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Abstract 
This paper discusses a combination of best practices and procedures from recent work in Europe 
and the US, providing rational and economical calculations addressing the complexities associated 
with frame design using nonprismatic members. Recommendations are provided in the context of 
US design practice. A primary objective is to achieve maximum simplicity, transparency, and 
design speed while facilitating rigor of the underlying calculations. The paper provides several 
focused examples illustrating the recommended design verification procedures.  

1. Introduction 
There are numerous situations in structural engineering practice where frames are designed as 
planar structures, braced in the out-of-plane direction, and subjected to loads only within the plane 
of the frame. Metal building frames are a common subset of these types of designs. Figure 1, from 
the AISC/MBMA Design Guide 25 (White et al. 2021) (referred to as DG25 in this paper), is one 
example of such a frame. Out-of-plane buckling limit states often govern the strength of these 
structures. These types of frames commonly employ web taper, and steps in the web thicknesses 
and flange widths and thicknesses, to achieve the greatest design economy. Specific frame member 
cross-sections may be singly symmetric, and the arrangements of the out-of-plane bracing can be 
relatively complex. For example, the inside flanges of the members are often braced at fewer 
locations than the outside flanges, and the bracing configuration can be relatively general around 
the knee joints. The stability limit states are influenced by the geometry, the joint details, and the 
arrangement of the out-of-plane bracing at the various positions within the frame.  

Researchers and practicing engineers have made significant progress advancing design methods 
for nonprismatic members and frames composed of such members.  In the US, many of these 
advances have been captured in DG25. In addition, recent research (Slein et al. 2022 and 2023; 
Phillips et al. 2023a and b) has quantified built-up I-section member resistances substantially larger 
than present AISC 360 (AISC 2022) and Eurocode 3 (CEN 2005) predictions while also demon-
strating substantial over-prediction by the AISC 360 provisions in some instances. Furthermore, 
Eurocode 3 Part 1-1 Section 6.3.4 provides a General Method addressing the out-of-plane buckling 
strength of structural components (Szalai 2011a and b; Szalai and Papp 2011).  
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Figure 1: Geometry, material, and loads for example clear-span crane-building frame, adapted from the 

AISC/MBMA DG25 (White et al. 2021)  
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Both the General Method and the DG25 approaches take advantage of 14-dof frame finite element 
capabilities, based on thin-walled open-section beam theory, to determine rigorous elastic eigen-
value buckling results. The respective design solutions can address all of the above-listed member 
and frame characteristics.   

The design procedures recommended in this paper are a specific subset of the methods discussed 
in DG25 but with several advancements maximizing the simplicity, transparency, accuracy, and 
speed of the calculations: 

1) The in-plane structural analysis is conducted employing specific Direct Analysis Method (DM) 
rules described in DG25, considering geometric imperfections within the plane of the structure 
as appropriate. The recommended approach dramatically simplifies the handling of the in-
plane stability limit states. 

2) The member strength verifications focus on cross-section strength-to-demand ratios to identify 
critical cross-sections where the subsequent calculations should be performed. This is a feature 
of the Eurocode 3 General Method, and this approach is recommended to reduce the number 
of member strength verifications that need be considered in the DG25 procedures.  

3) In addition, the member strength verifications utilize elastic buckling load-to-demand ratios. 
These ratios may be calculated to assess separate axial loading and flexure alone. However, 
the Eurocode 3 General Method specifies the calculation of member elastic buckling load-to-
demand ratios under the actual combined axial and flexural loading.  

2. The General Method Concept 
The traditional way of designing members subjected to combined axial compression and bending 
simplifies the calculations by separating the different load effects. The strength limit states and the 
associated design equations for pure axial compression and flexure are defined independently. At 
the end of the verification process, a simple interaction equation connects the governing strength 
values for the pure cases. 

