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Abstract 
Roof systems utilizing Z-purlins as a secondary member supporting a standing seam panel 
system are used extensively by the metal building industry.  The Z-purlins rely on the diaphragm 
action in the standing seam panel system to provide lateral support and transfer forces to 
anchorages.  The behavior of the standing seam system is highly nonlinear making prediction of 
the interaction between the Z-purlin and the standing seam system difficult.  To better 
understand the behavior of the interaction between the purlins and the panel system, a series of 
non-linear shell finite element models were developed based on the test results of simple span 
systems. These models capture the non-linear flexibility of the connection between the purlin and 
the panel and show good correlation to the tests. Based on the results of the finite element 
models, an analytical method to predict the forces interacting between the purlin and the 
sheathing as well as the resulting diaphragm deformation was developed. This analytical method 
provides a foundation for additional analytical methodologies to predict the strength and stability 
of Z-purlin and standing seam panel systems 
 
1. Introduction 
Cold formed steel purlins in roof systems rely on the panels attached to the top flange to provide 
lateral restraint through diaphragm action.  There are two main types of panel systems: through-
fastened and standing seam.  Through-fastened panels as are directly fastened to the top flange of 
the purlin with a self-tapping screw whereas standing seam panel systems have a clip that 
connects the purlin to the panels.  The clip has a tab that fits into the seam pf the panels and the 
clip is fastened to the purlin with self-tapping screws. Clips may either be fixed or sliding.  For 
sliding clips, the tab connected to the seam can move relative to the base of clip connected to the 
purlin to accommodate thermal movements in the panels.  Because of the clip connection, 
standing seam panel systems typically have a much lower diaphragm stiffness than through-
fastened systems.  Some of the reduced stiffness results from slip in the seams between the 
panels and some results from slip in sliding clips or deformation of fixed clips. 
 
Because the purlins rely on the diaphragm action in the panels for stability, AISI S100 (AISI, 
2016) requires that a continuous path for the restraining forces be analyzed to transfer the forces 
through the panel system to the anchorage devices. Original methods to evaluate this transfer of 
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forces through the panels to the anchorage devices were based on the through-fastened systems
(Seek  and  Murray,  2008)  and  utilized  pure  shear  behavior  in  the  panels.   The  effective  shear 
stiffness, G’, of the purlin and panel system is established by a cantilever test as outlined in AISI 
S907 (AISI, 2017a).

The  method  proposed  by  Seek  and  Murray  utilizes  displacement compatibility  between  the 
purlin  and  the  panels  to  determine  the  forces interacting  between  a  purlin  and  the  panel.  By 
equating the displacement of a Zee purlin that results from the applied load effects (unsymmetric 
bending  and  downslope  forces)  to the  restoring  displacements  caused  by  the  restraint  provided 
by  the  panels,  the  forces  interacting  between  the  purlins  and  the  panels  can  be  determined. 
Accurately predicting the magnitude and the distribution of this forces is critical for determining 
the stabilizing forces on the purlin.  It has an impact on the forces transferred to the anchorage 
devices,  the  torsion  imparted  on  the  purlin,  the lateral  displacement  of  the  system  and  the 
corresponding second order effects that this deformation will cause.

Recent work by Plaut and Moen (2020) has shown that the flexibility of the connection between 
purlins  and  panels  has  an  impact  on  the  behavior of  the  system,  particularly  for  standing  seam 
systems.  Additionally, Seek (2022) explored through finite element models how the behavior of 
the  system  changed  with  different  levels  of  stiffness  in  the  panels  versus  the  clip  connections. 
Therefore,  it  is  desired  to  develop  analytical  models  that  include both  shear  flexibility  in  the
panels as well as flexibility in the connections to better represent this behavior.

