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Abstract 

The Direct Analysis Method (DAM) of ANSI/AISC 360-16 enables the prediction of design 

strength in columns without the use of effective length factors. While adopting DAM, a designer 

must ensure that the software used to calculate the design demands, can capture the second-order 

effects accurately. For two-dimensional (2D) second-order analysis of steel framed structures, 

there are several benchmark problems published in the literature, and in contrast very few for 3D 

frames. This paper presents 3D benchmark problems that accurately capture coupled flexural, and 

torsional behavior.  A geometrically exact total Lagrangian formulation is used where Euler angles 

define the rigid body dynamics of the system in space. The governing equations in space 

coordinates are formed using fully nonlinear, objective Jaumann strains and stresses before using 

principle of virtual work to obtain a 16-degree-of-freedom space beam element. Two benchmark 

problems are presented - (i) a right angle bent which has no restraint to out-of-plane displacements, 

and (ii) the bent frame with adequate restraints against out-of-plane displacements at the joints. In 

the former, the lateral-torsional deformations of the beam cause significant biaxial bending 

moments in the column. In the second benchmark problem, the behavior of the frame with adequate 

lateral restraint is brought out. The notional loads have been applied to cause a coupled biaxial 

bending and twist deformations.  It was shown that the exclusion of twist from the deformation 

response of the frame leads to the underestimation of design demands which is evident from the 

interactive surface. The paper also suggests a few combinations of notional loads to bring out the 

true buckling behavior of the frame. 

 

 

1. Introduction 

Direct Analysis Method (DAM) provides a straightforward and transparent tool for the stability 

analysis and design of steel frames. It requires the judicious use of an advanced analysis tool, 

which can accurately capture the effect of geometric imperfections and spread of inelasticity in the 

analysis, whereas the design procedure is exceedingly simplified. DAM avoids the use of effective 

length factors (K) of a compression member and empirical column curves in determining the axial 

and flexural capacities of the member (Pn and Mn), and provides a more realistic distribution of 

second-order forces and bending moments (Pu and Mu). The modifications that are made to the 
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second-order elastic analysis to include the effect of geometric imperfections, and spread of 

inelasticity include (Dierlein G 2003; Shankar Nair and Nair 2007; Surovek and Ziemian 2005; 

Surovek and White 2001): 

(i) The out-of-plumbness is included in the analysis by applying a notional load at each story 

level given by 0.002i iN Y=  , where Yi is the factored design gravity load acting on the ith story.  

(ii) The nominal (axial, flexural, and shear) stiffnesses of all the components are factored by 0.8. 

For doubly symmetric beam-column members under uniaxial compression and biaxial bending, 

the interaction shall be limited by (ANSI/AISC 360 2016): 
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(1) 

where Pn = available compressive strength, Mnx = available flexural strength for major axis flexure, 

and Mny = available flexural strength for minor axis flexure. In the effective length method (ELM), 

Pn is determined using effective buckling length (KL) in the plane of bending, whereas, in DAM, 

Pn is calculated using K=1 (KL=L) in the plane of bending. While ELM is less sensitive than DAM 

to the accuracy of the analysis tool used, it requires determining the effective length factor (K), 

which is difficult for structures with unusual geometries. When compared to ELM, DAM is 

versatile, reliable, and rational to be implemented in design offices using commercially available 

softwares.  

 

DAM requires a rigorous second-order analysis tool to determine the design loads acting on frame 

members. As per AISC-16, the nonlinear analysis method used should accurately capture (i) all 

axial, flexural, and shear deformations of the members, connection deformations, (ii) second-order 

effects, (iii) geometric imperfections, (iv) spread of inelasticity, and (v) all uncertainties. Hence, a 

designer needs to assess the capabilities of the analysis tool in capturing second-order effects, 

before proceeding to use it in DAM. Benchmark (BM) problems are suggested in the literature to 

help the designer determine the accuracy and rigor of the software used to determine Pu and Mu. 

