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Abstract 

In this paper, the critical buckling behavior of haunched steel plate girders subjected to shear 

loading is investigated in depth. The study is conducted through linear buckling analysis using the 

finite element method. First, the results are validated with previous results for simply supported 

rectangular and nonrectangular web panels. Thereafter, an extensive parametric study is conducted 

to investigate the influence of various geometric parameters including the inclination angle, the 

panel aspect ratio, the size of the flanges and the presence of longitudinal stiffeners on the buckling 

coefficients. Finally, the results are employed to develop expressions for the shear buckling 

coefficients for longitudinally stiffened-haunched steel plate girders taking into account the 

forementioned parameters. 

 

 

1. Introduction 

In modern construction, sustainability has become an important factor in structural design. In 

sustainable design, the use of traditional materials is optimized or new materials are employed. In 

this sense, girder with haunches, also called tapered girders or nonrectangular panels, are 

increasingly employed particularly in the design of steel bridges curved in elevation. In this case, 

the girder depth is reduced from intermediate supports (maximum depth) to mid span (minimum 

depth). Over the last decades, tapered girders have been the focus of several research projects, 

nevertheless this paper is aimed at analyzing tapered plate girder subject to shear. 

 

Usually, two types of analysis are performed to investigate the shear response of tapered steel 

girders, ultimate strength analysis and linear buckling analysis. The shear strength of unstiffened 

tapered girder webs has been investigated experimentally and numerically (Mirambell and Zarate 

2000, Zarate and Mirambell 2004, Real et al. 2010, Bedynek et al. 2013, Bedynek 2014, Bedynek 

et al. 2017, Ibrahin et al. 2020, Sediek et al. 2020). The effect of longitudinal stiffening on the 

shear strength of tapered plate girders was also investigated (Bedynek et al. 2013, Bedynek 2014). 

Compared to flat web plates, corrugated plates offer an enhanced out-of-plane stiffness that can 

increase the shear strength of tapered girders (Hassanein and Kharoob 2014, Hassanein and 
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Kharoob 2015, Zevallos et al. 2016). Linear buckling analyses of unstiffened tapered web girder 

have also been performed (Bedynek et al. 2013, Bedynek et al. 2014, Ibrahim et al. 2020; 

AbdelAleem et al. 2022). In these linear analyses, the influence of the girder flanges was 

disregarded. 

 

Recently, the strength of longitudinally stiffened tapered girder web panels subjected to combined 

bending and shear was investigated experimentally and numerically (Poroustad and Kuhlmann 

2018, Poroustad and Kuhlmann 2018, Kuhlmann et al. 2020, Poroustad and Kuhlmann 2021). In 

these studies, the tapered girders had one horizontal flange and an inclined one, and the 

longitudinal stiffener was placed either parallel to the upper or lower flange. Furthermore, in the 

loading protocol the inclined flange was always under compression. 

 

As seen above, there is a still a need to investigate the critical buckling response of longitudinally 

stiffened-haunched girders subject to shear. Therefore, this paper aims at investigating the linear 

buckling response of this type of girders. The study in conducted numerically through linear 

buckling analysis using the finite element method. Firstly, a numerical model is built for simply 

supported rectangular panel subject to shear loading. Once the model is validated, the geometry is 

extended to longitudinally stiffened-haunched girders. After that, a parametric analysis is 

performed to investigate the influence of various geometric variables including the inclination 

angle, the panel aspect ratio, the size of the flanges and the presence of longitudinal stiffeners on 

the buckling coefficients. In the end, the results from the parametric study are employed to develop 

expressions for the shear buckling coefficients for longitudinally stiffened-haunched steel plate 

girders. 

 

2. Numerical modeling 

Fig. 1 shows the nomenclature used herein for longitudinally stiffened-haunched plate girders. A 

finite element model is developed using the software ANSYS (ANSYS 2022). Shell 181 elements, 

with four nodes and six degrees of freedom on each node are employed to model the girder 

components (flanges, web and stiffener). A unit load is applied downward in the web at the lower 

height end, as shown in Fig. 2. Through eigenvalue buckling analysis, critical buckling stresses cr 

are computed, and according to the theory of plates stability, buckling coefficients are obtained. 

