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Abstract

Stiffness reduction occurs due to yielding of thess-section of W-Shapes under certain
conditions of residual stress, moment, and axiatlldrhis paper investigates the development
and performance of a new closed-form stiffness imdor a beam element that assumes a
second-order stiffness reduction over the partigided regions of W-Shapes. Even though it
is well known the stiffness reduction is nonlingginen the moments vary over the partially

yielded regions, it is common to use a stiffnesdrimdhat is based on an assumed linear
stiffness reduction. To evaluate the performandb@hew stiffness matrix, two beams and three
unbraced frames were analyzed using MASTANZ2 conisigdive load increment sizes and nine

element conditions. Discussion and recommendatoaprovided regarding the parameters that
influence the modeling results and the abilityred hew stiffness matrix to provide better results
than the current stiffness matrix that assumeseaitistiffness reduction.

1. Introduction

Three-dimensionai-p-7 surface plots have been used to develop an emlpinelastic material
model for use in a closed-form stiffness matrixt tissumes a linear stiffness variation over the
beam element length (Zeimian and McGuire 2002)cé&Htiffness reduction is known to vary
nonlinearly over the partially yielded regions deed members, even for linearly varying
moment conditions, there is a need to develop aradluate a similarly derived closed-form
stiffness matrix that assumes a second-order ssiffrvariation over the element length. For
structures with nonlinear material and geometribavéor, the load increment size and the
number of elements used to model each member caneharofound effect on the accuracy of
the modeling results (Zubydan 2011; Rosson 2018).

This paper focuses on the development and perfarenaha closed-form stiffness matrix that
assumes a second-order stiffness reduction overelment length. Its performance was
evaluated by analyzing two test beams and threehpeark frames with loads near the collapse
condition of each structure. Finite element modwlgses were conducted using MASTAN2
(Ziemian and McGuire 2015) with closed-form stiffisamatrices that were developed based on a
first-order or second-order stiffness reductionrae element length. Since the load increment
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size and the number of elements used to model gashber also influences the modeling
accuracy, the performance comparisons of the tiffoets matrices included these effects. The
ability of the second-order stiffness matrix to sistently provide better results than the first-
order stiffness matrix was evaluated, and conchssiwere made as to its recommended use
when modeling the yielded regions of W-Shapes.

2. Stiffness Reduction Model

Much research has been done on developing imprewgairical relationships to account for
stiffness reduction that occurs due to yieldingtiictural steel members. The stiffness reduction
of compact W-Shapes with an ECCS residual stresrpavas studied in detail using a fiber
element model with over 2,000 elements (Rosson 2019

As demonstrated in Rosson (2018), the boundaryhathathere is no stiffness reduction< 1)

is found when the maximum residual stress, flexste¢ss, and axial stress sumaio The
maximum normalized momeniig/ Mp) at whicht = 1 is maintained for major-axis bending is
given as

ml=§—’;(1—cr—p> (1)

where Sy is the major-axis elastic section modulésjs the major-axis plastic section modulus,
cr is the residual stress ratio-(gy), andp is the normalized axial load ( Py). The sign on the
yield load Py matches that dP such thap is always positive. Since this equation is basag o
on the accumulation of compression stresses agrieof each flange, the actual shape of the
residual pattern does not affect the equation plexvithe maximum residual compression stress
or occurs at the end of the flanges (Rosson 2018).

To determine the stiffness reductiorior a givenp andcr condition, the major-axis moment of
inertia of the remaining cross-section that hasymeltled is divided by the original major-axis
moment of inertidx. The stiffness reductionfor the major-axis condition is found to be
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where\ = Aw/As, Ao =tw/byr, andA1 = dw/tr (Rosson 2017).

Two equations are needed to determine rthand p conditions whert = 0. For major-axis
bending with axial compression condition, one eueais needed when the plastic neutral axis is
outside the flange thickness, and the other ise&den it is inside the flange thickness. Egs. 3
and 4 do not depend upon the shape of the ressthesk pattern.
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The inelastic material model given in Egs. 5 andises the closed-form equations for the
perimeter conditions1, T, andmo in Fig. 1.
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wheren is a constant that varies depending on the axiseofling. For a givem, p andcr
condition, the stiffness can be evaluated frommthe 1, andmo values from Egs. 1, 2, 3 and 4.