2. Diaphragm Models
Three  different  models  of  the  distribution  of  the  forces  between  the  panels  and  purlins  were 
investigated.  The first model, utilizing pure shear behavior and developed by Seek and Murray, 
works  well  for  through-fastened  systems.  With  this  model,  the force  distribution  between  the 
panels and the purlins is essentially uniform.  As noted by Plaut and Moen (2020), for standing 
seam systems, the relative movement between the purlin and the panels that the clip allows can 
be modeled with a spring. This philosophy is explored with a model with linear springs between 
the  purlin  and  the  panels  and  a  rigid  diaphragm. With  this  philosophy,  the  forces  take  on  a 
parabolic distribution. Finally, a model was developed that includes flexibility of the panels and 
includes a linear spring between the purlins and panels.

It should be noted that with these models of the purlin systems, although the purlins are subject 
to  substantial  torsion,  it  is  assumed  that  additional  restraints  are  provided,  as in  paired  torsion 
braces  as  described  by  Seek  and  Avci  (2023)  that minimize  the  torsional  rotation  of  the  purlin 
along its span.  In the absence of these torsional restraints, the torsional deformations affect the 
magnitude of the forces between the purlin and the panels. The restraining force provided by the
panels will typically be reduced.

2.1 Diaphragm modeled with pure shear deformation
The  displacement  compatibility  analysis  methodology  by  Seek  and  Murray  (2008)  was 
developed based on through fastened panels assuming pure shear deformation in the panels. The 
displacement  compatibility  method  quantifies  the  forces  interacting  between  the  purlins  and
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panels by considering the relative displacement between the purlins and the panels. A simply 
supported purlin loaded by a uniform load, w, in the plane of its web (no roof slope) without any 
lateral restraints will have the lateral deflection, unrest, at mid-span 
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In Eq. (1), L is the span of the purlin, E is the modulus of elasticity of the purlin, Ix is the 
moment of inertia about the x-axis and Ixy is the product inertia relative to the orthogonal x- and 
y- axes perpendicular and parallel to the web respectively.  The form of Eq (1) was introduced by 
Zetlin and Winter (1955) to allow the use of conventional deflection formulas to calculate 
deflections cross sections like Zees with inclined principal axes, rather than subdivide forces into 
components along the principal axes. The method utilizes the modified moment of inertia, Imy, 
and a fictitious lateral force, w(Ixy/Ix).  The modified moment of inertia about the y-axis is  
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It is important to note that the fictitious lateral force, w(Ixy/Ix), is just a mathematical construct 
and there is no net horizontal force applied to the purlin. 
 
When the restraint provided by the panels is considered, the force the purlin exerts on the 
diaphragm, wrest is uniform along the length of the purlin. The resulting in-plane deflection of the 
diaphragm is  

 
2

rest
diaph

diaph

w L

8G 'b
   (3) 

 
where, G’ is the diaphragm stiffness and bdiaph is the width of the diaphragm tributary to the 
purlin.  This displacement is the net diaphragm displacement of the system at mid-span.  The net 
displacement of the purlin can also be considered as the unrestrained displacement minus the 
lateral displacement caused by the uniform force from the panels acting on the purlin. 
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By equating the displacement of the diaphragm with the net displacement of the purlin, the force, 
wrest, interacting between the purlin and the panels can be quantified. That is, 
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Once wrest is determined, additional information such as the torsion effects on the purlin, biaxial 
bending forces and the distribution of forces through the diaphragm can be determined as shown 
by Seek and Murray (2008).

As  previously  noted,  when  the  applied  load,  w, is  perpendicular  to  the  web  of  the  purlin  there 
should  be  no  net  horizontal  force.   Therefore,  the  uniform  force  along  the  length  of  the  purlin 
must be balanced with an equal and opposite force at the ends of the purlin. For an ideal system 
with pure shear in the panels and rigid connections between the purlin and the panels, the force 
between  the  purlin  and  the  panel  at  the  ends  of  the  purlin  is  wrestL/2.  This  force  can  be 
substantial. Theoretically, this force is applied at the very end of the purlin (at the last connection 
between the purlin and the panel). For a through fastened system with rigid connections between 
the panels and the purlins, this model works well. However, when slip occurs in the connection 
between the purlin and panel, the distance over which this force is transferred increases and the
peak force is reduced.

