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Abstract 
Thin-walled tubes are widely used for civil infrastructure, such as wind turbine support towers. 
These tubes have inevitable defects arising from manufacturing. Like all shells, these 
imperfections can trigger a variety of collapse mechanisms and lead to highly variable strength. 
Classically this is understood as deriving from a complex interplay between the imperfection shape 
and the many nearly coincident buckling modes that exist in such shells. The conventional 
numerical approach to assess the influence of these imperfections is to include structural defects 
using the primary buckling modes (e.g., modes 1-3) in a geometric and material nonlinear shell 
finite element analysis on the imperfect structure, i.e., a GMNIA solution. Measured imperfections 
typically do not take the form of the primary buckling modes. Instead, imperfections have more 
complex shapes that can be understood as combinations of several higher-order modes that 
potentially induce failures. However, it remains unclear which combinations of higher modes 
result in significant reductions in buckling strength, so there is little guidance as to which modes 
should be included in imperfection models. Assessing the sensitivity of buckling strength to 
imperfections from mode combinations is, therefore, critical to understanding which higher modes 
should be included in imperfection models. In this study, we impose imperfections as combinations 
of the first one hundred axial and bending buckling modes, then perform GMNIA collapse 
simulations under uniform bending with different magnitudes to assess the strength sensitivity. In 
addition, we also geometrically categorized the mode shapes to assess sensitivity according to a 
characteristic length-scale (wavelength) of each mode and observe the specific imperfection 
features that cause large drops in strength. The intent of the work is to build imperfection 
characterizations that are optimally informed by structural features that drive strength.  
 
1. Introduction 
Thin-walled steel tubes, a component widely used in civil infrastructures, have a high strength-to-
weight ratio and the ability to withstand large loads. However, the strength of thin-walled tubes is 
acutely sensitive to the magnitude and distribution of geometric imperfections (Seide et al. 1965, 
Calladine 1995), which are, in turn, dependent on the manufacturing process. This sensitivity 
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manifests itself in two important ways: strengths that decrease with increasing diameter-to-
thickness ratio (D/t) and large scatter in measurements of strength. For wind turbine support 
towers, the external loads induce primary bending at the base of the towers, and thus the 
imperfection sensitivity of these thin-walled steel tubes in flexure is of major interest. 
Conventional methods for evaluating the influence of geometric imperfections on the bending 
strength of thin-walled tubes often rely on the eigenmode-affine pattern (Eurocode EN 1993-1-6: 
2007), in which certain buckling modes obtained from an eigen-buckling analysis are used as 
"equivalent" imperfections. This approach assumes that the most important sensitivities in the 
shells are associated with the selected buckling modes, and thus can be used to predict the bending 
capacity. This method typically includes imperfections from the first few buckling modes (e.g., 
modes 1-3) in a geometric and material nonlinear shell finite element analysis of the imperfect 
tube (a.k.a, GMNIA). Eigenmode-affine imperfections typically do not accurately capture the 
characteristics of measured imperfections from manufacturing. Observed imperfections often have 
more complex shapes, which can be understood as requiring higher-order modes or combinations 
of several modes. It remains unclear which mode combinations best balance accurately re-creating 
measured imperfections and realistically assessing the most significant reductions in strength, and 
there is little guidance to the selection of modes. Assessing the sensitivity of strength to 
imperfections from mode combinations is, therefore, useful in understanding which higher modes 
should be included in imperfection models.  
 
1.1 Thin-walled structural tubes – Wind turbine tower applications 
Thin-walled tubes are cylindrical structures with a large outer diameter and small wall thickness. 
They are commonly used in various engineering applications, such as in the construction of aircraft, 
pipelines, and civil engineering structures. One of their primary, and rapidly growing, uses is for 
wind turbine tower construction. Wind turbine towers are very tall and slender structures that 
support the weight of the wind turbine and its rotor blades, as well as the loads imposed on the 
turbine by the wind and other external forces. These towers are tall, often exceeding ℎ = 150 
meters in height and have very thin walls with diameter-to-thickness ratios (𝐷/𝑡) between 100 and 
350 (Ding et al. 2021). Moreover, there is increasing motivation to build taller towers that reach 
into higher, more steady winds with higher 𝐷/𝑡, therefore requiring less steel for construction. 
However, as both ℎ and 𝐷/𝑡 grow larger, these structural tubes become increasingly sensitive to 
small geometric defects. 
 