The above simplifications are partly due to limitations of calculation tools for handling combined 
loading. In addition, for simple cases, it is easier to understand and calculate member strengths 
under the pure load effects. Closed-form analytical solutions exist for the elastic buckling strength 
of prismatic members having simple bracing and end conditions, subjected separately to pure axial 
compression and bending. Accordingly, the axial compressive strength associated with flexural, 
torsional, flexural-torsional, or constrained-axis buckling is calculated independently from the 
flexural strength due to LTB. However, the above analytical solutions are, at best, coarse 
approximations of the true strengths for members having general bracing arrangements (e.g., 
different and unequal brace spacing on each flange) and general end conditions. Furthermore, the 
closed-form equations offer only coarse approximations of the strengths for members having steps 
and/or tapers in the cross-section geometry along their lengths. 

Recently, however, the everyday use of software has opened new possibilities for evaluating the 
influence of complex parameters in the design for structural stability. Software solutions for elastic 
linear buckling analysis (ELBA) are particularly robust and promising. Moreover, these analysis 
capabilities are becoming more and more available in professional design software. As such, they 
can be used efficiently to calculate elastic critical buckling loads or stresses, replacing more limited 
analytical formulae. Furthermore, the use of ELBA with high-level numerical FE models 
(satisfying the requirements described in Section 8) can: 
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 Eliminate the need to focus solely on the separate pure load effects, and  
 Solve cases outside the limits of standard analytical formulae, e.g., nonprismatic (tapered, 

haunched, and stepped) members, irregular bracing conditions, general end conditions, etc. 

Nevertheless, these higher-level analysis possibilities are incompatible with current design 
standards in cases where the standards are based on the separation into pure load effects and require 
these separate solutions accordingly. The General Method addresses this situation. Eurocode 3 has 
incorporated the General Method in its provisions for more than 20 years. However, the General 
Method concept can be applied with any design standard. The basic idea of the General Method 
is that the complex member buckling modes – involving the interaction of the flexural, torsional-
flexural, and lateral-torsional buckling under combined axial compression and flexure – are 
calculated as a single out-of-plane buckling limit state. To connect the above capabilities with 
codified member strength calculations, the General Method uses a single (out-of-plane) member 
slenderness parameter op, determined from the elastic buckling load, as a fundamental dependent 
variable for the final out-of-plane buckling strength verifications. The parameter op replaces the 
slenderness parameter associated with the separate pure loading limit states (or the effective 
unbraced length) for flexural, torsional-flexural, or lateral-torsional buckling. The designer 
employs op in the ordinary equations of the design standard for the axial compressive and flexural 
strengths, ensuring conformity with the standard. The General Method is a natural way of handling 
the interaction between the axial compression and bending effects and the corresponding stability-
related member strengths. This method was based initially on a heuristic formulation verified by 
experimental results (Bijlaard et al. 2010). Szalai and Papp (2010) and Szalai (2017) recently 
clarified the theoretical background, and Hajdú and Papp (2018 and 2022) followed by systematic 
numerical validations making the General Method one of the most promising design methodolo-
gies of modern structural design standards. 

3. Recommended Approach 
The recommended approach providing the desirable qualities discussed in the previous sections is 
described below. An essential feature of the implementation is the use of strength-to-demand ratios 
– i.e., load multiplication factors – for the cross-section and buckling strengths. These ratios are 
necessary for handling general nonprismatic geometry and nonuniform loads. 