The critical buckling shear stress for a simply supported rectangular plate is expressed as 

 

 𝜏𝑐𝑟 = 𝑘𝑠
𝜋2𝐸

12(1−𝜈2)
(

𝑡𝑤

ℎ
)

2

 (1) 

 

where ks is the shear buckling coefficient, E is the modulus of elasticity,  is the Poisson’s ratio, h 

is the web depth, and tw is web thickness. 

 

2.1 Geometry and parameters 

Table 1 presents the variables and their range for the parametric study. This geometry is intended 

to recreate the behavior of haunched girders near the supports of bridges, in which the inclined 

flange is under compression and the tension field is developed in the short diagonal. Through the 

analysis, the longitudinal stiffener is always located from mid height of the lower end (h0 /2), and 

varies its inclination: horizontal, parallel to the inclined flange, and from mid-height (h1 /2) to mid-

height (h0 /2). 
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Figure 1: Geometry of longitudinally stiffened-haunched plate girder (Nomenclature) 

 
Table 1: Parameters 

Parameters 

Dimension Value 

h0 [mm] 1000 

bf h1/6 

° 0, 10, 15, 20, 30 

a/h0 1, 2, 3 

h1/tw 150, 200, 300 

tf /tw 1, 2, 3 

s 0, 10, 20, 60, 150 

Stiffener position Horizontal, Inclined, Mid-Height 

E [MPa] 210000 

v 0.3 

 

 
Figure 2: Boundary conditions. 
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The boundary conditions are shown in Fig. 2 and Table 2. The load is applied downward at the 

web in the lower end. With this configuration, the tension field is developed in the short diagonal 

and the inclined flange is under compression.  

 
Table 2: Boundary conditions 

Location 
Degree of freedom 

Ux Uy Uz Rx Ry Rz Force 

1 R R R R  F R 0 

2 F F R R F R -Uy 

3, 4, 5, 6 F F R R R  F 0 

*F denotes free and R denotes restrained 

 

2.2 Validation procedure 

The following material properties were used throughout the study: E= 210000 MPa and v = 0.3. A 

mesh converge analysis was conducted in Fig. 3 for an unstiffened girder with small flanges, with 

the following dimensions a/h0 = 1,  = 15°, h1/tw = 150, and tf  /tw = 1. As seen in Fig. 4, the variation 

in the buckling coefficient is small when for element sizes of 40 mm, hence this element size is 

chosen for further analysis. 

 
Figure 3. Mesh convergence analysis 

 
Figure 4. Final mesh 

 

In the literature (Timoshenko and Gere 1936, Ziemian 2010), the shear buckling coefficient for a 

simply supported rectangular plate subjected to shear is 

 

 𝑘𝑠 = 5.34 + 4 (
ℎ

𝑎
)

2

 (2) 

 

Also, for non-rectangular simply supported plates, (Bedynek, 2013) proposed four different 

equations depending on the geometry of the plate and loading direction. For a girder with the 

inclined flange under compression and the diagonal tension field developed in the short diagonal,  

 

 𝑘𝑠 = 5.5(
𝑎

ℎ𝑤
)0.8 tan(𝛷) + 8.7 (

𝑎

ℎ𝑤
)

−0.8

 (3) 
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An additional validation is conducted as follows considering a simply supported plate, with 

dimensions a/h0 = 2, and h1/tw = 200. Table 3 presents a comparison between the shear buckling 

coefficients computed through the finite element model and the those obtained with Eqs. (2) and 

(3). It is worth pointing out that the value used for h in Eq. (2) is the major height h=h1. 

 
Table 3: Model validation 

Φ ks 
FEM ks  

Eq.(2)
 ks

Eq. (3) 
ks

FEM
 /  

ks 
Eq.(2)

 

ks
 FEM /  

ks
Eq. (3) 

0 6.67 6.34 6.59 1.05 1.01 

5 8.08 7.17 8.77 1.13 0.92 

10 8.78 7.70 9.65 1.14 0.91 

20 9.48 8.33 10.46 1.14 0.91 

30 10.97 9.98 11.95 1.10 0.92 

 

According to the presented results, with differences between the model and the literature of less 

than 15%, the model is then validated. 

 

3. Parametric study 

For the sake of generalization, the effect of five variables in the shear buckling coefficient is 

studied. The variables are: The flexural rigidity of the stiffener γs, the web slenderness h1/tw, the 

ratio of flange thickness to web thickness tf /tw, the aspect ratio a/h0 and the haunch inclination 

tan(𝛷The different values of the parameters are shown in Table 1, resulting in 2025 cases to run. 

