of a cross-section in the pre- and post-buckling range. See 
Eq.(1) for the load case of pure compression. 
 

 
F
nK

T, n u
n





 (1) 

 
4. DNN Model Development and Results 
 
4.1 Preface to Deep Neural Networks 
A common representation of an artificial neuron (Frochte 2018) can be written as follows with 
Eq.(2). The optimization process in a neural network uses backpropagation as a technique to up-
date the weights within a training procedure. 
 

  ( )y x a W x b
n n

     
 

 (2) 

 
It consists mainly of three parameters, (i) the weights W, which are updated during the training of 
the DNN model throughout a preset amount of epochs (optimization steps), (ii) a bias b as an ad-
ditional trainable nonzero value which is added to the summation of weighted inputs of a neuron, 
(iii) a represents the activation function, with an inherent predefined threshold. Throughout the 
presented investigations the ReLU function from Eq.(3) was used.  
 

 
0, x 0

Re LU : f (x) max
x, x 0

 
   

 (3) 

 
The overall estimated accuracy of a neural network is highly dependent on the quality and distri-
bution of the input parameters. In many cases it is therefore necessary to transform or scale these 
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values, using different methods like normalization (s. Eq.(4)) or standardization (s. Eq.(5)) as fol-
lows (Frochte 2018). Data transformation eliminates the major problem of multiple features having 
different magnitudes, ranges and units by scaling them down. Therefore, data normalization is 
used to scale the magnitudes of available features between the values of 0 and 1 (or -1 and 1), 
corresponding to the lowest and highest values. Standardizing the date means rescaling it, while 
the mean value is set to 0 and the standard deviation to 1. In a lot of engineering applications data 
standardization shows better performance evaluations, since outliers are taken better into account.  
 

 
(i) (i)x x(i) minx̂

(i) (i)x x
max min





 (4) 

 

 
(i) (i)x x(i)x





  (5) 

 
with: 

(i)x         Mean value of an input feature 
           Standard deviation of an input feature 
 

 
 

 

n 2
ˆy y

i i2 i 1r 1
n 2

y y
i i

i 1


 




 (6) 

 
with: 

ˆy , y , y
i i i

       Actual output, predicted output, standard deviation 

 
The model accuracy is measured by using the r2 value from Eq.(6), a common metric for regres-
sion problems.  
 
4.2 Preliminary Investigations and Conclusions 
Preliminary investigations involved the assessment of the data, i.e. its distribution and the influ-
ence on the performance, predictions in the pre- and post-buckling range, dimensions of the input 
and output parameters, as well as the feature importance. This investigations are presented in more 
detail in (Müller and Taras 2022 a), Müller and Taras 2022 b), Müller and Taras 2022 c)) and can 
be summarized as follows:  
 

i. The raw data extracted from Abaqus needs to be artificially extended in the elastic range. 
This can be attributed to a large initial step size in the GMNIA calculations, which was 
chosen in the solver settings to minimize the computational effort.  

ii. It was obtained that a splitting between hot rolled and cold-formed SHS and RHS profiles 
and the pre- and post-buckling range led to a significantly better performance of the DNN 
models.  
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iii. The input features were standardized using Eq.(5). The output, i.e. the predicted values 
were normalized by the elastic stiffness T eK K .  

iv. Feature importance investigations were evaluated with decision tree-based algorithms. 

 
 

 

 

Two methodologies (Random Forest Regressor (Breiman 2001) and XGBoost Regressor
(Chen and Guestrin 2016)) proved to be successful in the case of the present data sets.

5.3 DNN Architecture and Hyperparameters
The used hyperparameters for the training of the DNN models are summarized within Tab. 2. A 
total of 193 individual combinations was tested within the framework of preliminary investigations 
using the Random Search Method. this workflow is suitable in order to detect the overall tenden- 
cies within the DNN architecture. All calculations were performed on the basis of a train and test 
philosophy, meaning that a specific data amount was used for the training (80%) and an additional
independent amount for the validation process (20%).