Step 1 Perform an in-plane geometric nonlinear structural analysis using the DM. A specific 
form of the DM is recommended in Section 4.6.2 of DG25 and demonstrated and 
contrasted with other methods in its Ch. 7 through 10 frame design examples. White et 
al. (2022) summarize the rationale for the recommended procedure. The recommended 
method analyzes the structure with elastic stiffness reductions, typically 0.8E. In 
addition, an out-of-plumbness is included in the analysis of the framing system for 
gravity-only load combinations in all cases, and for lateral-load combinations whenever 
the frame violates overall lateral sidesway stiffness criteria. Furthermore, an out-of-
straightness is modeled in members whose axial forces exceed a certain threshold. In 
many typical metal building frames, no modeling of member out-of-straightness is 
necessary. The reader is referred to DG25 for the detailed requirements. When conducted 
according to these requirements, the structural analysis provides a sufficient estimate of 
the structure’s internal forces such that the in-plane stability may be assessed on a cross-
section by cross-section basis. These same forces are also appropriate for checking out-
of-plane strengths, which often govern the member resistances. The out-of-plane limit 
states are evaluated by applying the member equations configured as discussed below.  
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Step 2 Determine cross-section strength-to-demand ratios and identify critical cross-sections. 
Given the forces from Step 1, calculate the cross-section strength-to-demand ratios 
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at the member locations having the smallest s, where Pu and Mu are the axial force and 
moment demands determined in Step 1, Pns and Mns are the cross-section axial and 
flexural capacities (for Lc and Lb = 0) considering any plate local buckling effects (and 
tension rupture effects for members subjected to tension), Py and Myc are the axial yield 
load and the yield moment to the compression flange for the gross cross-section, and c 
and b are the resistance factors for axial compression and flexure, equal to 0.9 (only 
LRFD is considered in this paper for simplicity). It is recommended that it is sufficient 
in all cases to identify the critical cross-section of a given member as the one with the 
smallest s. Note, a form of Eq. 1 can be written for members subjected to axial tension. 

Step 3 Determine the out-of-plane elastic buckling load-to-demand ratios. Given the in-plane 
forces from Step 1, determine the out-of-plane elastic buckling load-to-demand ratios for 
the different members, e.op. Notably, the ratios e.op are simply the appropriate 
eigenvalues associated with the member out-of-plane buckling. Section 8 discusses the 
definition of what serves as a frame member and the calculation of different member e.op 

values using a buckling sensitivity analysis. Rough estimates of these eigenvalues can be 
determined from closed-form equations as illustrated in DG25. However, for complex 
member geometries, continuity considerations, end conditions, and out-of-plane bracing 
arrangements, e.op can be obtained most accurately and reliably by computation using 
14-dof frame elements based on thin-walled open-section beam theory. Notably, e.op is 
a constant for any given member.  

Step 4 Calculate the out-of-plane member slenderness. For each member, given the above sg 
ratios at the critical member cross-sections (having the smallest s for each member) and 
the e.op ratios (constants) for the members, calculate the out-of-plane slenderness as  
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Step 5 Finalize the verification of the member strengths. For each member, calculate the axial 
and flexural resistances, Pn and Mn, using the slenderness defined in Eq. 3. Given the Pn 
and Mn values, the member verification is finalized by calculating the following “unity 
check” (UC) from Eqs. H1-1a and 1b of the AISC 360 Specification: 
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4. Adaptation of the AISC 360 Provisions 
Slein et al. (2022 and 2023) and Latif and White (2021) have recommended several improvements 
to the AISC 360 flexural resistance calculations for built-up I-section members based on recent 
experimental and analytical investigations supplementing a large body of prior research. For 
doubly-symmetric I-section members, these improvements are as follows: 

1) The inelastic/elastic (LTB) threshold is lowered from RpgML = 0.7RpgMyc to 0.5RpgMyc, where 
Rpg is the web bend-buckling strength reduction factor for slender-web cross-sections in AISC 
360 Note, Rpg = 1.0 for compact- and noncompact-web sections.  

2) The compact-web limit (pw) is determined using the more general equation for singly-
symmetric I-sections in Case 16 of the AISC 360 Table B4-1b.  

3) The noncompact-web limit (rw) is calculated using the crw variable from AASHTO (2020) 
rather than a constant of 5.70. Correspondingly, the constant 5.70 also is replaced by crw in the 
AISC 360 equation for Rpg.  

4) The flange local buckling (FLB) resistance in flexure is quantified by a simple linear equation 
having ordinates of RpgRpcMyc at f = bfc/2tfc equal to the AISC 360 compact-flange limit, pf, 
and 0.75RpgMyc at f  equal to the AISC 360 noncompact-flange limit, rf.  