The design process of these structures involves a detailed analysis of the critical loads acting on 
the tower to predict its behavior and ensure structural integrity. Large-scale structural tubes for 
wind turbine tower applications are subject to complex, stochastic time-varying loads that combine 
bending from wind-induced overturning forces and torsion from wind action on the turbine blades 
(see Fig. 1). In comparison to other structural forms for the same purpose, thin-walled tubes are 
attractive because they have lighter weight, greater flexibility, and improved torsion resistance. 
Their large diameter also gives them large moment of inertia with small cross-section areas, 
making them efficient elements for wind-induced bending moments. Although most current 
designs, which do not push the limits of slenderness, are often governed by cyclic fatigue effects, 
the push for higher and thinner towers makes them more susceptible to deformation under large 
external loads, especially compression, that may cause them to fail in shell buckling. The buckling 
behavior of thin-walled tubes bearing larger external loads is strongly influenced by the tube's 
geometry, material properties, and wall thickness. Consequently, design and analysis procedures 
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need to be established that account for realistic tube geometry (including imperfections) and their 
interaction with a wide range of buckling modes.  
 

 
Figure 1: Illustration of the time-varying stochastic loading on a typical wind-turbine tower showing time histories 

of the moment 𝑀𝑧 and torsion 𝑇𝑥 at the tower top during operational conditions along with instantaneous 
distributions of axial force, torsion, shear, and moment in the tower. Image from (Ding et al. 2021) 

 
1.2 Buckling of thin-walled structural tubes 
In a typical finite element implementation, e.g. in our thin-walled tube of interest, buckling modes 
can be determined by solving the following eigenvalue problem: 
 
                                                              (𝑲𝑬 − 𝚲𝑲𝑮)𝚽 = 0                                                                 (1) 
  
where 𝑲𝑬

	  is the elastic stiffness matrix of the initially perfect structure, 𝑲𝑮
	  is the geometric 

stiffness matrix, 𝚲 = diag(λ$, λ%, … , 𝜆&)  is a diagonal matrix of eigenvalues associated each 
eigenmode in 𝚽 = [𝜙$, 𝜙%, … , 𝜙&]. However, as previously mentioned, thin-walled turbine tower 
structural tubes are subjected to a complex combination of external forces. This becomes important 
because 𝑲𝑮

	  is dependent on the internal stress state in the structure. As a result, Eq. 1 will take 
different form in practice when the structure is subject to a pure axial compressive force 𝑃, i.e., 
 
                                                          (𝑲𝑬 − 𝚲𝐏𝑲𝑮(𝑃))𝚽𝐏 = 0                                                               (2) 
 
than it will under a pure bending moment 𝑀, i.e., 
 
                                                         (𝑲𝑬 − 𝚲𝐌𝑲𝑮(𝑀))𝚽𝐌 = 0                                                            (3) 
 
or some combination of e.g., axial force 𝑃, bending moment 𝑀, shear force 𝑉, and torsion 𝑇, i.e., 
 
                                                   (𝑲𝑬 − 𝚲𝐂𝑲𝑮(𝑃,𝑀, 𝑉, 𝑇))𝚽𝐂 = 0                                              (4) 
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where 𝚽𝑷, 𝚽𝑴, 𝚽𝑪	are the buckling modes associated with pure compression, pure bending, and 
combined loading and 𝚲𝑷, 𝚲𝑴, 𝚲𝑪 are the corresponding eigenvalues. 
 
The buckling loads themselves are not of primary interest since observed strength in shells is often 
significantly below these values. However, the buckling modes are important for their role in 
understanding strength imperfection sensitivity (Koiter 1945). The question of which buckling 
modes are most important and influential for the stability of the structure over its lifetime is 
complicated by the existence of actual geometric imperfections, the shape of which may make 
certain buckling modes preferential while counteracting others. 
 
1.3 GMNIA collapse simulation 
A GMNIA collapse simulation, which may provide a reliable estimate of strength, provides an 
incremental solution to the following equilibrium problem: 
 
                                            𝑭 = (𝑲𝑬(𝑰) − 𝑲𝑮(𝑃,𝑀, 𝑉, 𝑇) − 𝑲𝑴)𝐝 = 0                                                (5) 
  
where 𝑲𝑬

	 (𝑰) is the elastic stiffness matrix formed on the imperfect initial geometry (and typically 
updated during the incremental analysis), 𝑲𝑮

	  is the geometric stiffness matrix and is a function of 
the internal stress state developed from the external load F(P, M, V, T), in a given increment, and 
𝑲𝑴
	  is a material reduction matrix to account for yielding which itself is a function of initial 

material imperfections and its implementation may often be embedded into a tangent stiffness K 
as opposed to a separate reduction matrix, and d is the deformations. Determination of I for use in 
forming KE in the GMNIA analysis is of primary interest.   
 