Most of the BM problems available in the literature will have a significant second-order response 

and will help unveil a particular aspect of structural behavior that could not be ignored or 

approximated while using DAM. BM problems capturing different structural behaviors including 

moment frames, braced frames, gable frames, unsymmetric moment frames, unsymmetric braced 

frames, etc. (Chen and Toma 1994; Du et al. 2019; Ingkiriwang and Far 2018; Surovek and White 

2001; Constance W. Ziemian and Ziemian 2021; C. W. Ziemian and Ziemian 2021) are widely 

available in the literature for use in stability design. A beam element validated using 2D benchmark 

problems may still be unable to capture the full load-deformation response of a 3D frame, especially 

twist and out-of-plane deformations. When the frame is made up of torsionally flexible sections (like 

I sections), as the loading approaches major axis flexural capacity, a small amount of twist itself can 

create minor axis demands. (Ziemian et al. 2018; Ziemian and Abreu 2018). Traditional design 

methods account for torsional deformations within the calculation of available strength. In a robust 

method like DAM, this issue needs to be addressed completely and explicitly in the second-order 

analysis. 3D space frames exhibiting a system flexural-torsional mode were studied by Du et al. 2019 

and Teh 2004.  
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When imperfections are directly modeled, then the imperfection pattern should be such that it provides 

the greatest destabilizing effect, and should be similar to displacement under actual external loads and 

anticipated buckling modes. Instead of directly modeling imperfections, AISC 360-16 suggests the use 

of lateral notional loads to all types of gravity-loaded frames. Sometimes, a designer may be under the 

illusion that a 3D analysis is necessary only when the topology of the structure does not permit a 2D 

analysis. But, this is not true. When a 2D frame is composed of open sections, torsional deformations 

(or twists), which is an important aspect of frame stability may not be fully revealed when analyzed 

using a plane frame element. A 3D buckling analysis will identify flexural and flexural-torsional 

modes. Yet, when the topology and loading are on the same plane, a GNL analysis may still give 

deformations corresponding to flexural mode, unless an out-of-plane perturbation is applied. This 

aspect has significant effects on the accuracy of DAM. While limit states involving torsional 

deformations are a practical reality, even finite element software packages like ABAQUS may not 

provide out-of-plane torsional deformations when the perfect 2D plane frame with in-plane 

flexural loads is kept unperturbed. Hence, a single in-plane notional load may not be able to capture 

the flexural-torsional mode exhibited by the frame. When a 2D frame under in-plane gravity loads 

has a beam with lateral-torsional buckling as the primary mode of failure, then an in-plane notional 

load that simulates the sway mode leads to under-estimation of displacement response of the frame. 

In such cases, an out-of-plane notional load alone can trigger twisting and flexural-torsional 

deformations of the frame.  

 

This paper describes a geometrically exact 3D finite element (an ongoing work at IIT Madras, 

India) for the development of benchmark problems for DAM.  A simple cantilever L frame under 

in-plane loading is suggested to highlight the necessity of a spatial analysis even when the frame 

is planar. The results were validated using a general-purpose finite element software package 

ABAQUS. It was suggested that while designing any arbitrary frame using DAM, a few 

combinations of notional loads (as in-plane and out-of-plane individual forces, and as couples), 

need to be applied to ensure that no particular mode of deformation has been ignored during the 

analysis.  

 

2. Geometrically exact Total Lagrangian formulation for 3D beam elements- For proposing 

accurate benchmark problems 

Geometrically exact modeling of a 3D beam requires an exact description of the deformed 

reference line and deformed cross-section. A geometric nonlinear 3D beam element in Total 

Lagrangian format proposed by Pai (2007; 2000) in the finite displacement-small strain range is 

described in this section. 

 

2.1 Beam kinematics 

A TL method is adopted here with three coordinate systems to define the motion of a beam 

element. Euler angles are used to define the rigid body dynamics of the system. Consider the 

initially curved and twisted beam with xyz describing the undeformed state, and ξηζ describing the 

deformed system. abc is a reference coordinate system fixed in space. ia, ib, ic, ix, iy, iz, i1, i2, i3 

represent the unit vectors along the direction of a, b, c, x, y, z, ξ, η, and ζ respectively.  

( ) ( ) ( )

'( ) '( ) '( )

a b c

x a b c

R A s i B s i C s i

dR
i A s i B s i C s i

ds

= + +

= = + +
 

(2) 
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Figure 1: Three coordinate reference systems for modeling 

If θ21, θ22, and θ23 are the direction cosine angles of the y-axis with respect to abc system, then:  
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(4) 

As per Frenet-Serret formula, 

 
3 2
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(5) 

k1, k2, and k3 denote the initial curvatures of the undeformed configuration with respect to the x, y, 

and z axes, respectively, and are functions of the undeformed arc length s. Similar to the work of 

Pai (2014), three Euler angles were used to describe the rigid body rotation, thereby giving the 

formula, 
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(6) 

where the components of the transformation matrix [T] are expressed in terms of u, v, w, u’, v’, w’, 

k1, k2, and k3 as given below: 
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(7) 

2.2 Variation of kinematic quantities and principle of virtual work 

To derive a set of governing equations, describing motion along three perpendicular directions, 

variations of curvatures in terms of variations of displacements, displacement gradients, and 

rotations are needed. 