Notably, related provisions have been balloted and approved for the AASHTO (2023) 10th Edition 
Specifications that implement the above-recommended changes 1 through 3.  

In addition, for singly-symmetric I-sections with a larger flange in compression (and thus Sxt < 
Sxc), Slein et al. (2022) recommend that the AISC 360 tension-flange yielding (TFY) provisions 
be eliminated and replaced by: (1) The calculation of Myc as the “true” yield moment to the 
compression flange, considering the early yielding on the tension side of the cross-section, and (2) 
replacing the web parameter hc by hcy, defined as two times the depth of the web in compression 
corresponding to the actual yield moment. Straightforward closed-form equations are provided for 
Myc and hcy. Notably, Myc is still defined as FycSxc and hcy = hc for doubly-symmetric cross-sections 
and singly-symmetric cross-sections with Sxt > Sxc. These changes significantly simplify the 
flexural resistance calculations for singly-symmetric I-section members while accounting for the 
substantial inelastic reserve strength of I-sections with Sxt < Sxc. The reader is referred to Slein et al. 
(2022) for model Specification provisions and commentary implementing the recommendations.   

All the above changes are being considered by AISC TC 4 for the 2027 Specification cycle. This 
paper implements these calculations. Furthermore, the above changes are applied to the DG25 
provisions in the current study. The DG25 provisions supplement the AISC 360 Specification, 
addressing frame design using nonprismatic members and various characteristics of these frame 
types. Rather than writing the member axial compressive and flexural strengths in terms of 
corresponding effective unbraced lengths, DG25 uses the ratio of the yield stress to the theoretical 
elastic buckling strengths, Fy/Fe.op = op

2, to calculate the member resistances Pn and Mn.   

5. Prismatic Beam-Column Example 
It is informative to consider the recommended calculations in the context of a simple prismatic 
beam-column example. As such, the member from DG25 Examples 5.2a, b, and c (see Fig. 2) is 
evaluated in this section by employing the top cross-section throughout its length (i.e., this section 
considers a prismatic version of the member shown in Fig. 2 in which the web is 24 in. deep 
throughout the member length). Section 6 shows the minor changes needed to address the strength 
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verification for the web-tapered member. All of the structural analysis solutions presented in this 
paper are conducted using the Consteel (2023) software.  

  
Figure 2: Web-tapered member from Examples 5.2a, 5.2b and 5.2c of the AISC/MBMA DG25 (White et al. 2021) 

The strength check under axial compression alone is shown first, then the resistance under the 
applied bending moment alone is evaluated. These strength verifications are illustrated in the 
format described in Section 3; however, one can observe that these calculations match precisely 
with the AISC 360 provisions as amended in Section 4. Finally, the recommended strength 
verification under the combined axial compression and bending is discussed. 

Strength Verification for Concentric Axial Compression Alone  
(1) Perform an in-plane geometric nonlinear structural analysis using the DM. For this load case, 

it is assumed that the structural analysis has determined solely a concentric axial compression 
of Pu = 11.3 kips on the member (or the moment from the analysis is simply neglected).  

(2) Determine the cross-section strength-to-demand ratios and identify the critical cross-section. 
All cross-sections are equally critical for a prismatic member subjected to constant axial 
compression. Applying the AISC Section E7 rules, the web effective width at Fcr = Fy 
(corresponding to the cross-section strength) is bew = 5.37 in., and the flange effective widths 
are bef = 4.94 in., giving a cross-section effective area of Aes = 3.14 in.2. Therefore,  

 Pns = Fy Aes = 173 kips and s = cPns /Pu = 13.8  (5) 

Correspondingly, the gross cross-section strength-to-demand ratio is calculated as 

 Py = Fy Ag = 330 kips and sg = Py /Pu = 29.2  (6) 

L1 = 
90 in.

L2 = 
54 in.

144 in.

24 in.

12 in.

X X

X X

X X

Pu  = 11.3 kips

Mu = 1,800 kip-in.

All steel ASTM A572 Grade 55

Flanges = PL ¼ in. x 6 in.