1.4 Goals of this study 
Although many studies have been conducted to investigate the buckling strength of thin-walled 
tubes with geometric defects, they are often limited to specific dominant buckling modes. For 
example, it is common to approximate imperfections (I) by imposing geometric imperfections in 
the form of the first three buckling modes corresponding to a specified loading condition (𝑰 =
∑ 𝑐-𝜙.-/
-0$ ). In the interest of deriving a more general means of modeling imperfections we 

conduct a comprehensive study on the buckling strength sensitivity to the interaction of complex, 
higher-mode imperfections in thin-walled tubes, aiming to elucidate trends that can inform a novel 
stochastic expansion derived herein, and ultimately improving the practice of tube design and 
analysis. 
 
We specifically explore geometric imperfections defined by combinations of the first one hundred 
axial and bending buckling modes with different magnitudes and analyze the resulting imperfect 
tubes through GMNIA under an externally applied bending moment. We then observe trends in 
the sensitivity of the buckling strength to imperfections imposed as combinations of two modes 
(either axial or bending modes). We further organize the mode shapes based on a characteristic 
length-scale (referred to as a buckling mode wavelength) to observe trends in the modal 
combinations with the greatest impact on buckling strength. We present the results of these 
analyses along with some observations in Section 4. 
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2. Modeling geometric imperfections 
 
2.1 Prior studies 
Imperfection models generally take one of four approaches: (1) worst, (2) stimulating, (3) realistic 
(categories per Wintersetetter and Schmidt 2002) or (4) stochastic (Elishakoff, 2000). See Castro 
et al. (2014) for a comprehensive summary and analysis of the sensitivity of tubes to imperfections. 
These four categories should not be considered mutually exclusive. 
 
The concept of a worst imperfection is attractive from a deterministic standpoint but problematic 
as it is detached from expected actual imperfections. Koiter (1945) convincingly derived an 
argument for the lowest buckling modes to provide the worst imperfections, at least in the elastic 
case, but countless studies (see e.g., Castro et al. (2014)) have not borne this out for full GMNIA 
collapse simulations of steel shells. Nonetheless, the concept of worst imperfection lives on even 
in the latest Eurocode for shell structures (Eurocode 3 Part 1-6, 2021). 
 
The notion of a stimulating imperfection is grounded in the observation that the strength difference 
between including any imperfection and no imperfection is often quite large – therefore, the shape 
is not as important as the inclusion of some imperfection. This is an attractive concept for its 
simplicity, and the buckling modes are a clear choice for such imperfections. However, in wind 
turbine support towers a major source of imperfection is the distortion that results from welding 
the cans together to form the tube (Rotter and Teng 1989, Sadowski et al. 2015). The resulting 
“weld depression” imperfection has been shown to be an excellent “stimulating” imperfection, 
with large strength sensitivity, even if it is not always well correlated with observed collapse 
mechanisms (Mahmoud et al. 2016, Sadowski et al. 2015).  
 
The attractiveness of using realistic imperfections is clear – as the model is closer to reality; 
however numerous challenges exist. Of course, modelers interpret realistic imperfections in 
different ways – e.g., capturing the weld depression might be considered realistic vs. just using the 
first buckling mode. In general, realistic implies: “based on direct measurement” in some sense. 
Gathering the imperfection data on large tubes is complex and time consuming (Singer et al. 2002, 
Sadowski et al. 2022), even with the advent of new laser scanning and other technologies (Mirzaie 
et al. 2018, 2020). In design, engineers don’t have data on the actual tube they are designing, so 
“realistic” must be in a probabilistic sense.   
 
Any field, such as imperfections, can be considered in a stochastic manner so numerous 
approaches have been applied to shell geometric imperfections with Elishakoff (2000) providing 
an excellent summary and Wang et al. (2022) providing a very recent example. Here we seek a 
new stochastic expansion that can be utilized to achieve our aims of realistic, stimulating 
imperfections. 
 