 
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(8) 

The strain measures used to determine elastic strain energy must contain only strainable 

displacements. The elastic deformation of the system is calculated by subtracting components of 

rigid body displacements from total displacement.  The strainable displacement vector will consist 

of relative displacements with respect to the local coordinate system ξηζ. Using this local 

displacement field, the fully nonlinear, objective Jaumann strains are: 
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1 1
, ,

2 2

0, i i i

B e z y B z B z

B B B k

   

 

= + − = − =

= = = = −

 

(9) 

where ki is the initial curvature of the beam. If Jij represents the Jaumann stresses, the total variation 

of potential energy is: 
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(10) 

q1, q2, and q3 are distributed loads along the x, y, and z axes, and  q4, q5, and q6 are distributed 

moments along ξ, η, and ζ axes, respectively.  From the variational form, the governing equation 

of motion of a 3D beam element is: 
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(11) 

2.3 Finite element formulation 

For a structure discretized into ne elements, the variation of strain energy is: 
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The weak form of the system is given as: 
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where [N] is a 5×16 matrix of shape functions of Hermite cubic polynomials and linear 

polynomials, and [∂] is a 13×5 matrix of differential operators. The global nodal load vector {R} 

is obtained using:- 

       ( ) ( )
e

Tn
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The above system of nonlinear equations is linearized and solved using arc-length-based solution 
procedures.  The accuracy of the method has been verified against existing benchmark problems 
in the literature (Pai 2011). Even though DAM needs an accurate nonlinear analysis, using such 
rigorous methods as described in this section even for the simplest geometries requires modeling 
and computational effort. Hence, this method is used to generate benchmark problems so that a 
second-order analysis tool validated using these problems will have enough qualities to assess the 
nonlinear response of any arbitrary structure for use in DAM.

3. Benchmark problems

3.1 Cantilevered right-angled frame with no lateral restraint

This  benchmark  problem intends  to  reveal that  when  a sway frame  is unbraced  against  out-of- 
plane deformations:-

(i) the lateral-torsional deformations of a beam can cause significant biaxial bending moments in

the supporting column,

(ii) and, notional loads should be positioned in such a way that the perfect frame bends in-plane

and out-of-plane, and twists under the applied load.

Figure 2 shows a right-angled cantilever frame with in-plane gravity loads at the free end, which 
primarily fails through lateral-torsional buckling of the beam. δFx and δFz represent the fictitious 
lateral  notional  loads  applied,  to  perturb  the  perfect  frame  in  its  primary  path  to  the  desired 
secondary  path. A  geometric  nonlinear  analysis  using  a  3D  beam  element  detects  torsional 
deformations only when the imperfection pattern follows the mode shape associated with flexural- 
torsional buckling of the frame. Otherwise, only in-plane deformations associated with sway will 
be  obtained.  Since  this  is  a  sway  frame  under  gravity  load,  if  a  horizontal  notional  load  alone

(δFx≠0,  δFz=0)  is  applied,  the  out-of-plane  deformations  will  be  zero.  To  trigger  the  torsional 
mode, the notional load applied should be in the z-direction (δFx=0, δFz≠0). Figure 3 shows the 
deformed shapes of the frame for a particular load level when subjected to in-plane and out-of- 
plane notional loads. With a perturbation in the same plane as that of the frame, the frame is too 
stiff, the in-plane displacements are underpredicted and out-of-plane displacements are zero. When 
the frame is perturbed in the z-direction, the system is driven into its secondary path, the structure 
deflects  laterally  and  outward,  and  deformations  are  very  high  in  the  post-buckled  region.  To 
understand how the exclusion of twist from the deformation response leads to the underestimation 
of design loads, three different models are studied. The applicability of DAM and ELM on the frame 
is discussed. For ELM, the effective length factor of the column was taken as 2. Three separate analyses 
are required and the parameters of each model are tabulated in Table 1.