Web thickness   =

Braced point (typ.)

1
8  in.
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(3) Determine the out-of-plane elastic buckling load-to-demand ratio. Using an eigenvalue 
buckling analysis, the out-of-plane elastic buckling load-to-demand ratio for the subject 
problem is obtained as 

 e.op = 39.7 (7) 

That is, theoretical elastic buckling occurs for the prismatic version of the member shown in 
Fig. 2, subjected solely to a factored LRFD load of Pu = 11.3 kips, at 39.7 times the factored 
load (or Pe = 448 kips). The member buckling mode is flexural with the top unbraced length 
providing restraint to the bottom unbraced length. The corresponding effective length factor 
for the bottom segment can be calculated by equating Pe to 2EIy/(KL1)2 and solving for K, 
giving K = 0.842. Similarly, K = 1.41 is obtained factor for the top segment.  

(4) Calculate the out-of-plane member slenderness. The out-of-plane member slenderness for the 
subject problem is  
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0.858sg y y
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e op e e
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(5) Finalize the verification of the member strength. Given op
2 < 2.25 in Eq. 8, the AISC 360 

column strength in terms of stress is  

  2

0.658 40.4 ksiop

cr yF F   (9) 

AISC 360 Section E7 estimates the axial compressive strength of members having slender 
cross-section elements using the unified effective width method. As such, the web and flange 
effective widths corresponding to Fcr are determined as bew = 6.22 in. and bef = 5.46 in., giving 
a cross-section effective area of Ae = 3.51 in2. The axial compressive resistance is then 
calculated as  

 Pn = Fcr Ae = 142 kips (10) 

Finally, the unity check is determined as 

 0.089u

c n

P
UC

P
 


 (11) 

Strength Verification for Flexure Alone 
(1)  Perform an in-plane geometric nonlinear structural analysis using the DM. For this load case, 

it is assumed that the structural analysis has determined solely a moment of Mu = 1800 kip-in. 
at the top of the member (i.e., the axial compression is neglected).  

(2) Determine the cross-section strength-to-demand ratios and identify the critical cross-section. 
Clearly, the cross-section moment demand on the prismatic member is largest at the top. Also, 
it can be observed that this is a slender-web member and that the compression flange in flexure 
is noncompact. The web slenderness is hcy/tw = h/tw = 192,  

 2.00cy w
w

fc fc

h t
a

b t
   and 

5
min max 3.1 , 4.6 ,5.7 5.6rw

w

c
a

  
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  
 (12) 
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cyw
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ha E
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a t F

 
       

 (13) 

and Rpc = 1.00. In addition, the cross-section FLB parameters are kc = 0.35,  
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 12.0
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f
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t
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E

F
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y

k E

F
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Given the above parameters, the cross-section flexural strength, governed by FLB, is 
determined as  

  0.75 2150 kip-in.f pf
ns pg pc yc pc yc yc

rf pf

M R R M R M M
   

          
 (15) 

where Myc = 2630 kip-in. Therefore, the critical cross-section strength-to-demand ratios are  

 1.07b ns
s

u

M

M


    and 1.46yc

sg
u

M

M
    (16) 

(3) Determine the out-of-plane elastic buckling load-to-demand ratio. Using an eigenvalue 
buckling analysis and a 14-dof frame finite element based on thin-walled open-section beam 
theory, the elastic LTB load-to-demand ratio is obtained as 

 e.op = 7.00 (17) 

corresponding to an elastic LTB moment of Mcre = 12,600 kip-in. at the member’s top. Upon 
substituting the appropriate values from the linearly-varying moment diagram in Eq. C-F1-2a 
of the AISC 360 commentary, one obtains a Cb = 1.21 for the top unbraced length of this 
member. If one substitutes this Cb and the relevant section properties into the theoretical elastic 
LTB moment equation and solves for the LTB effective length factor, KLTB = 1.02 is obtained 
for this problem. This KLTB indicates that the bottom unbraced length is slightly destabilizing 
the top unbraced length considering the flexural loading alone on the prismatic member.  