The analysis of the results is presented next.

 

3.1 Influence of the stiffener position and flexural rigidity γs 

The stiffener flexural rigidity is defined as: 

 

 𝛾𝑠 = 10.9
𝐼𝑠𝑡

ℎ𝑤𝑡𝑤
3 (4) 

 

where 𝐼𝑠𝑡 is the second moment of area of the stiffener respect to an axis placed at the centroid of 

the area including the stiffener and a portion of the web of 15𝑡𝑤 on each side as defined by the 

Eurocode (EC3, 2006). This code also states that when calculating the shear buckling coefficient, 

the value of the second moment of area must be divided by three. 

 

Fig. 5 shows the variation of the buckling coefficient ks in terms of γs. The main analysis is that 

after a reaching a certain value of γs, there is not a significant increase of the value of ks. This value 

is the transition between the behavior of a weak stiffener and the behavior of a strong stiffener. As 

presented in the previous plots, the value of minimum rigidity for a strong stiffener is γs=20. After 

this value the buckling coefficient remain almost constant, therefore the conclusion is that for a 

strong stiffener, there is no influence of the flexural rigidity on the value of ks. Subsequently, the 

following analyses are performed using only strong stiffeners. 
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(a) ° 

 
(b) ° 

 
(c) ° 

 
(d) ° 

Figure 5: Buckling coefficients ks in terms of γs  (a/h0=1, h1/tw =300,  tf /tw=1). 

 

  
(a) Horizontal stiffener   

(b) Inclined stiffener 

  
(c) Mid-height stiffener 

Figure 6: Influence of the stiffener placement.  

 

Fig. 6 shows a significant enhancement in the buckling coefficient with the usage of a longitudinal 

stiffener. On average, the use of a strong horizontal stiffener increases ks by a 78% (Fig. 6a). A 
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strong stiffener placed parallel to the inclined flange increases ks on the average by a 179% (Fig. 

6b), and a strong stiffener placed at both of mid heights increases ks by a 124% (Fig. 6c). 

 

3.2 Influence of the web slenderness h1/tw 

Fig. 7 shows the variation of ks with respect to the web slenderness h1/tw, for γs =150, a/h0=2 and tf 

/tw=2. 

 

            
(a) °  (b) ° 

 

      
(c) °  (d) ° 

Figure 7: Buckling coefficients ks in terms of h1/tw (γs =150, a/h0=2, tf /tw=2) 

 

It is clearly observed that the slenderness parameter h1/tw has a diminished impact on the shear 

buckling coefficient, as long as the web is slender h1/tw > 150 and the code limit is maintained h1/tw  

< 300 (AASHTO 2020). For this reason, the following results will not include the aforementioned 

parameter. 

 

3.3 Influence of the thickness ratio tf /tw 

From Fig. 8 to Fig. 11 the variation of buckling coefficient ks in terms of tf  /tw is shown. 

 

 
 (a) a/h0=1  (b) a/h0=2 (c) a/h0=3 

Figure 8: Buckling coefficients ks in terms of tf /tw (γs = 150, ° 

 


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
 (a) a/h0=1  (b) a/h0=2 (c) a/h0=3 

Figure 9: Buckling coefficients ks in terms of tf /tw (γs =150, ° 




 (a) a/h0=1  (b) a/h0=2 (c) a/h0=3 

Figure 10: Buckling coefficients ks in terms of tf /tw (γs =150, ° 



 
 (a) a/h0=1  (b) a/h0=2  (c) a/h0=3 

Figure 11: Buckling coefficients ks in terms of tf /tw (γs =150, ° 

 

It is observed that for all cases, there is an increase in the buckling coefficient as the flange-to-web 

thickness ratio is greater. This is expected, as the thickness of the flanges increase, the boundary 

condition of the web to flange juncture approaches to a fixed support, thus increasing the rigidity 

and the shear capacity of the girder. As the variation of this ratio makes the buckling coefficient 

change, this value is included in the analysis. 

 

3.4 Influence of the panel aspect ratio a/h0 

From Fig. 12 to Fig. 15, the variation of the buckling coefficient ks in terms of the aspect ratio a/h0 

is presented. 