The ability of Egs. 5 and 6 to approximate thg-z surface conditions are shown in Fig. 1 with
acr = 0.3 anth = 8 under major-axis bending conditions.
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Figure 1: Major-axis bendingrp-z surface plot witte; = 0.3 anch = 8

3. New Stiffness M atrix

Since bending moments often vary along the lengtbeam-columns, the nonlinear stiffness
reduction in the yielded regions must be accoufdedAs given in Eq. 7, the tangent modulus is
assumed to vary as a second-order polynomial t&xeeelement length.
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wherea, b, andc are ther values based on tme andp condition at the start, end, and middle of
the element, respectively. Theandp conditions at the middle can be easily evaluatsketd on
equilibrium with the member end forces and applaatis. The shape functions are the same as
those used to develop the beam element for anglpasmatic beam (McGuiret al. 2000).

wi=lz(7-1) 1(7-2) z0-7) 1T ®

Using the tangent modulus expression in Eqg. 7, dfiffness matrix terms were found by
evaluating the following integral.

L I/2x? 3x 4x 4x 2x%  x ,
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The integrations result in the following closedrfostiffness matrix}] for major-axis bending

12 <3a+4c+3b) 6<7a+6c+2b) 12 (3a+4c+3b) 6<2a+6c+7b> ]
L2 10 L 15 10 L 15
4(31a+28c+b) (7a+6c+2b) (11a+80+11b)
EIl, 60 L 30 10
L 2(3a+4c+3b) 6(2a+6c+7b (10)
2 L 15 )
Sym. . (a +28c + 31b>
60

The stiffness matrixK] that assumes a linear variation of stiffness céida over the element
length is given in Eq. 11 (McGuire and Ziemian 2002

'12(a+b> 6<2a+b> 12(a+b> 6(a+2b)'
L2 2 L 3 L2 2 L 3
4<3a+b> 6(2a+b> 2<a+b)
EI 4 L\ 3 2 11
L 12 /a+ b 6/a+2b (11)
F( 2 ) _Z( 3 )
Sym. 4(a+3b>
4 ]

The beam element stiffness matrix in Eq. 10 wilrékerred to as thabc element in subsequent
sections, and the stiffness matrix in Eq. 11 wdlreferred to as thab element. Finite element
analyses were conducted using MASTANZ2 which allowled geometric and material
nonlinearities to be considered. Since the newnssk matrix is not part of the MASTAN2
software, the stiffness matrix in Eq. 10 was adttethe MATLAB source code. MASTAN2
contains an incremental analysis routine that yaaows for changing the load increment
condition, and it also allows for easily subdivigithe members into a specified number of
elements.



4. Test Beam Models

Two test beams were used first to evaluate theopwdnce of theabc element because
geometric nonlinearities do not affect beam resadtshey tend to do with frames (Silva 2022).
For each condition of load increment size and nundfeelements per member, the vertical
deflection at a prescribed point on the beam weasrded. The exact conditions were modeled
for each beam using thab element and then again using #i® element. All models used a
modulus of elasticity of 29,000 ksi and a yieldess of 50 ksi.

Test Beam 1 given in Fig. 2 is a W&l cantilevered beam with a concentrated monerand
concentrated loa@:. The lengthL is 180 inches. Using- = 0.3 andp = 0 in Eq. 1, yielding
initiates over the full length of the beam with of 2,856 kip-in. The concentrated moment was
applied first to initiate yielding, then the contmated loadQ: of 10.24 kips was applied to
produce a moment of 4,700 k-in at the fixed-encde d@hrker blue region is closest to the plastic
momentM, of 4,770 kip-in. Deflection results were recor@dedhe free-end of the beam.
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Figure 2: Test Beam 1 model and yielded region

Eq. 12 was used to determine the relative errth@fleflection results and is given as

Approximate deflection — Exact deflection

: (12)
Exact deflection

R. E-deflection (%) =

The “exact deflection” is determined from an analysf Test Beam 1 using &c elements
equally spaced across the beam with 100 load irem&sn The “approximate deflection” is
determined from an analysis using from 1 to 9 el@sacross the length of the beam with 10,
25, 50, 75, or 100 load increments. A “member” efited to be the section between a support
and a load, or between two adjacent loads. TesnBehas one “member”.