2.2 Hybrid stochastic expansion 
A relatively broad set of geometric imperfections can be sympathetic with the buckling modes of 
a thin-walled tube structure. This is demonstrated by so-called cross-section signature curves (Ding 
et. al. 2021), which show that for any specified tube length a very large number of buckling mode 
shapes yield similar buckling loads. It is therefore critical to understand which of these buckling 
modes will practically arise in real, observable geometric imperfections and which will not. Of 
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course, the magnitude and precise shape of defects are usually unknown in practical applications 
and can vary significantly (and stochastically) from one tube to another. These two factors 
therefore call for geometric imperfections to be expressed in a stochastic expansion of the 
following form: 
 
                                                             𝐼(𝒙) = ∑ 𝐶-𝜙-(𝒙)1

-0$                                                                  (6) 
 
where 𝜙-(𝑥)  are orthogonal basis functions and 𝐶-  are random variables. Many possible 
expansions of this form are possible, with each form using a different set of basis functions. For 
example, the commonly used Spectral Representation Method (Papadopoulos and Papadrakakis, 
2005; Zeinoddini and Schafer, 2012) employs a Fourier basis while the Karhunen-Loeve 
expansion (Craig and Roux, 2008) defines the basis functions as the eigenfunctions of the 
covariance. For cylinder buckling problems, it makes sense to employ a physically relevant basis 
associated with the Eigen buckling modes of the structure. This approach has been employed by 
several researchers in previous studies (Sadowski, 2022; Ismail et. al. 2019).  
 
However, the discussion above implies that the construction of this expansion in Eq. 6 is not 
straightforward. The complication arises from two fundamental issues: (i) The buckling modes are 
loading dependent; (ii) The expansion in Eq. 6 must be truncated to include only 𝑛 terms and, for 
practical reasons, 𝑛 must be small. Let us first address issue (i). Because the buckling modes 
depend on the loading conditions, it is not obvious which set of buckling modes are optimal for 
such an expansion. Should the expansion be expressed in terms of axial modes, bending modes, 
or modes from some combined loading conditions? Given that the structure will see a wide range 
of loading conditions in its lifetime, the answer is not clear.   
 
The second issue arises because of both the preponderance of buckling modes that result in 
comparable strengths and the fact that there are no guarantees on the compactness of the expansion 
necessary to reproduce real imperfections using a basis derived from buckling modes. This 
contrasts with methods like the Karhunen-Loeve expansion, for example, which is mean-square 
optimal in its representation of the covariance function. We therefore seek an expansion 
constructed from an arbitrary set of buckling modes (e.g., bending and/or axial modes) that 
includes a compact set of modes that will have both a strong influence on the strength of the 
structure and a significant contribution to realistic imperfection shapes. For this, we propose the 
following expansion. 
 
Consider that an arbitrary stochastic imperfection shape can be expanded equivalently in terms of 
the bending buckling modes 𝜙2 or the axial buckling modes 𝜙. as: 
 
                                                  𝐼(𝒙) = ∑ 𝛼-𝜙2-(𝒙) =1

-0$ ∑ 𝛽3𝜙.3(𝒙)1
30$                                       (7) 

 
Ideally, we seek a representation that expands in terms of both 𝜙2 and 𝜙. and allows us to choose 
the modes that are most important. But we recognize that, in general the bending modes and axial 
modes are not orthogonal to one another (i.e., 〈𝜙2- , 𝜙.3〉 ≠ 0) and this expansion therefore does 
not have a valid basis. In fact, because the bending modes and the axial modes both provide a 
complete basis, we see that any axial mode (for example, 𝜙.3) can be expanded as a series of 
bending modes as follows: 
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                                                  𝜙.3(𝒙) = ∑ 𝛾34𝜙24(𝒙)1

40$                                         (8) 
 
Using Eq. 8, we can therefore express the imperfections through a hybrid expansion of the 
following form 
	
																																	𝐼(𝒙) = ∑ 𝛼-𝜙2-(𝒙)1

-0$ + ∑ 𝛽3P𝜙.3(𝒙) − ∑ 𝛾34𝜙24(𝒙)1
40$ Q1

30$ 				 	(9) 
 
by recognizing that 𝜙.3(𝒙) − ∑ 𝛾34𝜙24(𝒙)1

40$ = 0. Expanding Eq. 9 yields: 
	