2.2 Diaphragm modeled with rigid panels and spring connections
To  explore  the  influence  of  the flexibility  of  the  connection  between  the  purlin  and  the  panels, 
the displacement compatibility method discussed in Section 2.1 is applied to a system with rigid 
panels  and  springs  to  represent  the  connection between  the  panels  and  the  purlins.  Plaut  and 
Moen (2020) have developed a very powerful theoretical model with spring restraints, however, 
with this model, the springs are anchored externally. When considering the restraint provided by 
panels attached to the top flange, it is important to consider that the panel system is floating and 
connected by the springs. There will be some net lateral displacement of the rigid panel system,
end, as shown in Fig. 1 a).

It  is  assumed  that  the  lateral  displacement  of  the purlin  takes  on  a  parabolic  shape  along  its 
length  with  maximum  displacements at  the  ends.  Because  the  forces  interacting  between  the 
purlin  and  the  panel  are  a  function  of  the  deflection  of  the  springs  connecting  them,  the 
distribution of forces along the length of the purlin is taken as parabolic.  The maximum force, 
wmid, occurs at mid-span.  As discussed in Section 2.1, when subjected to a force parallel to the 
web, there is no net horizontal force in the purlin. The positive forces acting along the length of 
the  purlin  must  be  counteracted  by  opposing  forces  at  each end.  The  maximum  counteracting 
force is wend. The parabolic distribution of the forces is shown in Fig. 1 b).
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a) System displacements  

mid

endw

w

 
b) Distribution of lateral forces along span 

Figure 1:  Rigid panel with spring connections 
 

Based on a parabolic shape for the load distribution, for the net sum of horizontal forces to be 
zero, the force at the end is twice the force at the midspan, that is wend = 2wmid.  The equation for 
the parabolic distribution of forces along the length of the purlin is 
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Similar to Section 2.1, the forces acting between the purlin and the sheathing can be determined 
by displacement compatibility. For an applied uniform load, the maximum unrestrained 
displacement is as defined in Eq 1. The equation for the lateral deflection of the purlin at any 
point (x) along the length resulting from the parabolic restraining force from the panel is.  
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The maximum lateral deflection of the purlin at mid-span is  
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The displacement of the panel system is derived entirely from the deformation of the springs 
between the purlin and the rigid panels.  From equilibrium, the magnitude of the force at the end, 
wend is twice that of the force at mid-span and of course acts in the opposite direction.  Using a 
linear spring, since the displacement is directly proportional to the force, the displacement at the 
end, end, is twice the displacement at midspan. The net displacement of the panel system, diaph 
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= 3(wmid/kclip) where kclip is the stiffness of the clip connection per unit length.  By equating the 
net displacement of the purlin with the displacement of the diaphragm, the force at mid-span can 
be determined. 
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2.3 Diaphragm modeled with flexible panels and linear spring connections
In  real  purlin  systems  with  standing  seam  diaphragms,  the  deformation  of  the  system  results 
from  a  combination  of  panel  diaphragm  flexibility  and  slip  in  the  purlin-to-panel  connections. 
The  forces  interacting  between  the  purlin  and  the  panels  as  modeled  by  shell  finite  element 
models (Seek, 2022) take on the general shape shown in Fig. 2 (Flexible panel-flexible clip) with 
an  approximately  uniform  force  along  the  middle  of  the  span  and gradual  force  reversal  at  the 
ends  of  the  span.   Of  course,  when  the  flexibility  from  the  panels  dominates,  ie.  stiff  spring 
connections and flexible panels, the shape of the distribution of the forces will be closer to that 
shown in Fig. 2 for rigid clip – flexible panel, where the force is uniform along most of the span 
and  there  is  a  large  force  reversal  at  the  ends.  Conversely, when  the  flexibility  of  the  clip 
connections dominates, ie stiff panel diaphragm and flexible spring connections, the shape of the 
distribution  of  forces  will  be closer  to  parabolic  distribution discussed  in  section  2.2  and  as 
shown in Fig. 2 for rigid panel – flexible clip.