Comparing the results in Fig. 3 for the models gdirelement with 100 load increments, #ve
element model has a relative error of +0.51%, &edlb element model has a relative error of
+1.76%. Fig. 3 illustrates the effect that the nemaf load increments has on the relative error
results. Reducing the number of load incrementdymes larger load increments sizes, and since
the tangent stiffness coefficients are based orelowember forces from the previous load
increment, the stiffness terms are overpredictedefich load increment and thus additional
artificial stiffness accumulates over the full loagisequence. As the number of load increments
decrease, the more the model is artificially sté@. Considering first the models with only 1
element, both thab andabc element models are less stiff than the “actuaffngss; thus, the
relative errors are positive but move downward tuartificial stiffening as the number of load
increments decrease. It is noticed that artifistéffening can produce deflections that are less
than the “exact” deflections resulting in negatietative error results. The full range of resufts i
Fig. 3 illustrates the need to carefully considee humber of elements and number of load



increments to use when performing an inelasticyasml In general, thabc element provides
superior results over thab element, but a poor choice of load increments eaninate its
potential benefit. For instance, a model usingb8 elements with 50 load increments gives an
“exact” result, but when only 10 load increments ased thabc element gives a larger relative
error than theb element.
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Figure 3: Test Beam 1 relative error results

Test Beam 2 given in Fig. 4 is a WKB® two-span beam with concentrated lo@d®f 90 kips,

Q2 of 130 kips, and)s of 85 kips.Q1 and Qs are applied at mid-span, a@d is applied at the
guarter-point. The length is 20 feet. The plastic momeMy, is 5,050 kip-in, and with all loads
applied simultaneously, the maximum moment in thanb is 4,994 kip-in. Test Beam 2 has five
“members”. Deflections were recorded at if}e location. The white regions are completely
elastic, and the darker blue regions are closesietplastic moment condition.
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Figure 4: Test Beam 2 model and yielded regions



The results of the analyses for Test Beam 2 arengia Fig. 5 for all load increments and
number of elements per member.
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Figure 5: Test Beam 2 relative error results

Eq. 12 was used to determine the relative errdh@fdeflection with the “exact” solution being
that from theabc element model using 9 elements per member with |88 increments.
Comparing the models using 1 element per membér 10 load increments, tlabdc element
model has a relative error of +0.51%, and dheslement model has a relative error of +1.03%.
When the number of elements per member increabesabt element model with 50 load
increments gives results that are very near théuddicstiffness condition of the beam when
using 5 or more elements per member. Increasingtineber of elements for theb element
model with 100 load increments improves the retatdrror, but error remains even up to 9
elements per member. Like the results for Test Beathe relative error results for Test Beam 2
revealed the influence of artificial stiffness digethe increment size. In Fig. 5, as the load
increment size increases, the relative errors ndovenward due to increased artificial stiffness.
As with Test Beam 1, the artificial stiffness canguce negative relative error results for models
with a low number of load increments. Without tleméfit of having a complete picture of all the
modeling results in Fig. 5, false conclusions camiade regarding the benefit of using dbe
element. For example, thab element model with 2 elements per member and Hd lo
increments gives an “exact” result, but thbc element model using the same modeling
condition gives a small relative error.



5. Test Frame Models

Three test frames were used to evaluate the peafurenof theabc element in which geometric
nonlinearities were allowed to affect the resugva 2022). For each load increment condition
and number of elements per member, the horizorgfieation at the top of the frame was
recorded. Initial geometric imperfections were nledeusing an elastic critical load analysis,
and the coordinates were updated based on thesfgehmode with an offset dy/500 in the
direction of the lateral loads, whereis the total frame height in inches. All modelsdisa
modulus of elasticity of 29,000 ksi, a yield stre$$0 ksi, and all members were oriented with
major-axis bending.