Table 2: Estimated hyperparameters 
SelectionModel Parameters

Hidden layer 1 27(neurons)
Hidden layer 2 27(neurons)
Hidden layer 3 18(neurons)
Hidden layer 4 9(neurons)

ReLUActivation function
AdamOptimizer
0.0005Learning rate

 
 
 
Fig. 4 presents some of the results, estimated from the DNN model for hot-rolled RHS and SHS 
profiles in the pre-buckling range. The x-axis represented the simulated values and the y-axis the 
predicted values. Fig. 4 a) and c) show exemplarily the overall prediction of the tangent stiffness 
KT. These values are used to estimate the accumulated maximum force, presented in Fig. 4 b) and 
d). For additional information the reader is referred to (Müller and Taras 2022 a), Müller and Taras 
2022 b), Müller and Taras 2022 c)). 
 
 
7. DNN-DSM Implementation and Initial Results 
 
7.1 Implementation 
The general implementation is based on the generic definition of the direct stiffness method (DSM) 
for beam elements. The initial problem is derived from Eq.(6).  
 
 loc e,loc locF K u   (7) 
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Figure 4: a) Simulation (KT-GMNIA) vs. prediction (KT-Predicted) for SHS profiles; b) Simulation (Fmax-GMNIA) vs .prediction 
(Fmax-Predicted) for SHS profiles; c) Simulation (KT-GMNIA) vs .prediction (KT-Predicted) for RHS profiles; d) Simulation 
(Fmax-GMNIA) vs .prediction (Fmax-Predicted) for RHS profiles 
 

With the elastic local truss stiffness e,locK  as follows: 

 

 e,loc

1 0 1 0

0 0 0 0EA
K

1 0 1 0L

0 0 0 0

 
 
  
 
 
 

 (8) 
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Figure 5: Deformation and rotation definition for a) the case of pure compression; b) the case of pure bending 
 
 
After forming a global system of equations sys e,sys sysF K u  , the nodal displacements sysu  due to a 

given load sysF  are determined by taking the inverse of system stiffness: 

 
 1

sys e,sys sysu K F   (9) 

 
The DNN-DSM makes use of this implementation to predict a local nonlinear tangent stiffness 
matrix i

T ,loc ,predK  according to a given nodal deformation i
locu , applied through incremental defor-

mation steps i 1 i 1 i
loc loc locu u u     on the local element level. In this consideration  f X  is the pre-

diction done by the DNN model. X  is the 2D matrix describing the data set n mX   correspond-
ing to the used model features. The accumulated displacement vector locu X  is part of the used 

features space. Eq.(10) describes the calculation of the incrementally derived force i 1
loc ,predF  . 

 

   i 1 i 1 i 1
loc,pred loc e,loc locF f X u K u       (10) 

 
In more general terms, the calculated absolute force i 1

loc,predF   at any given local element displace-

ment i 1
locu   can be described by the following equation.  

 

   
m

i 1 i 1 i 1
loc ,pred loc e,loc loc

i 0

F f X u K u  



    (11) 

 
The implementation of the beam element follows a similar approach by modifying the beam stiff-
ness matrix according to a given rotation  , which is considered as one of the features for the 
DNN model prediction. The corresponding definition of the rotation   for an element is stated in 
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Fig. 5 b). An equal constant rotation at both ends is assumed within the framework of the presented 
method. Therefore, the resulting constant moment along the element length L  is defined through 
Eq.(12). Note that this formulation is assumed only in the elastic range.  
 

 
2EI

M
L

   (12) 

 
The general notation for the elastic local beam element stiffness is represented by Eq.(13). Further, 
the stiffness component for constant bending can be factored out to be more in the line with the 
implementation idea.  
 

 

3 2 3 2 2 2

2 2

e,beam

3 2 3 2 2 2

2 2

EI EI EI EI 6 3 6 3
12 6 12 6

L L L L L L L L
EI EI EI EI 3 3

6 4 6 2 2 1
2EIL L L L L LK

EI EI EI EI 6 3 6 3L
12 6 12 6

L L L L L L L L
EI EI EI EI 3 3

6 2 6 4 1 2
L L L L L L

       
   
       

    
        
   
   

    
   

 (13) 

 
Again, the predicted incremental force vector is written as follows, following the approach within 
the truss implementation from Eq. (10). Note that i 1

beam,mean   is the mean between the rotation at 

node A and B from Fig. 5 b).  
 