 
(a) tf /tw=1 (b) tf /tw=2 (c) tf /tw=3 

Figure 12: Buckling coefficients ks in terms of a/h0 (γs =150, ° 
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
(a) tf /tw=1 (b) tf /tw=2 (c) tf /tw=3 

Figure 13: Buckling coefficients ks in terms of a/h0 (γs =150, ° 




(a) tf /tw=1 (b) tf /tw=2 (c) tf /tw=3 

Figure 14: Buckling coefficients ks in terms of a/h0 (γs =150, ° 



 
(a) tf /tw=1 (b) tf /tw=2 (c) tf /tw=3 

Figure 15: Buckling coefficients ks in terms of a/h0 (γs =150, ° 

 

It is observed that for all cases, as the aspect ratio increases, the buckling coefficient decreases. 

This is explained because as the panel aspect ratio increases, the panel is longer and bending 

stresses increase, thus reducing shear buckling capacity. As this parameter makes the buckling 

coefficient change, this value must be included in the analysis. 

 

3.5 Influence of the haunch inclination tan() 

From Fig. 16 to Fig. 18 the variation of the buckling coefficient in terms of the haunch inclination 

tan() is presented. 

 


(a) a/h0=1  (b) a/h0=2 (c) a/h0=3 

Figure 16: Buckling coefficients ks in terms of tan(  (γs =150, tf /tw=1 
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



 
(a) a/h0=1  (b) a/h0=2 (c) a/h0=3 

Figure 17: Buckling coefficients ks in terms of tan(  (γs =150, tf /tw=2 






 (a) a/h0=1  (b) a/h0=2 (c) a/h0=3 

Figure 18: Buckling coefficients ks in terms of tan(  (γs =150, tf /tw=3 

 

It is observed that for all cases, as the haunch angle  increases the buckling coefficient also 

increases. As this parameter affects the buckling coefficient, this value must be included in the 

analysis. 

 

3.5 Buckling shapes. 

Fig. 19 shows the buckling shapes, varying the stiffener rigidity and position, for a girder with 

a/h0=2, tf /tw=2, h1/tw = 200, °. Observing the deformed shapes in Fig. 19, the following 

findings are highlighted: 

 
1. When the panel is unstiffened γs= 0, the buckling shape involves the whole web panel, thus 

reducing the capacity (ks = 13.70). 

2. When the stiffener is weak γs = 10, the stiffener does not provide a nodal line of near zero 

out-of-plane displacement, and the buckling also involves the whole web panel and the 

stiffener. Nevertheless, the buckling coefficient ks increases compared to the unstiffened 

girder. 

3. When the stiffener is strong, γs = 20, buckling occurs only in the larger sub-panel, as the 

stiffener restricts the out-of-plane displacement similar to a nodal line with near zero 

displacements, thus dividing the whole webpanel into two sub-panels, and increasing the 

capacity of the girder to resisting shear buckling. For γs = 150 the difference in the buckling 

coefficient is very small compared to that obtained for a stiffener with γs = 20 
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γs 
Stiffener position 

Unstiffened Horizontal Inclined Mid-Height 

10 

 
ks  = 13.70 

 
ks  = 20.21 

 
ks  = 33.23 

 
ks  = 30.44  

20 

 
ks  = 13.70 

 
ks  = 21.65 

 
ks  = 37.45 

 
ks  = 31.45 

150 

 
ks  = 13.70 

 
ks  = 22.06 

 
ks  = 39.44 

 
ks  = 31.96 

Figure 19: Buckling shapes for a/h0=2, tf  /tw=2, h1/tw = 200, °. 

 

4. Proposal of buckling coefficient  

 

4.1 Procedure 

The following procedure was used to develop the prediction models for each of the stiffener 

positions: horizontal, inclined and Mid-Height. 

 

1. Determine the variables that may influence in the estimation of the buckling coefficient. 

The selected variables were: tf /tw, a/h0 and tan(. It was found that the influence of the web 

slenderness ratio, h1 /tw, can be neglected. 

2. It was established that all the equations were going to be set for strong stiffeners. 

3. Construct the dependence charts, for all the possible combinations of angles and tf /tw, it 

revealed the relationships between the aspect ratio a/h0 and the buckling coefficient. 

4. Once the trendlines of the charts were established, in the form y(x)=Co(x)α, where y(x) 

corresponds to the buckling coefficient and (x) to the aspect ratio, the coefficients were 

tabulated (Co vs α). 