Test Frame 1 in Fig. 6 consists of three columrtk Winge supports at the base and two beams
with gravity and lateral loads applied at the jeinTable 1 summarizes the W-Shapes of the
columns and beams, as well as the magnitude ajrtnety and lateral loads. The lendths 26
feet. Test Frame 1 has six “members”. In Fig.iélding occurs in the left and middle columns
due to the combination of high compression forced Erge bending moments. The white
regions are completely elastic, and the yieldedoregare shaded in blue with the darker blue
regions closest to theo conditions given in Fig. 1.
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Figure 6: Test Frame 1 model and yielded regions

Table 1: Test Frame 1 member and load information

W-Shape Gravity Loads (kips) Lateral Loads (kips)
B-1 W24x84 Q1 110 W, 11.52
C-1 W10x54 Q2 130 W, 7.68
C-2 W10x60




In Fig. 7, the relative error of the displacemeattshe top level are given for tlad andabc
element models where the number of elements perbmewaries from 2 to 10 with five
different load increment conditions. The “exactiudmn was taken to be the deflection from the
abc element model using 10 elements per member withld&d increments. The relative error
results of Test Frame 1 are different than thostheftest beams due primarily to the nonlinear
geometric effects of the unbraced frame and thgehsupports. The columir2 experiences a
large interior bending moment due to significar Effects from the axial load2: andQz. The
overall frame also experiences a largA Bffect. The relative error results for thbc element
models remain negative for all analysis conditiofisis indicates th@bc element models are
stiffer than theab element models with thabc element models experiencing lower nonlinear
geometric effects and lower overall lateral deftats. Even though this indicates tlabc
element models are too stiff relative to the “attsaffness, the deflections increase as more
elements are used in the model. Comparing the madghg 2 elements per member with 100
load increments, thabc element model has a relative error of —1.00%,thedb element model
has a relative error of +3.21%. Maintaining 100dieacrements and increasing the number of
elements per member from 2 to 10 results in a ageviee to the “exact” solution regardless the
element type. As with the beam tests, decreasiegntimber of load increments artificially
stiffens the modeled response and moves the relatiors downward.
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Figure 7: Test Frame 1 relative error results



Test Frame 2 in Fig. 8 is a three-story frame withinge support at the base of each column.
Table 2 summarizes the W-Shapes of the columndaaths, as well as the magnitude of the
gravity and lateral loads. Test Frame 2 has 21 “be¥si. The length is 30 feet.
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Figure 8: Test Frame 2 model and yielded regions

Table 2: Test Frame 2 member and load information

10

W-Shape Gravity Loads (kips) Lateral Loads (kips)
B-1 W24x176 Q4 94.5 Qs 85.5 Wy 35.712
B-2 W24x162 Q2 229.5 Qs 207 W, 44.64
C-1 W12x96 Q3 270 Q- 243 W, 26.784
C-2 W14x145 Q4 135 Qs 121.5



In Fig. 9, the relative error results of Test Franare very similar than those of Test Frame 1.
This is due primarily to the nonlinear geometriteefs of the unbraced frame and the hinge
supports. The first-floor columns experience sigaift yielding in their upper sections due to
the combination of high compression forces andddgnding moments. Comparing the models
using 2 elements per member with 100 load increspgheabc element model has a relative
error of —1.12%, and thab element model has a relative error of +2.90%. Ak West Frame 1,
maintaining 100 load increments and increasingnimaber of elements per member from 2 to
10 results in a convergence to the “exact” solutiegardless the element type. The deflection
increases as more elements are used withldhelement models, and the deflection decreases as
more elements are used with @iieelement models. As with the other test structutesreasing

the number of load increments atrtificially stiffetie modeled response and moves the relative
errors downward. Care must be taken in selectiagrttrement size and number of elements per
member when modeling unbraced frames. For exaripaly 10 load increments were used to
determine the number of elements to use in the mtdeaccuracy only slightly improves with
moreabc elements and worsens with mate elements; thus, an erroneous conclusion would be
made that there is little to no benefit in usingrenelements, when in fact there is substantial
benefit if more load increments are used.
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Figure 9: Test Frame 2 relative error results
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Test Frame 3 in Fig. 10 is a six-story frame witfixed support at the base of each column.
Table 3 summarizes the W-Shapes of the columndaaths, as well as the magnitude of the
gravity and lateral loads. Test Frame 3 has 30 “be¥si. The length is 30 feet.