 

 
Figure 2:  Purlin Panel shear forces for combinations of clip and panel flexibility 

 
To model the case of typical systems to include flexibility panels and flexibility in the clip 
connections that can also capture the behavior at the ends of the spectrum, a 4th order 
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polynomial was chosen to represent the force interacting between the purlins and the panels 
along the length of the purlin.  The general form of the polynomial is 
 
   4 3 2w x Ax Bx Cx Dx E      (10) 

 
The following boundary conditions were used to solve for the coefficients: 
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In the above boundary conditions, wend is the magnitude of the distributed force at the end of the 
span and wmid is the magnitude of the distributed force at the mid-span. For simplification, the 
relationship between wend and wmid is defined by the ratio , where  = wend/wmid.  
 
The resulting equation for the distributed force along the length of the purlin is. 
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The deformations of the system are shown in Fig. 3.  
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Figure 3: Deformation of system – flexible clips and flexible panels 
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The lateral deflection of the purlin due to the lateral restraining forces from the panels is 
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Similarly, the shear deformation of the diaphragm that results from the distributed forces along 
the span is 
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To find the distribution of the forces between the purlin and the panels, because there are two 
degrees of freedom (diaphragm flexibility and spring deformation), two compatibility equations 
are required. Compatibility equations are developed at the third points of the purlin and at the 
midpoint of the purlin. By setting the compatibility equations at the third points and mid-points 
equal to each other, the magnitude of  is determined.  Next, to determine the magnitude of wmid, 
either the compatibility equation at the third points or mid-span can be used.  
 
For compatibility at mid-span, the lateral deflection of the purlin resulting from the forces 
interacting between the purlin and the diaphragm is 
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The in-plane deflection of the diaphragm at mid-span is  
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To determine the magnitude of the force between the purlin and the panels, displacement 
compatibility is established at mid-span. That is, the unrestrained displacement at mid-span is 
equated to the net deformation of the system.  The unrestrained displacement is from Eq. 1.  
There are four components of the deformation of the system (see Fig. 3):  the deformation of the 
purlin due to the distributed load, the deformation of the diaphragm due to the distributed force, 
the clip spring displacement at mid-span and the clip displacement at the ends of the span.  The 
compatibility equation is 
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For compatibility at the purlin third points, the unrestrained lateral deflection of the purlin 
resulting from the applied uniform gravity load is 
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The lateral displacement of the purlin at third points due to the distributed force between the 
purlin and the panel is 
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At the third point, the deflection of the diaphragm due to the in-plane forces is 
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The displacement of the spring connection at the third point is determined from force between 
the purlin and panel from Eq 11 at x = L/3, that is 
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The compatibility equation therefore at the third point of the purlin is calculated such that the 
unrestrained displacement equals the sum of the restraining displacements of the system. 
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In Eqs. 16 and 21, the only unknowns are wmid and .  Both equations can be easily rearranged to 
solve for wmid. 
 

 

xy 4

x

my
mid 4 2

my diaph clip

I
5w L

I

384EI
w

L 186 61 L 1
1

384EI 140 24G 'b 4 k

 
 
 


              

 (16a) 



 10

 

xy 4

x

my
mid 4 2

my diaph clip

I
11w L

I

972EI
w

8024 2729L 64 22L 32 92
229635 24312EI 9G 'b k






        

 (21a) 

 

 

 

 

 

By setting these two equations equal to each other and using an iterative equation solver such as
Goal Seek in Excel, the value of  may be determined. The value of  will vary depending on 
the  relative  stiffness  between  the  spring  and  the  diaphragm.   As  the  stiffness  of  the  diaphragm 
increases relative to the stiffness of the springs, the value of  will approach a value of 2 which 
is the theoretical value for a parabolic load distribution resulting from a rigid diaphragm/spring
relationship discussed in Section 2.2.