																												𝐼(𝒙) = ∑ 𝛽3𝜙.3(𝒙)1

30$ +∑ 𝛼-𝜙2-(𝒙)1
-0$ − ∑ ∑ 𝛽3𝛾34𝜙24(𝒙)1

40$
1
30$ 																	(10) 

 
where the first two terms represent the (redundant) expansion in terms of both axial and bending 
modes and the final term represents the projections of the axial modes onto the basis of bending 
modes. Through simple rearrangement of the terms in Eq. 10 we can express the imperfection 
through a general hybrid expansion in terms of both 𝜙2 and 𝜙. by: 
	
																																	𝐼(𝒙) = ∑ 𝛽3𝜙.3(𝒙)1

30$ +∑ P𝛼- −∑ 𝛽3𝛾3-1
30$ Q𝜙2-1

-0$ (𝒙)																																		(11) 
 
To make this expansion practical, we need to truncate it to include only a finite number of terms. 
Let us begin by truncating the set of axial modes to include 𝑁. terms. This can be expressed as: 
	
																																	𝐼(𝒙) = ∑ 𝛽3𝜙.3(𝒙)

&!
30$ +∑ P𝛼- −∑ 𝛽3𝛾3-

&!
30$ Q𝜙2-1

-0$ (𝒙)																																		(12) 
 
Next, we wish to truncate the basis of bending modes to 𝑁2 terms. However, doing so will also 
remove the projection of the axial modes onto the higher-order modes (𝑁 > 𝑁2). We, therefore, 
split the second term of Eq. 12, resulting in the following expansion: 
	
							𝐼 = ∑ 𝛽3𝜙.3

&!
30$ +∑ P𝛼- −∑ 𝛽3𝛾3-

&!
30$ Q𝜙2-

&"
-0$ +∑ P𝛼- − ∑ 𝛽3𝛾3-

&!
30$ Q𝜙2-&

-0&"5$ 																		(13) 
 
where the 𝑥  dependence has been removed for brevity. The truncated expansion in Eq. 13 is 
composed of three terms: 

1. 𝑁. axial buckling modes (first term) 
2. 𝑁2 bending buckling modes (second term) 
3. A residual (third term) 

This expansion now allows us to select an arbitrary set of axial and bending modes and build an 
expansion of the imperfection in terms of this set. The residual arises from the components of the 
axial modes projected onto the bending mode basis that cannot be removed because the buckling 
mode basis is truncated. In other words, the expansion of axial buckling mode 𝜙.3 , 𝑗 ≤ 𝑁. will 
have terms associated with higher order bending modes 𝜙2- , 𝑖 > 𝑁2  that we cannot remove 
because the basis set is truncated at 𝑁2. In practice, the expansion will be assembled only from 
the first two terms of Eq. 13 but recognizing that the residual can be quantified (and ideally 
minimized). 
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Finally, we note that expansion in Eq. 13 can easily be modified to consider first the bending 
moments and removing the bending mode projection on the axial mode basis by simply switching 
the bending and axial modes in the expansion. We further note that, through a similar analysis, 
more complex expansions that account for additional modes (e.g., torsion modes) can be derived.  
 
3. Methodology and model setup 
In light of the previous discussion and the proposed hybrid stochastic expansion, we conducted a 
study to investigate the sensitivity of thin-walled cylindrical shell structures to combinations of 
axial and bending buckling modes. First, the eigenvalue buckling analysis of the perfect tube 
structure is performed (Section 1.2) to generate the first one hundred buckling modes under pure 
bending and pure axial loading, respectively. Combinations of the extracted mode shapes were 
then imposed as imperfections with two different magnitudes for geometric material nonlinear 
imperfection analysis (GMNIA) (Section 1.3) under bending moment to observe the change in 
tube strength, thus indicating the sensitivity of the tube section to various combined mode 
imperfection. 

 
Figure 2: Geometry of the structure examined in this study 

 
Simulations in this study were conducted using ABAQUS 2020. The model shown in Fig. 2, and 
whose first one hundred axial modes are illustrated in Fig. 3 and first one hundred bending modes 
are illustrated in Fig. 4, comprised a thin-walled tube of radius 501.65 mm, length 3302 mm, and 
thickness 4.7625 mm, using 776,127 four-node S4 shell elements to provide sufficient 
discretization to capture the bending buckling response of the tube. Both ends of the tube are fixed 
except for rotation in the X and Z directions. The tube material is modeled to represent S355 steel 
using the true stress-strain material model in DNV-RP-C208 (2013) with elastic modulus equal to 
210,000 MPa, Poisson’s ratio of 0.3, yield stress of 357 MPa and ultimate stress of 541.6 MPa. 
Simulations were performed with the Riks method (Riks et. al. 1979). In our case, the bending 
moment is applied at both ends of the tube about the X-direction and increases at a constant rate 
until the structure buckles.  
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Figure 3: First 100 axial mode shapes. 