The equations of motion in matrix form are:
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Figure 2: Cantilever right-angled frame 

 

 
 

Figure 3: Flexural and flexural-torsional deformations of the frame 
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Table 1: Modeling parameters for analysis of cantilever frame in Figure 2 

 
Parameter 

ELM DAM 

Model 1 Model 2 Model 3 
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) 

Effective length factor (K) 2 1 1 

Nominal compressive strength,  201.4 805.5 805.5 

Member major axis flexural 

strength, Mnx  

135.7 135.7 135.7 

Minor axis flexural strength, Mny  114.5 114.5 114.5 

D
et

er
m

in
at

io
n
 o

f 
P

u
 

an
d
 M

u
x 

(k
N

 a
n
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kN
m

) Allowable compressive force, Pu  86 120 83.7 

Allowable major axis moment, Mux  88.1 125.2 82.6 

 

 
Figure 4: P-Mx-My interaction surfaces for ELM and DAM 
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Figure 4 shows the P-M curves for models 1, 2, and 3, along with the interaction surfaces for ELM 

(K=2) and DAM (K=1). For model 1, the Pu-Mux curve represents the true response of the frame 

under applied loads. The effect of member imperfections and member inelasticity is included in 

the determination of Pn, Mnx, and Mny. As per ELM, the maximum load that can be resisted by the 

frame is P=86 kN. The non-dimensionalized interaction curves and the surface is shown in Figure 

5. The attributes of model 2 and model 3 correspond to the DAM requirements. When an in-plane 

fictitious notional load was applied, the capacities in uniaxial compression and major axis flexure 

predicted by DAM were much higher than that predicted by ELM. This is because the frame is too 

stiff under in-plane flexural loading with very high resistance against sway mode, whereas the 

critical load for the lateral-torsional buckling of the beam is very low. With a notional load acting 

out-of-plane, the perfect frame is perturbed to a secondary path corresponding to the torsional 

mode, hence Pu and Mux predicted by Model 3 for DAM are in good agreement with that predicted 

by ELM.   

 

 
Figure 5: Normalized interaction surface for a member subjected to uniaxial compression and biaxial flexure 

 

If the twisting of the beam and the resulting minor axis moment on the column is unaccounted for 

in the geometric nonlinear analysis, then DAM will predict member capacities that are higher than 

the actual capacity of the frame. The design may be unsafe. In this example, the application of an 

out-of-plane notional load brought out the true response of the frame. Since DAM omits the need 
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for a buckling analysis, if the designer without understanding the actual response of the structure, 

assumed that a 3D or 2D frame analysis with in-plane notional loads will suffice for this geometry, 

then the frame will be too stiff, and the capacities predicted by DAM will be unrealistic. Hence, 

even when the 2D plane frame is lightly loaded, and the loads are on the same plane as the frame, 

the designer needs a buckling analysis to identify whether the primary mode of failure is sway or 

flexural-torsional.  But, this takes away the advantage provided by DAM over ELM concerning 

the determination of the effective length factor. Thus, it is suggested that when the behavior is not 

clearly understood by the designer, a few combinations of notional loads may be tried by the designer 

on the frame to reveal the entire spectrum of deformation responses of the structure to the applied 

loads. 

 

 

3.2 Cantilevered right-angled frame with adequate lateral restraint at joints 

This benchmark problem intends to reveal that when a sway frame is adequately braced against 

out-of-plane deformations at the joints:- 

(i)  the minor axis flexure demand of the column is nominal as the out-of-plane sway of the frame 

is prevented, 

(ii) and, notional loads should be positioned in such a way that the perfect frame will undergo out-

of-plane member deformations if any, under the applied load.  

 
Figure 6: Cantilever right-angled frame 

 

Figure 6 shows a right-angled cantilever frame with a beam subjected to in-plane gravity loads at 

the midspan of the beam, which primarily fails through lateral-torsional buckling of the beam. A, 

B, and C are restrained against out-of-plane sway deformations. δFx, δFz1, and δFz2 represent the 

fictitious lateral notional loads applied, to perturb the perfect frame in its primary path to the 
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desired secondary path. If a horizontal notional load alone (δFx≠0, δFz1=0, δFz2=0) is applied, the 

out-of-plane deformations will be zero. To trigger the torsional mode, the notional load applied 

should be in the z-direction at the column midheight (δFx=0, δFz1=0, δFz2≠0). The frame is 

adequately restrained from out-of-plane deformations at joints B and C. This reduces the effective 

length of the beam-column for the limit state of lateral-torsional buckling. The in-plane and out-

of-plane deformed shapes of the frame are shown in Figure 7. 

