
 

Proceedings of the 
Annual Stability Conference 

Structural Stability Research Council 
Charlotte, North Carolina, April 11-14, 2023 

 
 
 
 

Modeling partially yielded regions of W-Shapes using a  
second-order stiffness reduction over the element length 

 
Naomi R. Silva1, Barry T. Rosson2 

 
 
Abstract 
Stiffness reduction occurs due to yielding of the cross-section of W-Shapes under certain 
conditions of residual stress, moment, and axial load. This paper investigates the development 
and performance of a new closed-form stiffness matrix for a beam element that assumes a 
second-order stiffness reduction over the partially yielded regions of W-Shapes. Even though it 
is well known the stiffness reduction is nonlinear when the moments vary over the partially 
yielded regions, it is common to use a stiffness matrix that is based on an assumed linear 
stiffness reduction. To evaluate the performance of the new stiffness matrix, two beams and three 
unbraced frames were analyzed using MASTAN2 considering five load increment sizes and nine 
element conditions. Discussion and recommendations are provided regarding the parameters that 
influence the modeling results and the ability of the new stiffness matrix to provide better results 
than the current stiffness matrix that assumes a linear stiffness reduction. 
 
1. Introduction 
Three-dimensional m-p-τ surface plots have been used to develop an empirical inelastic material 
model for use in a closed-form stiffness matrix that assumes a linear stiffness variation over the 
beam element length (Zeimian and McGuire 2002). Since stiffness reduction is known to vary 
nonlinearly over the partially yielded regions of steel members, even for linearly varying 
moment conditions, there is a need to develop and evaluate a similarly derived closed-form 
stiffness matrix that assumes a second-order stiffness variation over the element length. For 
structures with nonlinear material and geometric behavior, the load increment size and the 
number of elements used to model each member can have a profound effect on the accuracy of 
the modeling results (Zubydan 2011; Rosson 2018).    
 
This paper focuses on the development and performance of a closed-form stiffness matrix that 
assumes a second-order stiffness reduction over the element length. Its performance was 
evaluated by analyzing two test beams and three benchmark frames with loads near the collapse 
condition of each structure. Finite element model analyses were conducted using MASTAN2 
(Ziemian and McGuire 2015) with closed-form stiffness matrices that were developed based on a 
first-order or second-order stiffness reduction over the element length. Since the load increment 
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size and the number of elements used to model each member also influences the modeling 
accuracy, the performance comparisons of the two stiffness matrices included these effects. The 
ability of the second-order stiffness matrix to consistently provide better results than the first-
order stiffness matrix was evaluated, and conclusions were made as to its recommended use 
when modeling the yielded regions of W-Shapes. 
 
2. Stiffness Reduction Model 
Much research has been done on developing improved empirical relationships to account for 
stiffness reduction that occurs due to yielding in structural steel members. The stiffness reduction 
of compact W-Shapes with an ECCS residual stress pattern was studied in detail using a fiber 
element model with over 2,000 elements (Rosson 2019). 
 
As demonstrated in Rosson (2018), the boundary at which there is no stiffness reduction (τ = 1) 
is found when the maximum residual stress, flexural stress, and axial stress sum to . The 
maximum normalized moment (M1 / Mp) at which τ = 1 is maintained for major-axis bending is 
given as  
 

�1 = ���� �1 − 	
 − �� (1)
  

where Sx is the major-axis elastic section modulus, Zx is the major-axis plastic section modulus, 
cr is the residual stress ratio (σr / σy), and p is the normalized axial load (P / Py). The sign on the 
yield load Py matches that of P such that p is always positive. Since this equation is based only 
on the accumulation of compression stresses at the end of each flange, the actual shape of the 
residual pattern does not affect the equation provided the maximum residual compression stress 
σr occurs at the end of the flanges (Rosson 2018). 
 
To determine the stiffness reduction τ for a given p and cr condition, the major-axis moment of 
inertia of the remaining cross-section that has not yielded is divided by the original major-axis 
moment of inertia Ix. The stiffness reduction τ for the major-axis condition is found to be  
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 where λ = Aw / Af , λο = tw / bf , and λ1 = dw / tf  (Rosson 2017).  