 
The imposed imperfection magnitudes are taken from those specified in Eurocode EN 1993-1-6: 
2007 as:   
 
                                                                 𝑚 = 4u√𝑡𝑟                                                                 (13) 
 
where m is the magnitude, t represents the thickness of the tube, r is the tube radius, and u is a 
specific parameter related to the design classes (Class A and C) defined in EN 1993-1-6:2007. For 
class A, u is set to be 0.006, and for Class C, u is set to be 0.016. The imperfection magnitude 𝑚 
is then multiplied by the normalized buckling mode deflection from linear buckling analysis and 
the resulting imperfection is imposed on the pristine model. For combinations of modes, the modal 
displacements are added and then normalized. The normalized combined mode displacements are 
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then multiplied by the magnitude 𝑚 and imposed on the pristine model to create an imperfect 
geometry. This process was repeated for all 100 × 100 combinations of two axial buckling modes 
and 100 × 100 combinations of two bending buckling modes under both class A and class C 
magnitude imperfections, for a total of 40,000 GMNIA simulations. From each simulation, the 
moment capacity under imperfection class A, 𝑀6 , and under imperfection class C, 𝑀7 , was 
recorded. 
 

 
Figure 4: First 100 bending mode shapes. 
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4. Results  
Strength sensitivity for each combination of mode imperfections was measured by computing the 
relative loss of moment resistance capacity from increasing imperfection magnitude from class A 
to class C as 2#82$

2#
. We then plot these bending strength sensitivity values for each combination 

of imperfections using a heat map in Fig. 5. Here we see that certain modes, e.g., modes 24, 26, 
66 and 72, have significant influence on the strength of the cylinder when they are paired with 
nearly any other mode. This is clearly indicated by the red stripes that can be observed for these 
mode numbers. Moreover, we can see distinct regions where interactions seem to be particularly 
impactful. For example, in the upper-right quadrant, modes 78 – 88 seem to interact quite strongly 
with modes 17 – 34.  
 

 
Figure 5: Bending strength sensitivity (MA-MC)/MA for models with imperfections introduced by combined axial 

buckle modes, organized by mode order. 
 
To gain additional insight into the physical mechanisms at play in these sensitivities, we compute 
two characteristic length-scales for each mode shape, which we refer to as the longitudinal and 
circumferential wavelengths. These wavelengths are computed from the mode shape by 
identifying the extreme values (maximum positive and maximum negative values) and computing 
the average distance between the nearest extrema (of the same sign). This is an admittedly crude 
measure, but it serves as a first attempt to systematically assign a scalar metric to characterize the 
length-scale of buckling modes. 
 
The reorganized colormaps are shown in Fig. 6. Fig. 6a shows the bending strength sensitivities 
re-organized by circumferential wavelength, while Fig. 6b shows the bending strength sensitivities 
re-organized by longitudinal wavelength. Here we observe some interesting trends. When the 
modes are reorganized by circumferential wavelength, those cases where both modes have small 
wavelength (i.e., having many circumferential waves in the buckling mode) are relatively 
insensitive to imperfections. Meanwhile, when both modes have large wavelengths (i.e., having a 
small number of circumferential waves) the sensitivity is high. That is, increasing the magnitude 
of pairs of imperfections with large wavelength from class A to class C can decrease the strength 
of the cylinder by 30% or more. We see from Fig. 6b that the opposite trend is true when the modes 
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are reorganized according to their longitudinal wavelength. The strength sensitivity is large for 
modes with short longitudinal wavelength and small for modes with long wavelength. This means 
that the strength is highly sensitive to modes that combine many longitudinal waves with few 
circumferential waves.  
 
Finally, we note that the method used for automated estimation of the mode wavelength is 
simplistic and may not be robust in all cases. There are likely several cases where the automated 
procedure yields an inaccurate estimate of the wavelength. This likely contributes to the lack of 
smoothness in these plots. We are currently exploring more robust means of estimating a 
characteristic length-scale for the mode shapes.  
 