(4) Calculate the out-of-plane member slenderness. The out-of-plane member slenderness for the 
subject problem is  
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0.457sg yc y
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e op cre eLTB
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
 (18) 

(5) Finalize the verification of the member strength. Using the modified AISC 360 LTB 
calculations recommended by Slein et al. (2022),  

 ML = 0.5Myc = 1310 kip-in. (19)  

and 8.16 > 1/op
2 > 0.5 such that the DG25 inelastic LTB resistance equation applies. Thus,  
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 (20) 

Given this value of MnLTB, the flexural resistance of the member is governed by FLB, i.e., 

  min , 2150 kip-in. n ns nLTBM M M   (21) 

and 

 0.932u

b n

M
UC

M
 


 (22) 
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Recommended Strength Verification under Combined Axial Compression and Flexure  
(1) Perform an in-plane geometric nonlinear structural analysis using the DM. For this load case, 

it is assumed that the structural analysis has determined the axial load of Pu = 11.3 kips and 
Mu = 1800 kip-in. at the top of the prismatic version of the member shown in Fig. 2.  

(2) Determine the cross-section strength-to-demand ratios and identify the critical cross-section. 
Clearly, the maximum cross-section demand (i.e., smallest s) is again at the member's top. 
Utilizing the calculations shown previously, the critical cross-section strength-to-demand 
ratios are, since Pu /cPns < 0.2, 
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 (23) 

(3) Determine the out-of-plane elastic buckling load-to-demand ratio. Using an eigenvalue 
buckling analysis and a 14-dof frame finite element based on thin-walled open-section beam 
theory, the elastic out-of-plane buckling load-to-demand ratio is  

 e.op = 6.26 (24) 

Note that this ratio is smaller than each of the above ratios for axial compression and flexure 
alone.  

(4) Calculate the out-of-plane member slenderness. The out-of-plane member slenderness for the 
prismatic member subjected to combined axial compression and bending is  

 
.

0.471sg
op

e op


  


 (25) 

(5) Finalize the verification of the member strength. Given the above value of op determined for 
the combined loading, the axial compressive strength in terms of stress is calculated as 

  2

0.658 50.1 ksiop

cr yF F   (26) 

The web and flange effective widths corresponding to Fcr are then determined as bew = 5.61 in. 
and bef = 5.10 in., giving a cross-section effective area of Ae = 3.25 in2. Therefore, the axial 
compressive resistance is calculated as  

 Pn = Fcr Ae = 163 kips (27) 

Similarly, the LTB resistance in flexure is calculated as  
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 (28) 

Again, the flexural resistance for this member is governed by FLB: 

  min , 2150 kip-in. n ns nLTBM M M   (29) 

Finally, the unity check for the prismatic version of the member shown in Fig. 2 is 
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6. Web-Tapered Beam-Column Example 
The calculations for the web-tapered beam-column shown in Fig. 2 are practically the same as 
those illustrated above for the prismatic version of this member. For the web-tapered member 
subjected to the combined axial compression and flexure, the critical cross-section is still at the 
top and the only difference in the calculations is that, in Step 3,   

 e.op = 5.05 (31) 

due to the reduced out-of-plane buckling resistance associated with the linearly-tapered geometry. 
This results in  

 
.

0.525sg
op

e op


  


 (32) 

in Step 4, and  

  2

0.658 49.0 ksiop

cr yF F   and bew = 5.67 in., bef = 5.14 in., Ae = 3.28 in.2, (33) 

 Pn = Fcr Ae = 161 kips (34) 
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 (35) 

  min , 2150 kip-in. n ns nLTBM M M   (36) 

and 
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in Step 5.  

7. Complex Metal Building Frame Example 
This section highlights the member strength verifications by the recommended procedures for the 
DG25 clear-span crane-building frame shown in Fig. 1. The specifics of the cross-section 
geometries for this frame are listed in Table 1. DG25 describes the structure in detail.  