   

2 2
i 1 i 1

beam,pred( AB ) beam( AB )
i 1 i 1
beam,pred( AB ) beam( AB )i 1

beam,meani 1
beam,pred( BA ) beam

2 2i 1
beam,pred( BA )

6 3 6 3

L L L L
V v3 3

2 1M 2EI L Lf X
6 3 6 3LV v
L L L LM
3 3

1 2
L L




 

 






  
   
                
     

 
 

i 1
( BA )

i 1
beam( BA )





 
 
 
 
 
  

 (12) 

 
7.2 Step Size Influence  
The incremental step size, equivalent to the incremental nodal deformation i 1 i 1 i

loc loc locu u u    , is 

discussed within Fig. 6 regarding on its influence on the prediction with respect to the GMNIA 
simulation. The x-axis is always showing the nodal displacement, the y-axis the corresponding 
force at each increment. The ground truth is given by the GMNIA simulation, here shown as a 
black line. The green line is the DNN model prediction in the pre-buckling range, using exactly 
the same deformation steps as extracted from the Abaqus FE shell calculation, i.e., the data that 
the DNN model was trained on. The dotted grey lines represent the DNN-DSM calculation, using 
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a different amount of incremental deformations locu  until reaching a defined locu . All diagrams 

show exclusively the pre-buckling deformation range.  
 
A clear influence can be drawn from the size of the incremental deformation. With decreasing step 
size the accuracy of the prediction start to decrease. This is illustrated through Fig. 6 a), b) and c), 
where the step size decreases from 20 to 4. This can be explained through the following steps. The 
prediction for i 1

T ,locK   is done by using an absolute deformation i 1
locu   at a current deformation of i

locu

. Therefore, at points with stiffness jumps, i.e. a kink in the load-deformation curve, predictions 
with too large step sizes may lose stiffness too early.  
 
To avoid this problem, a step size optimizer can be introduced, in which the step size is dynami-
cally adjusted dependent on an error definition from the residuum. In the context of Fig. 6 d) the 
step size was halved if the calculated residuum is higher than a predefined threshold value. This 
automatically leads to an accumulation of calculations in areas with larger stiffness changes and 
thus an increase in computational effort. Nevertheless, this strategy enables a save computational 
propagation with a small number of steps and still a high prediction accuracy.  
 
 
7.3 DNN-DSM Model Evaluation 
Initial investigations presented herein focus exemplary on the influence of modelling approaches 
within the DNN-DSM implementation and comparisons with 4 point bending tests from literature 
(Wang et al. 2016).  
 
Fig. 7 and 8 illustrate GMNIA simulations with different ascending lengths, always composed of 
a multiple of the buckling length (  L max H ,W  being the maximum of either the profile height 

or the width.  
 
Fig. 7 shows an SHS 300×6.3, S690 profile with the length of 600 mm and 900 mm. The GMNIA 
Abaqus simulations shows in the case of the 600mm member a constant buckling over the whole 
length forming two main buckling fields. Thus, the deformation of the whole member is more 
pronounced in the post-buckling region. A similar behavior can be achieved with DNN-DSM 
model 1 with equivalent imperfection amplitudes B/200. In addition, model 2 uses two different 
imperfection amplitudes, B/200 and B/300, in order to achieve buckling in only one buckling field. 
This leads, in particular, to a larger drop of the load-deformation curve within the post-buckling 
range. This behaviour is somehow logical, since the deformations are not distributed over the 
whole member length, but are concentrated in one field.  
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Figure 6: Influence of the amount of steps on the prediction accuracy a) 20 steps; b) 10 steps; c) 4 steps; d) dynamic 
step optimization 
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Figure 7: Comparison between GMNIA simulations and two DNN-DSM model approaches a) member length equal 
to 600mm; b) member length equal to 900mm 
 
Fig. 7 b) show the results for the member length of 900 mm. In contrast to Fig. 7a), buckling arises 
exclusively in one field in the middle of the member, leading to a steeper drop of the load-defor-
mation curve in the post-buckling range. DNN-DSM model 2 reproduces the simulated GMNIA 
behavior nicely, although slightly phase shifted with respect to the maximum force.  
 