Once the value of  is determined, either Eq. 16a or 21a can be solved for wmid. To determine the
distribution of the forces along the span, Eq. 11 can be used.

3.  Comparison of Equations to Finite Element models
The  method  presented  in  section 2.3  is  compared  to  finite  element  models  presented  by  Seek
(2022).  The models used by Seek are based on the base test results presented by Emde (2010). 
Emde performed tests on a series of purlins from a single manufacturer. The analysis presented 
here  is  based  on  two  series of  tests  performed  on  8  in.  deep  Zees  (8ZSx2.75x057)  and
(8ZSx2.75x100).   Specifically,  the  results  are  used  from  test  ID  8Z16A  and  8Z12D.   The
properties of each of these purlins is provided in Table 1.

Table 1: Purlin Properties

Property 8ZS2.75x057 8ZS2.75x100 
8.008.00Depth, d (in.)

Flange width, b 2.752.75(in.)
0.1000.057Thickness, t (in.)

Ix, (in.4 14.1918.158)
Iy, (in.4 2.2751.158)
Ixy, (in.4 4.1452.229)
Imy, (in.4 1.0640.549)
Imx, (in.4 6.6393.867)

 
The tests were performed in a vacuum chamber 8 feet wide.  The purlins were spaced at 5 feet on 
center and spanned 27 feet.  Standing seam panels 7 feet wide were placed on top of the purlins 
leaving a 6 in. gap on either side of the chamber. The resulting tributary width on each purlin is 
3.75 ft. The standing seam panels were attached to the purlins with a low sliding clip with a ½” 
thermal block below the clip. 
 
To model these purlins, Seek (2022) created a shell finite element model in SAP 2000.  With this 
shell finite element model, the web of the purlin was discretized into 4 elements, each flange was 
discretized into 3 elements and a single element was used for the flange stiffener. Sharp corners 
were used at the intersections between the web, flange, and stiffeners. Along the length of the 
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purlin, the length of the elements was 2 in.  To model the diaphragm, the standing seam panels 
were discretized into 12 in. square elements. The panels were assigned a membrane thickness 
equivalent to the thickness of the panels (0.0197 in.).  The diaphragm shear stiffness, G’, was 
adjusted by changing the shear modulus, G, of the panel material. For a desired diaphragm 
stiffness in the panel, the required shear modulus in the model was calculated by G = G’/t where 
t is the thickness of the panel.  
 
The clips connecting the purlin to the panel were modeled as 2-node link spring elements.  With 
these link elements, the spring stiffness of this connection could be directly defined.  Seek (2022) 
created models with both linear springs and non-linear springs to investigate how introducing 
flexibility in the connection between the purlin and the panel affected the behavior.  The 
analytical method presented in Section 2.3 is compared to the results of the models using linear 
springs. 
 
Three models were created for each purlin cross section. The first model utilized a rigid 
connection between the purlin and the panels and all of the diaphragm flexibility was derived 
from pure shear deformation of the panels. Seek (2018) observed that the shear deformation 
behavior of the diaphragm was highly nonlinear. Therefore, the shear stiffness of the panel, G’, 
was chosen to align with this original analytical work by Seek, who chose stiffness panel shear 
stiffness values that predicted lateral deflections that matched the lateral deflection reported in 
the tests by Emde.  Two additional models were created with springs with a finite stiffness. The 
springs were arbitrarily chosen with spring stiffness of 100 lb/in/ft and 50 lb/in/ft. The panel 
shear stiffness, G’, for each model was adjusted such that the lateral deflection of the test 
matched the lateral deflection of the model with rigid connections between the purlin and the 
panel. For comparing the analytical model developed in Section 2.3 to the finite element models, 
the same panel shear stiffness reported by Seek (2022) was used in the analytical models.  A 
summary of the tests, the diaphragm shear stiffness, and the lateral deflection from the tests, FE 
model and analytical model are shown in Table 2. Note that in Table 2, the lateral deflection of 
the test, finite element model, and analytical model are provided.          
 