The crane-building frame’s unfactored design loads are shown in Fig. 1. DG25 evaluates this 
structure for the ASD load combination Dead + Collateral + 0.75 Uniform snow + the specified 
Crane loading. In the current study, a pseudo-LRFD ultimate strength load combination is 
considered by multiplying the applied loads from the ASD load combination by 1.6.  

The member strength verifications for both the critical crane column and roof girder on the right-
hand side of the frame (given the specified loads) are discussed in the following: 

(1) Perform an in-plane geometric nonlinear structural analysis using the DM. For the in-plane 
second-order geometric nonlinear analysis of this frame, the DM requires a reduced elastic 
stiffness of 0.8E = 23,200 ksi for all of the structural components included in the analysis 
model. However, no modeling of geometric imperfections is required. This is because: 
a. The load combination considered includes lateral load due to the horizontal crane loads; 

furthermore, the second-order amplification of the sidesway for the frame, modeled using 
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the reduced elastic stiffness, is less than 1.7. The reader is referred to Section 6.3.3 of DG25 
for guidance on assessing the sidesway amplification for gabled clear-span portal frames.  

b. The value of the in-plane elastic buckling load-to-demand ratios, eL, is greater than 10 for 
all the members in this frame, considering them as simply supported at their ends and 
subjected solely to the axial compression. For this calculation, the column lengths are 
measured from the base of the frame to the bottom of the panel zones at the knees, and the 
roof girder length is taken as the length between the insides of the panel zones. Therefore, 
no in-plane out-of-straightness needs to be considered for the members. The reader is 
referred to Section 4.6.2 of DG25 for guidance in properly assessing whether member out-
of-straightness needs to be modeled within the in-plane geometric nonlinear analysis.  

The members and the panel zones at the knees of the frame are modeled as discussed in Section 
8. Figures 3 and 4 show the frame moment and axial force diagrams, respectively, with the 
demands labeled at the critical member cross-sections. These diagrams are obtained from a 
geometric nonlinear analysis under a pseudo-LRFD ultimate strength loading performed 
according to the DM requirements (i.e., basically just a reduction of 0.8 applied to all the elastic 
stiffnesses in this example; an out-of-plumbness imperfection was also included, but its effects 
are small compared to the influence of the two 1.74-kip lateral loads factored by 1.6).  

Table 1: Cross-section geometry of the clear-span crane-building frame 

Segment 
Length 

(ft) 
Inside or Bottom 
Flg. bf x tf  (in.) 

Outside or Top 
Flg. bf x tf  (in.) 

Starting Web 
Depth h (in.) 

Ending Web 
Depth h (in.) 

tw 
(in.) 

A 11.948 8 x 1.00 8 x 0.75 16 27 0.1875 

B 9.354 8 x 1.00 8 x 0.75 27 27 0.25 

C1(1) 0.354 8 x 1.00 8 x 0.75 27 27 0.3125 

C2(2) 2.709 8 x 1.00 8 x 0.75 27 27 0.3125 

C3(3, 4) 2.189 7.3125 x 0.3125 8 x 0.75 31.811 34 0.3125 

D 8.265 8 x 0.625 8 x 0.3125 34 36.312 0.25 

E 5.958 8 x 0.50 8 x 0.3125 36.312 38 0.1875 

F 11.917 8 x 0.3125 8 x 0.3125 38 24 0.1875 

G 11.075 8 x 0.3125 8 x 0.3125 24 24 0.1345(5) 

H1(6) 2.333 7.25 x 0.50 9.25 x 0.50 15.5 15.5 0.25 

H2(7) 1.271 8 x 0.375 8 x 0.375 15.25 15.25 0.25 
(1)  Segment C1 is a short length located just below the column panel zone. 
(2)  Segment C2 describes a column segment oriented along the height of the column panel zone. The effective flanges of this cross 

section are composed of the outside column flange on the left and an end-plate connection composed of two 1.00 in. thick end 
plates on the right. Only one of these end plates is considered in the structural analysis of the frame.  