A similar behaviour as shown in Fig. 7 a) for L = 600 mm can be observed from Fig. 8 a) L = 1200 
mm. Again, buckling is introduced over the whole length of the member, leading to a pronounced 
post-buckling behaviour. This behaviour is best reproduced by DNN-DSM model 1, assuming 
equivalent imperfections amplitudes for each predicted element. Fig. 8 b) indicates the results for 
the member length of 1500 mm. Two buckles, at the top and the bottom occurred within the 
GMNIA simulation. According to this, 3 different DNN-DSM models were implemented to ob-
serve the overall load-displacement prediction. Model 1 uses an equivalent imperfection amplitude 
with B/200. Model 2 uses two imperfection amplitudes, B/200 and B/300 in order to force the 
model to buckle exclusively in one field. Model 3 uses the same imperfection approach as Model 
2, with the difference that buckling is introduced in the upper and lower element only.  
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Figure 8: Comparison between GMNIA simulations and two DNN-DSM model approaches a) member length equal 
to 1200mm; b) member length equal to 1500mm 
 
 
According to the overall prediction of the pre- and post-buckling range DNN-Model 2 (buckling 
in one element) leads to load-deformation curve similar to one produced by GMNIA. Again, a 
displacement shift at the point of the maximum force is identified. This behavior is exclusively 
attributable to the GMNIA Abaqus simulations simplified in the first step, where a large solver 
step time was initially selected in order to speed up the calculation and prove a basic method fea-
sibility. Evaluations with more refined load-displacement predictions are under way and will be 
presented in future publications.  
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Figure 9: 4 point bending tests on hot-finished hollow sections by (Wang et al. 2016), here for an SHS50×5 profile a) 
S450: b) S690 
 
Fig. 9 presents a comparison between 4 point bending tests performed by (Wang et. al 2016) and 
own DNN-DSM beam predictions. The experimental set up is exemplary presented within Fig. 9 
b). The loading was introduced in the third points of the beam. The length of the third correspond 
to 533.3 mm in the experiment. Further information shall be taken from (Wang et al. 2016). The 
DNN-DSM model is depicted in Fig. 9 a). The third lengths deviate slightly from the lengths in 
the experimental result, since the current model implementation is based on fixed local lengths, 
linked to the maximum value of the cross-section height or width, here being always a multiple of 
50 mm.  
 
The diagrams show a normalized representation of the moment-rotation output, normalized by the 
plastic rotation and moment in the x- and y-axis, respectively. The DNN-DSM model results are 
in both representations of Fig. 9 below the experimentally derived curves, although showing a 
similar overall behavior in the elastic and plastic range. The differences are attributed to simplifi-
cations within the current model accuracy, which in this study consisted of a simplified bilinear 
material model with a perfectly plastic plateau assumed for all material grades, Abaqus solver 
settings leading bigger step sizes within the calculation and current implementation boundaries 
constrained by fixed buckling lengths.  
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8. Conclusions and Outlook
The  presented  paper  describes  first  findings  and  results  towards  a  novel  method  (DNN-DSM), 
combining the computational advantages of beam-element models with the accuracy of numerical 
shell-element based simulations. The connection is made by using predictive models based on the 
concepts and techniques from machine and deep learning, trained and tested on data sets derived 
from a pool of Abaqus shell element simulations. Preliminary investigations on feature engineer- 
ing,  i.e.  data  transformation,  data  splitting  and  investigations  on  feature  importance,  were  pre- 
sented in previous publications (Müller and Taras 2022a), Müller and Taras 2022b), Müller and 
Taras 2022c)) and therefore only presented informatively.

Initial implementation results with differen modelling approaches of the DNN-DSM are presented 
for the load case of pure compression and pure bending, respectively. The overall results fit the 
GMNIA  simulations  as  well  experimental  results,  providing  the  framework  for  additional 
refinements throughout the upcoming research. The current work focuses on modeling approaches, 
2nd order instability effects and the extension of the method to frame structures.
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