Table 2: Model Summary 
Purlin Designation Link 

stiffness 
(lb/in) 

Max 
Pressure 

(psf) 

Uniform 
load, w 
(lb/ft) 

Diaphragm 
stiffness, G’ 

(lb/in) 

Δmid Tested 
(in.) 

Δmid FE 
Model 
(in.) 

Δmid 
Analytical 

(in.) 
8Zx057 1A-Tested  17.68   1.86   

 U2-rigid Rigid  66.3 230  2.13 1.82 
 U2-100 100  66.3 460  2.14 2.16 
 U2-50 50  66.3 3000  2.18 2.35 

8Zx100 2D - Tested  37.65   6.17   
 U2-rigid Rigid  141.2 110  5.89 6.17 
 U2-100 100  141.2 155  5.91 6.43 
 U2-50 50  141.2 230  5.91 6.60 

 
A summary of the comparison between the forces between the panel and the purlin is shown in 
Table 3.  Plots of each of the models is shown in Figures 4 and 5.  In Table 3, the value of  is 
shown for both the FE model results and that predicted by the analytical model. As the spring 
stiffness decreases, the value of  predicted by the analytical method more closely matches that 
of the FE model.  It should be noted that when predicting  by the analytical model, it is 
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sensitive and could show some variation depending on the precision used in the solution method 
to solve for . Table 3 also shows the magnitude of the forces interacting between purlin and 
panel at the key points (mid-span and ends). Based on these values, the correlation does not 
appear to be very good, however the plotted results in Figures 4 and 5 are more telling where the 
shape of the analytical curve follows the trends in the FE model.  When the flexibility of the 
diaphragm is derived primarily from pure shear in the panels, the forces between the purlin and 
the panel are fairly uniform along the span and there is a sharp transition at the ends.  As the 
flexibility of the diaphragm transitions from being derived primarily from panel shear to having a 
contribution from flexibility in the connection between the purlin and the panel, the transition 
softens at the ends and has a slight curvature along the middle.  This follows the theory to the 
other end of the spectrum, where if all of the flexibility of the system is derived from flexibility 
in the spring connections, the shape of the distribution of forces will be parabolic and match the 
values from Eq 6.  In general, the analytical model predicts slightly higher forces than the FE 
models at both mid-span and at the ends of the purlin.  Additionally, as the flexibility is more 
dominated by the spring stiffness, the total deflection predicted by the analytical model increases 
relative to that predicted by the FE models for the same input values of spring stiffness and panel 
diaphragm stiffness. 
 
One key advantage of the new method is that it much more closely aligns with the maximum 
force at the end of the panel.  The analytical method from Section 2.1 predicts much larger forces 
at the ends of the purlin.  These forces are compounded at anchorage locations for systems with 
multiple purlin lines.  The modified method of Section 2.3 shows, like finite element models, 
that the reversal of forces is more gradual and the peak force at the ends is greatly reduced 
(typically by about half or more).  With the more gradual reversal of forces, the torsional effects 
on the purlins resulting from the lateral restraint by the panels are also reduced which can reduce 
the predicted torsional stresses, bracing and anchorage forces.    
 

Table 3: Comparison FE Model to Analytical Model 
Purlin Designation  wmid 

(lb/ft) 
wend 

(lb/ft) 
  FE Model Analytical FE Model Analytical FE Model Analytical 
 U2-rigid 5.525 10.000 17.11 13.77 94.54 137.7 

8Zx057 U2-100 3.326 3.904 20.58 25.06 68.425 97.8 
 U2-50 2.549 2.685 23.46 29.89 59.775 80.2 
 U2-rigid 7.909 7.641 27.37 26.87 216.42 205.3 

8Zx100 U2-100 3.834 4.070 32.82 39.27 125.845 159.8 
 U2-50 2.812 2.911 37.60 46.03 105.715 134.0 
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c)  Results for rigid link 