Two equations are needed to determine the m and p conditions when τ = 0. For major-axis 
bending with axial compression condition, one equation is needed when the plastic neutral axis is 
outside the flange thickness, and the other is needed when it is inside the flange thickness. Eqs. 3 
and 4 do not depend upon the shape of the residual stress pattern.  
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The inelastic material model given in Eqs. 5 and 6 uses the closed-form equations for the 
perimeter conditions m1 , τp  and m0  in Fig. 1. 
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where n is a constant that varies depending on the axis of bending. For a given m, p and cr 
condition, the stiffness can be evaluated from the m1 , τp  and m0  values from Eqs. 1, 2, 3 and 4. 
The ability of Eqs. 5 and 6 to approximate the m-p-τ surface conditions are shown in Fig. 1 with 
a cr = 0.3 and n = 8 under major-axis bending conditions.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Major-axis bending m-p-τ surface plot with cr = 0.3 and n = 8 
 
3. New Stiffness Matrix 
Since bending moments often vary along the length of beam-columns, the nonlinear stiffness 
reduction in the yielded regions must be accounted for. As given in Eq. 7, the tangent modulus is 
assumed to vary as a second-order polynomial over the element length. 
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where a, b, and c are the τ values based on the m and p condition at the start, end, and middle of 
the element, respectively. The m and p conditions at the middle can be easily evaluated based on 
equilibrium with the member end forces and applied loads. The shape functions are the same as 
those used to develop the beam element for an elastic, prismatic beam (McGuire et al. 2000). 
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Using the tangent modulus expression in Eq. 7, the stiffness matrix terms were found by 
evaluating the following integral. 
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The integrations result in the following closed-form stiffness matrix [k] for major-axis bending 
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The stiffness matrix [k] that assumes a linear variation of stiffness reduction over the element 
length is given in Eq. 11 (McGuire and Ziemian 2002). 
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The beam element stiffness matrix in Eq. 10 will be referred to as the abc element in subsequent 
sections, and the stiffness matrix in Eq. 11 will be referred to as the ab element. Finite element 
analyses were conducted using MASTAN2 which allowed for geometric and material 
nonlinearities to be considered. Since the new stiffness matrix is not part of the MASTAN2 
software, the stiffness matrix in Eq. 10 was added to the MATLAB source code. MASTAN2 
contains an incremental analysis routine that easily allows for changing the load increment 
condition, and it also allows for easily subdividing the members into a specified number of 
elements. 
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4. Test Beam Models 
Two test beams were used first to evaluate the performance of the abc element because 
geometric nonlinearities do not affect beam results as they tend to do with frames (Silva 2022). 
For each condition of load increment size and number of elements per member, the vertical 
deflection at a prescribed point on the beam was recorded. The exact conditions were modeled 
for each beam using the ab element and then again using the abc element. All models used a 
modulus of elasticity of 29,000 ksi and a yield stress of 50 ksi. 
 
Test Beam 1 given in Fig. 2 is a W21x44 cantilevered beam with a concentrated moment M1 and 
concentrated load Q1. The length L is 180 inches. Using cr = 0.3 and p = 0 in Eq. 1, yielding 
initiates over the full length of the beam with M1 of 2,856 kip-in. The concentrated moment was 
applied first to initiate yielding, then the concentrated load Q1 of 10.24 kips was applied to 
produce a moment of 4,700 k-in at the fixed-end. The darker blue region is closest to the plastic 
moment Mp of 4,770 kip-in. Deflection results were recorded at the free-end of the beam. 
 

 
 
 
 
 
 
 

Figure 2: Test Beam 1 model and yielded region 
 

Eq. 12 was used to determine the relative error of the deflection results and is given as  
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The “exact deflection” is determined from an analysis of Test Beam 1 using 9 abc elements 
equally spaced across the beam with 100 load increments. The “approximate deflection” is 
determined from an analysis using from 1 to 9 elements across the length of the beam with 10, 
25, 50, 75, or 100 load increments. A “member” is defined to be the section between a support 
and a load, or between two adjacent loads. Test Beam 1 has one “member”. 
 
Comparing the results in Fig. 3 for the models using 1 element with 100 load increments, the abc 
element model has a relative error of +0.51%, and the ab element model has a relative error of 
+1.76%. Fig. 3 illustrates the effect that the number of load increments has on the relative error 
results. Reducing the number of load increments produces larger load increments sizes, and since 
the tangent stiffness coefficients are based on lower member forces from the previous load 
increment, the stiffness terms are overpredicted for each load increment and thus additional 
artificial stiffness accumulates over the full loading sequence. As the number of load increments 
decrease, the more the model is artificially stiffened. Considering first the models with only 1 
element, both the ab and abc element models are less stiff than the “actual” stiffness; thus, the 
relative errors are positive but move downward due to artificial stiffening as the number of load 
increments decrease. It is noticed that artificial stiffening can produce deflections that are less 
than the “exact” deflections resulting in negative relative error results. The full range of results in 
Fig. 3 illustrates the need to carefully consider the number of elements and number of load 
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increments to use when performing an inelastic analysis. In general, the abc element provides 
superior results over the ab element, but a poor choice of load increments can eliminate its 
potential benefit. For instance, a model using 3 abc elements with 50 load increments gives an 
“exact” result, but when only 10 load increments are used the abc element gives a larger relative 
error than the ab element. 
 