5. The relationship between Co and α with the parameter tan(  were found plotting them 

again as shown from Fig. 20 to Fig. 22. 
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Figure 20: Co and α in terms of tan(for Mid-Height position. 



  
Figure 21: Co and α in terms of tan(for horizontal position. 

 

    
Figure 22: Co and α in terms of tan(for inclined position. 

 

6. Polynomial trendlines were made again to fit the formulas that describe Co and α.  

7. A new set of variables a and b were plotted in terms of thickness ratio tf /tw, in order to 

involve all the parameters affecting the buckling coefficient. The plots are shown from Fig. 

23 to Fig. 25. 

 

    
Figure 23: a and b in terms of tf /tw for mid-height position. 
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Figure 24: a and b in terms of tf /tw for horizontal position. 

 

  
Figure 25: a and b in terms of tf /tw for inclined position. 

 

8. In a hierarchical way, the equation proposed in 3) was rewritten with steps 4) and 5), in 

order to obtain the final equations. 

 

Mid-Height: 

 

              𝑘𝑠 = [(20.8 ⋅
𝑡𝑓

𝑡𝑤
+ 2.4) ⋅ 𝑡𝑎𝑛𝜃 + 1.8 ⋅

𝑡𝑓

𝑡𝑤
+ 26] ⋅ (

𝑎

ℎ0
)

[(−0.2⋅
𝑡𝑓

𝑡𝑤
+0.5)⋅𝑡𝑎𝑛𝜃+0.2⋅

𝑡𝑓

𝑡𝑤
−1.1]

   (5) 

 

Horizontal: 

 

 𝑘𝑠 = 0.95 ⋅ [(8.7 ⋅
𝑡𝑓

𝑡𝑤
+ 0.1) ⋅ 𝑡𝑎𝑛𝜃 + 2.9 ⋅

𝑡𝑓

𝑡𝑤
+ 22] (

𝑎

ℎ0
)

[(−0.1⋅
𝑡𝑓

𝑡𝑤
+0.4)⋅𝑡𝑎𝑛𝜃+0.2⋅

𝑡𝑓

𝑡𝑤
−1.1]

    (6) 

 

Inclined: 

 

                                𝑘𝑠 = [(7.9 ⋅
𝑡𝑓

𝑡𝑤
+ 32.4) ⋅ 𝑡𝑎𝑛𝜃 + 1.8 ⋅

𝑡𝑓

𝑡𝑤
+ 28] ⋅ (

𝑎

ℎ0
)

(−0.29)

 (7) 

 

4.2 Statistical evaluation 

Fig. 26 shows the correlation between the computed buckling coefficient and those obtained with 

Eqs. (5), (6) and (7). It can be seen that the best correlation is attained for the girder stiffened at 

mid-height with R2=0.99, for the stiffener placed horizontally R2=0.95, and finally for the stiffener 

placed parallel to the inclined flange R2=0.91. 
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(a) Eq. (5) - R2=0.99  (b) Eq. (6) - R2=0.91 (c) Eq. (7) - R2=0.95 

Figure 26. Correlation between numerical results and proposed formulas 

 

5. Conclusions 

In this paper, the critical buckling response of longitudinally stiffened-haunched steel plate girders 

subjected to shear loading was investigated through finite elements analysis. An extensive 

parametric study was performed varying the panel aspect ratio, the flange-to-thickness ratio, the 

stiffener rigidity and location (mid height, horizontal and inclined). From the results the following 

conclusion are drawn: 

.- The use of longitudinal stiffeners increases the critical buckling coefficient ks, and hence the 

critical stresses, of haunched girders subjected to shear loading. 

.- Among the investigated parameters, the slenderness of the panel h1/tw has a negligible impact on 

the buckling coefficients. 

.- Regarding the flexural rigidity of the stiffener, within the range of parameters evaluated herein 

there is a diminished influence for γs ≥ 20. Beyond this limit, buckling of the webpanel is divided 

into two subpanels, and the whole girder attains a greater buckling load. The highest buckling 

coefficients were attained when the longitudinal stiffener was located parallel to the inclined 

flange. 

.-Locating the stiffener parallel to the inclined flange works the best. 

.- Buckling coefficients calculated with the proposed formulas attained very high correlation with 

the values computed numerically. 
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