 

 
b)  Results for link k=100lb/in/ft 

 

 
a)  Results for link k=50lb/in/ft 

 
Figure 4: Panel Shear Force for 8ZS2.75x057  
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c) Results for rigid link 

 

 
b) Results for link k=100 lb/in/ft 

 

 
a) Results for link k=50 lb/in/ft 

 
Figure 5: Panel Shear Force for 8ZS2.75x100  
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4. Conclusions 
Analytical methods to predict the forces interacting between Z-section purlins and the panel 
system providing lateral restraint have been presented.  The first method presented in Section 2.1 
is a previously developed model where all of the flexibility of the panel system is derived from 
panel shear flexibility.  The second method presented in Section 2.2 provides bounds at the other 
end of the spectrum where the panels are considered rigid and the connections between the 
purlins and panels are considered flexible.  The final method presented in Section 2.3 analyzes 
the interaction between the purlin and the panel with flexibility derived both from panel shear 
flexibility and flexibility in the connection between the purlin and the panel system. The 
analytical method developed in Section 2.3 is compared to shell finite element models of purlins 
systems that are modeled with both shear flexibility in the panels and flexibility in the 
connections between the purlins and the panels.  Correlation of the proposed method with finite 
element models is not perfect, but the method shows much better correlation than methods that 
ignore the flexibility of the purlin-panel connection and in general follows the trends in behavior 
as the dominant flexibility shifts from the panels to the connections. Because the force 
interacting between the purlin and the panels is integral to the overall behavior and performance 
of purlins, by better predicting the distribution of the forces interacting between the panel and 
purlin, more accurate predictions of torsion and lateral flexural effects can be developed. 
 
References 
AISI (American Iron and Steel Institute) (2016) S100-16 North American Specification for the Design of Cold-

Formed Steel Structural Members. AISI. Washington, DC. 2016.  
AISI (American Iron and Steel Institute) (2017a) S907-17 Test Standard for Determining the Strength and Stiffness 

of Cold-Formed Steel Diaphragms using the Cantilever Test Method. AISI. Washington, DC. 2017. 
AISI (American Iron and Steel Institute) (2017b). S908-17 Base Test Method for Purlins Supporting a Standing 

Seam Roof System. AISI. Washington, DC. 2017. 
Emde, M. G. (2010) Investigation of Torsional Bracing of Cold-Formed Steel Roofing Systems. Master’s Thesis. 

University of Oklahoma. Norman, OK. 2010. 
Plaut, R.H. and Moen, C. D. (2020). “Lateral-Torsional Deformations of C- and Z-section beams with continuous 

bracing.”. Proceedings of the Annual Stability Conference Structural Stability Research Council. SSRC, 
Chicago, IL. 

Seek, M. W., Murray, T.M. (2008) “Lateral restraint forces in Z-section roof systems using the component stiffness 
method.”  Journal of Constructional Steel Research, 64 (12), December 2008. 1366-1378. 

Seek, M. W. (2018). “Flexural Strength of continuous-span Z-purlins with paired torsion braces using the Direct 
Strength Method”. Proceedings of the 24th International Specialty Conference on Cold-Formed Steel Structures. 
2018. 

Seek, M. W. (2022) “Exploring the effects of clip flexibility on the behavior or standing seam diaphragms to brace 
cold formed steel purlins.” Conference Proceedings, Structural Stability Research Council Annual Stability 
Conference.  2022.  Structural Stability Research Council, Chicago, IL. 

Seek, M. W., Avci, O. (2023) Evaluation of local and distortional buckling strength of purlins with paired torsion 
bracing using Direct Strength Method, Journal of Constructional Steel Research, V 203, 2023, 

Zetlin, L and G. Winter. (1955). “Unsymmetrical Bending of Beams with and without Lateral Bracing.” Journal of 
the Structural Division, ASCE, Vol. 81, 1955.   

 
 
 