 
 

Figure 3: Test Beam 1 relative error results 
 
Test Beam 2 given in Fig. 4 is a W18x50 two-span beam with concentrated loads Q1 of 90 kips, 
Q2 of 130 kips, and Q3 of 85 kips. Q1 and Q3 are applied at mid-span, and Q2 is applied at the 
quarter-point. The length L is 20 feet. The plastic moment Mp is 5,050 kip-in, and with all loads 
applied simultaneously, the maximum moment in the beam is 4,994 kip-in. Test Beam 2 has five 
“members”. Deflections were recorded at the Q3 location. The white regions are completely 
elastic, and the darker blue regions are closest to the plastic moment condition. 

 
Figure 4: Test Beam 2 model and yielded regions 
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The results of the analyses for Test Beam 2 are given in Fig. 5 for all load increments and 
number of elements per member.  
 

 
 

Figure 5: Test Beam 2 relative error results 
 
Eq. 12 was used to determine the relative error of the deflection with the “exact” solution being 
that from the abc element model using 9 elements per member with 100 load increments. 
Comparing the models using 1 element per member with 100 load increments, the abc element 
model has a relative error of +0.51%, and the ab element model has a relative error of +1.03%. 
When the number of elements per member increases, the abc element model with 50 load 
increments gives results that are very near the “actual” stiffness condition of the beam when 
using 5 or more elements per member. Increasing the number of elements for the ab element 
model with 100 load increments improves the relative error, but error remains even up to 9 
elements per member. Like the results for Test Beam 1, the relative error results for Test Beam 2 
revealed the influence of artificial stiffness due to the increment size. In Fig. 5, as the load 
increment size increases, the relative errors move downward due to increased artificial stiffness. 
As with Test Beam 1, the artificial stiffness can produce negative relative error results for models 
with a low number of load increments. Without the benefit of having a complete picture of all the 
modeling results in Fig. 5, false conclusions can be made regarding the benefit of using the abc 
element. For example, the ab element model with 2 elements per member and 10 load 
increments gives an “exact” result, but the abc element model using the same modeling 
condition gives a small relative error. 
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5. Test Frame Models 
Three test frames were used to evaluate the performance of the abc element in which geometric 
nonlinearities were allowed to affect the results (Silva 2022). For each load increment condition 
and number of elements per member, the horizontal deflection at the top of the frame was 
recorded. Initial geometric imperfections were modeled using an elastic critical load analysis, 
and the coordinates were updated based on the first eigenmode with an offset by h / 500 in the 
direction of the lateral loads, where h is the total frame height in inches. All models used a 
modulus of elasticity of 29,000 ksi, a yield stress of 50 ksi, and all members were oriented with 
major-axis bending.  
 
Test Frame 1 in Fig. 6 consists of three columns with hinge supports at the base and two beams 
with gravity and lateral loads applied at the joints. Table 1 summarizes the W-Shapes of the 
columns and beams, as well as the magnitude of the gravity and lateral loads. The length L is 26 
feet. Test Frame 1 has six “members”.  In Fig. 6, yielding occurs in the left and middle columns 
due to the combination of high compression forces and large bending moments. The white 
regions are completely elastic, and the yielded regions are shaded in blue with the darker blue 
regions closest to the m0 conditions given in Fig. 1. 
 

 
Figure 6: Test Frame 1 model and yielded regions 

 
Table 1: Test Frame 1 member and load information 
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In Fig. 7, the relative error of the displacements at the top level are given for the ab and abc 
element models where the number of elements per member varies from 2 to 10 with five 
different load increment conditions. The “exact” solution was taken to be the deflection from the 
abc element model using 10 elements per member with 100 load increments. The relative error 
results of Test Frame 1 are different than those of the test beams due primarily to the nonlinear 
geometric effects of the unbraced frame and the hinge supports. The column C-2 experiences a 
large interior bending moment due to significant P-δ effects from the axial loads Q1 and Q2. The 
overall frame also experiences a large P-∆ effect. The relative error results for the abc element 
models remain negative for all analysis conditions. This indicates the abc element models are 
stiffer than the ab element models with the abc element models experiencing lower nonlinear 
geometric effects and lower overall lateral deflections. Even though this indicates the abc 
element models are too stiff relative to the “actual” stiffness, the deflections increase as more 
elements are used in the model. Comparing the models using 2 elements per member with 100 
load increments, the abc element model has a relative error of −1.00%, and the ab element model 
has a relative error of +3.21%. Maintaining 100 load increments and increasing the number of 
elements per member from 2 to 10 results in a convergence to the “exact” solution regardless the 
element type. As with the beam tests, decreasing the number of load increments artificially 
stiffens the modeled response and moves the relative errors downward.  
 