(a)                                                                                       (b) 

   
Figure 6: Bending strength sensitivity (MA-MC)/MA for axial imperfection combinations organized by (a) the 

circumferential wavelengths of the axial modes; (b) the longitudinal wavelengths of the axial modes. 
 
The same analysis was repeated for models with combinations of bending mode imperfections of 
class A and class C magnitude. Again, an external bending moment is then applied to these 
imperfect models until buckling is observed. Fig. 7 shows the colormap of strength sensitivity 
2#82$
2#

 for each model with imperfections as combinations of the first one hundred bending 
buckling modes, where the plots are organized by mode number. Unlike the case where we 
imposed axial mode imperfections, we see a clear trend where the sensitivity generally increases 
with mode number. This seems to indicate that, while the lower mode numbers may likely to have 
lower strength when the modal imperfection is first introduced (i.e., for class A magnitude), they 
are less sensitive to an increase in the magnitude than the higher modes. Moreover, these results 
differ from the axial mode imperfections in that there do not appear to be single modes that show 
uniformly high sensitivity. Where the colormaps for the axial imperfections showed certain 
“stripes” that indicated certain mode numbers exhibit high sensitivity regardless of which other 
modes they are combined with, these same features are not observed when bending mode 
imperfections are imposed.  
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Figure 7: Bending strength sensitivity (MA-MC)/MA for models with imperfections introduced by combined bending 

buckling modes, organized by mode order. 
 
Once again, we also organized the heatmap to show the bending buckling sensitivity for mode 
combinations organized by longitudinal and circumferential wavelength. This time we do not see 
any meaningful trend. The buckling strength sensitivity does not seem to change systematically 
with the wavelength of the buckling modes, but rather it seems to be more strongly influenced by 
the mode number.  
 
(a)                                                                                      (b) 

  
Figure 8: Bending strength sensitivity (MA-MC)/MA for bending mode imperfection combinations organized by (a) 

the circumferential wavelengths of the bending modes; (b) the longitudinal wavelengths of the bending modes. 
   

Finally, we highlight that the diagonal terms in each of the plots correspond to the superposition 
of a single mode with itself – or, in effect, a doubling of the imperfection magnitude for a single 
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mode. Interestingly, for both cases where axial modes and bending modes are imposed as 
imperfections, we observe that coupling two different modes can cause a larger strength decrease 
than simply doubling the magnitude of a single mode imperfection.  That is, quite often the off-
diagonal terms of the sensitivity matrix are substantially larger than the diagonal terms. This means 
that imperfections imposed based on a single mode may not be conservative because, in fact, 
adding a second mode of imperfection may serve to reduce the strength more than simply 
increasing the magnitude of the single mode imperfection. 
 
5. Conclusion 
This study has presented an investigation of the buckling strength sensitivity for slender cylindrical 
tube structures subjected to bending with geometric imperfections defined through combinations 
of axial and bending buckling modes. The study is motivated by the need to establish new models 
to represent geometric imperfections that are both informed by the buckling mechanics and can be 
derived from observed imperfection data. A new expansion method was proposed that considers 
geometric imperfections to be expressed in terms of combinations of buckling modes under 
different loading conditions. We specifically derive the expansion for combined axial and bending 
buckling modes. This expansion begs the question of which modes (bending and axial) should be 
included when constructing the model. To address this question, it’s therefore important to 
evaluate the sensitivity of the structure to various combinations of mode shaped imperfections; the 
results of which can be used to assess which terms are the most mechanically important in the 
expansion. 
 
We specifically considered the first one hundred axial buckling modes and the first one hundred 
bending buckling modes for a specified thin-walled tube structure as determined through a linear 
Eigen buckling analysis. We then imposed geometric imperfections as combinations of pairs of 
these modes having Eurocode Class A and Class C magnitude imperfections and solved for the 
buckling strength under pure bending using GMNIA in ABAQUS. This comprised a set of 40,000 
simulations from which we drew the following conclusions about the interaction of mode shaped 
imperfections on the buckling strength. 1. Imperfections in the form of multiple interacting modes 
can reduce the strength substantially more than simply increasing the magnitude of a single mode 
imperfection proportionally. 2.  The buckling strength sensitivity under bending with axial mode 
imperfections shows a clear dependence on the length-scale of the axial modes imposed, with 
modes having smaller longitudinal wavelengths and longer circumferential wavelengths being 
more influential. 3. The buckling strength sensitivity under bending with bending mode 
imperfections shows a clear dependence on mode number but does not show dependence on the 
buckling mode length-scale. 
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