 

 

Figure 7: The deformation modes of the frame 

 

Different combinations of notional loads were applied on the frame, and the Pu-Mu curves were 

plotted against the in-plane interaction curve for DAM. The attributes of each of the frame models 

used for ELM and DAM and the capacities predicted by each model are given in Table 2. Figure 

8 shows the P-M curves for models 1, 2, 3, and 4, along with the interaction curves for ELM 

(K=1.2) and DAM (K=1). For model 1, the Pu-Mux curve represents the true response of the frame 

under applied loads. The effect of member imperfections and member inelasticity is included in 

the determination of Pn, and Mnx. The sway stiffness of the frame is too high when compared to 

the torsional stiffness of the frame. As a result, for the same level of applied load, significant 

deformations occur in the case of Model 4, when compared to Models 2 & 3. This results in a 

higher major axis moment demand on the beam-column for Model 4.  The column is heavily 

loaded in uniaxial compression, hence DAM predicts a higher load-carrying capacity for the beam-

column than ELM, when the notional loads are placed at B and C. Applying an out-of-plane 
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notional load at A results in a more accurate model for DAM, predicting the load carrying 

capacities in agreement with ELM. 

 
Table 2: Modeling parameters for analysis of cantilever frame in Figure 6 

 
Parameter 

ELM DAM 

Model 1 Model 2 Model 3 Model 4 

M
o

d
el

in
g

 f
o
r 

n
o

n
li

n
ea

r 

an
al

y
si

s 

Stiffness reduction factor 1 0.8 0.8 0.8 

Notional loads 

No 

(δFx=0, 

δFz1=0, 

δFz2=0) 

One in-plane 

notional load 

(δFx=1 kN, 

δFz1=0, 

δFz2=0) 

One out-of-

plane notional 

load (δFx=0, 

δFz1=1 kN, 

δFz2=0) 

One out-of-

plane notional 

load (δFx=0, 

δFz1=1 kN, 

δFz1=0) 

D
et

er
m

in
at

io
n

 

o
f 

P
n
 a

n
d
 M

n
 

Effective length factor (K) 1.2 1 1 1 

Nominal compressive 

strength, Pn (kN) 

1954.7 2257.4 2257.4 2257.4 

Member major axis 

flexural strength, Mnx 

(kNm) 

683.8 683.8 683.8 683.8 

D
et

er
m

in
at

io
n
 

o
f 

P
u
 a

n
d
 M

u
x Allowable compressive 

force, Pu (kN) 
1718.3 1992.4 1992.6 1516.5 

Allowable major axis 

moment, Mux (kNm) 
7.82 9.11 9.35 101.9 

 

 
Figure 8: In-plane interaction curves for ELM and DAM 
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4. Conclusions 

Using an exact 3D TL second-order analysis formulation, benchmark problems for DAM are 

proposed in this paper. The main contribution of the paper is to demonstrate that without a proper 

set of notional loads, it is likely that the governing design demand may be missed. Two benchmark 

problems are presented to demonstrate that  the flexural-torsional limit state, which if ignored, 

might result in unsafe design using DAM. It also discusses the concept of notional loads as per 

ANSI/AISC–360-16. A planar frame with in-plane gravity loading and major axis flexure, when 

subjected to geometric nonlinear effects undergoes flexure-only deformations corresponding to 

the sway mode. When the frame has torsionally flexible cross-sections, then a small out-of-plane 

perturbation itself will drive to a flexural-torsional post-buckled state, exhibiting very large 

deformations (in-plane and out-of-plane). The necessity of modeling the spatial deformation of the 

frame on the accuracy of DAM is demonstrated in this paper. When the frame is adequately 

restrained against out-of-plane sway deformations, the minor axis flexure demand is nominal. Yet 

different combinations of notional loads result in varied predictions of the ultimate capacity. In 

this case, the notional loads were applied as inter-member loads instead of nodal loads. It is 

suggested that even when the topology of the frame does not highlight the need for a 3D analysis, 

a designer intending to use DAM have to try a few combinations of in-plane and out-of-plane 

notional loads to correctly assess  the entire spectrum of deformation responses of the frame if the 

behavior of the structure is not completely understood by the designer. 
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