 
 

Figure 7: Test Frame 1 relative error results 
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Test Frame 2 in Fig. 8 is a three-story frame with a hinge support at the base of each column. 
Table 2 summarizes the W-Shapes of the columns and beams, as well as the magnitude of the 
gravity and lateral loads. Test Frame 2 has 21 “members”.  The length L is 30 feet. 
 
 

 
 

Figure 8: Test Frame 2 model and yielded regions 
 

Table 2: Test Frame 2 member and load information 
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In Fig. 9, the relative error results of Test Frame 2 are very similar than those of Test Frame 1. 
This is due primarily to the nonlinear geometric effects of the unbraced frame and the hinge 
supports. The first-floor columns experience significant yielding in their upper sections due to 
the combination of high compression forces and large bending moments. Comparing the models 
using 2 elements per member with 100 load increments, the abc element model has a relative 
error of −1.12%, and the ab element model has a relative error of +2.90%. As with Test Frame 1, 
maintaining 100 load increments and increasing the number of elements per member from 2 to 
10 results in a convergence to the “exact” solution regardless the element type. The deflection 
increases as more elements are used with the abc element models, and the deflection decreases as 
more elements are used with the ab element models. As with the other test structures, decreasing 
the number of load increments artificially stiffens the modeled response and moves the relative 
errors downward. Care must be taken in selecting the increment size and number of elements per 
member when modeling unbraced frames. For example, if only 10 load increments were used to 
determine the number of elements to use in the model, the accuracy only slightly improves with 
more abc elements and worsens with more ab elements; thus, an erroneous conclusion would be 
made that there is little to no benefit in using more elements, when in fact there is substantial 
benefit if more load increments are used. 
 

 
 

Figure 9: Test Frame 2 relative error results 
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Test Frame 3 in Fig. 10 is a six-story frame with a fixed support at the base of each column. 
Table 3 summarizes the W-Shapes of the columns and beams, as well as the magnitude of the 
gravity and lateral loads. Test Frame 3 has 30 “members”.  The length L is 30 feet. 
 

 
Figure 10: Test Frame 3 model and yielded regions 

 
Table 3: Test Frame 3 member and load information 
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In Fig. 11, the relative error results are very similar to those found in Figs. 3 and 5 for the two 
test beam conditions. Comparing the models using 2 elements per member with 100 load 
increments, the abc element model has a relative error of +0.29%, and the ab element model has 
a relative error of +1.14%. The relative errors of the abc element models are consistently lower 
than those of the ab element models. This is primarily due to the reduced nonlinear geometric 
effects of the abc element models. The number of load increments does not appreciably affect 
the accuracy the abc element models, but they have a greater effect on the accuracy of the ab 
element models. As with the other test conditions, reducing the number of load increments 
artificially stiffens the modeled response and the relative errors move downward. Considering 
the full range of modeling conditions, the abc element generally provides superior results over 
the ab element. 
 

 
 

Figure 11: Test Frame 3 relative error results 
 
6. Conclusions 
The goals of this research were to develop a new closed-form stiffness matrix that assumes a 
second-order stiffness reduction over the element length and to assess its ability to consistently 
provide better results than the previously developed stiffness matrix that assumes a linear 
stiffness reduction. The following conclusions can be made: 
• When determining the modeling conditions for the design of unbraced frames with geometric 

and material nonlinearities, care must be taken in selecting the element type, increment size, 
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and number of elements per member, because erroneous decisions can be made if they are 
based on limited test results with relatively few elements per member and a small number of 
load increments. 

• Based on the relative error comparisons of all five test structures, the abc element generally 
provides superior results over the ab element, but a poor choice of load increments and number 
of elements per member can eliminate its potential benefit. 

• Over a wide range of axial force and moment conditions that produce inelastic response, the 
abc element has more stiffness than the ab element and decreasing the number of load 
increments artificially stiffens the modeled response regardless the element type. 

• Analyses with 100 load increments revealed that the two test beams modeled using 1 abc 
element per member had relative errors that were 2.0 to 3.4 times lower than when modeled 
using 1 ab element, and the three unbraced frames modeled using 2 abc elements per member 
had relative errors that were 2.6 to 4.0 times lower than when modeled using 2 ab elements. 
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