Q, Qs Qg
W v B-2 v v
_—
. 29 a 30 a 1
Q C-2 2 3 0.45L
6 B-2 12 18
W —)E ﬂ w—*—
Q 37 Q, 28 Q
hlc-2 l 1l 0.45L
5 B-2 14 17
W, —>L o i‘*—
Q 25 Q, 26 Q
lc-1 31l 0.45L
" 4L B-1 mL 16 %
Y sy .
Qi 1 23 Qz 24 Q3 o 25T
3 l B-1 _ci Ii
W, —— 4*;
a c4 2 = # s 0.45L
M =
i 19 4%
20
. ol | n - 0.45L
\& .\& \&J—
le— 0.9L i L |

Figure 10: Test Frame 3 model and yielded regions

Table 3: Test Frame 3 member and load information

W-Shape Gravity Loads (kips) Lateral Loads (kips)
B-1 W12x50 Q4 100 w; 4
B-2 W12x30 Q- 60 W, 8
C-1 W12x79 Q3 40 Wy 12
C-2 W12x40 Q4 80 Wy 16
Qs 48 Wy 19
Qs 32 Wy 24
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In Fig. 11, the relative error results are veryiEmto those found in Figs. 3 and 5 for the two
test beam conditions. Comparing the models usingietnents per member with 100 load
increments, thabc element model has a relative error of +0.29%, the@b element model has
a relative error of +1.14%. The relative errordhad abc element models are consistently lower
than those of thab element models. This is primarily due to the restlioonlinear geometric
effects of theabc element models. The number of load increments doésppreciably affect
the accuracy thabc element models, but they have a greater effedheraccuracy of thab
element models. As with the other test conditiaeslucing the number of load increments
artificially stiffens the modeled response and tékative errors move downward. Considering
the full range of modeling conditions, thbc element generally provides superior results over
theab element.
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Figure 11: Test Frame 3 relative error results

6. Conclusions

The goals of this research were to develop a nesed-form stiffness matrix that assumes a

second-order stiffness reduction over the elemamgth and to assess its ability to consistently

provide better results than the previously devedogéffness matrix that assumes a linear

stiffness reduction. The following conclusions ¢tenmade:

* When determining the modeling conditions for thsigle of unbraced frames with geometric
and material nonlinearities, care must be takeseiecting the element type, increment size,
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and number of elements per member, because ermrmEmisions can be made if they are
based on limited test results with relatively feleneents per member and a small number of
load increments.

» Based on the relative error comparisons of all fest structures, thabc element generally
provides superior results over thle element, but a poor choice of load incrementsramdber
of elements per member can eliminate its potebhgakfit.

» Over a wide range of axial force and moment coodgithat produce inelastic response, the
abc element has more stiffness than thie element and decreasing the number of load
increments artificially stiffens the modeled respemegardless the element type.

* Analyses with 100 load increments revealed thattihe test beams modeled usingalic
element per member had relative errors that weied@3.4 times lower than when modeled
using lab element, and the three unbraced frames modeled @sibc elements per member
had relative errors that were 2.6 to 4.0 times loilvan when modeled usingab elements.

References

MASTAN2, Version 3.5. (2015). Ziemian R.D., McGuité

McGuire, W., Gallagher, R. H., & Ziemian, R. D. (). Matrix structural analysis, 2nd Ed., Wiley, New York.

Rosson, B.T. (2017). “Major and minor axis stiffaeeduction of steel beam-columns under axial cesgion and
tension conditions.Proceedings of the 2019 SSRC Annual Stability Conference, San Antonio, Texas.

Rosson, B.T. (2018). “Modeling the influence ofidesl stress on the ultimate load conditions oélsteames.”
Proceedings of the 2018 SSRC Annual Stability Conference, Baltimore, Maryland.

Rosson, B.T, & Ziemian R.D. (2019). Validation studf a new inelastic material model for steel Wista
Proceedings of the 2019 SSRC Annual Stability Conference, St. Louis, Missouri.

Silva, N.R. (2022)Development and evaluation of a new beam element for modeling the partially yielded regions of
steel W-Shapes. Master of Science Thesis, Florida Atlantic Unsisr, Boca Raton, Florida.

Ziemian, R.D., & McGuire, W. (2002). “Modified taagt modulus approach, a contribution to plasticg@in
analysis."Journal of Sructural Engineering, 128(10), 1301-1307

Zubydan, A.H. (2011). “Inelastic second order asmlyof steel frame elements flexed about minor .axis
Engineering Sructures, 33(4), 1240-1250.

14