(3)  Segment C3 describes a roof girder segment oriented along the width of the column panel zone. The effective flanges of this 
cross section are composed of an end plate along the roof slope at the top of the panel and two-sided stiffeners oriented 
horizontally at the bottom of the panel. The effective bottom flange width of this segment is taken as the sum of the stiffener 
widths plus the thickness of the web.  

(4)  The start of segment C3 is taken as the intersection of the left edge of the column web and the roof girder design axis. The end 
of segment C3 is taken as the right-hand face of the two 1.00 in. plates of the end plate connection to the roof girder. There is 
a small offset of the top of the web in the column panel zone, which accommodates the thickness change between the top flange 
of the roof girder and the end plate at the top of the column panel zone (such that the top surface of the end plate at the top of 
the column and the top surface of the roof girder fall along a straight line). This offset is neglected for modeling purposes, such 
that the top edge of the column web and the top edge of the roof girder web fall along a straight line in the analysis model. 

(5)  The dimension 0.1345 in. corresponds to 10 gauge steel sheet.  
(6)  Segment H1 is an effective section composed of the column web and the two-sided stiffener (continuity) plates between the 

column flanges, located approximately at the level of the flanges of the crane girder support bracket. 
(7)   Segment H2 is the crane girder support bracket. 
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(2) Determine the cross-section strength-to-demand ratios and identify the critical cross-sections. 
For the strength verifications, the lengths from the column bases to the bottom of the panel 
zones are considered as the column members, and the lengths from the inside of the panel 
zones to the ridge are considered as the roof girders. For the specified ultimate strength load 
combination, the critical member cross-sections (i.e., the ones having the smallest values of 
s), are located on the right-hand side of the frame at the bottom of the panel zone for the crane 
columns and at the inside of the panel zone for the roof girders. The detailed member strength 
verifications for the crane columns are shown below.  

 
Figure 3: Clear-span crane-building frame moment diagram under specified factored loads 

 
Figure 4: Clear-span crane-building frame axial force diagram under specified factored loads 

For the critical cross-section at the top of the crane column, h/tw = 108 and the web effective 
width at Fcr = Fy (corresponding to the cross-section strength) is bew = 10.4 in. However, both 
flanges of this cross-section are nonslender under axial compression and therefore bef = bf = 
8.0 in. for both flanges. The resulting Aes is 16.6 in.2 and 

  Pns = Fy Aes = 913 kips and Py = Fy Ag = 1140 kips (38) 

At this cross-section, the traditional calculation of the yield moment as FySxc is actually larger 
than the plastic moment. This anomaly is to the lack of consideration of the early yielding in 
flexural tension. The true yield moment to the compression flange, considering the early 
yielding in tension, may be calculated by first determining the corresponding location of the 
neutral axis from the outside surface of the compression flange as  

Mu = 4311 kip-in., critical cross-section 
at inside of panel zone at knee 

Mu = 4337 kip-in., critical cross-section 
at bottom of panel zone at knee 

Pu = 20.5 kips, critical cross-section  
at inside of panel zone at knee 

Pu = 26.0 kips, critical cross-section  
at bottom of panel zone at knee 
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Then, given that 2dcy < h + tfc, the true yield moment is calculated as 
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where 

 10.19 in.cy cy fcD d t    (42) 

is the depth of the web in compression corresponding to the true yield moment. The comparable 
depth of the web in compression at the plastic moment level is  
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 
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and the cross-section plastic moment is calculated as 
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Given the above parameters, the noncompact-web limit is determined as  
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and the compact-web limit is calculated as  
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Finally, the web slenderness, defined as hcy/tw = 81.5, is smaller than pw, and therefore the 
web is classified as compact. Given that the compression flange is also compact, the cross-
section flexural resistance, Mns, is equal to the plastic moment, Mp. As such, the cross-section 
strength-to-demand ratios are calculated as, considering Pu/cPns < 0.2,  
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 (47) 

The reader is referred to Slein et al. (2022) for model Specification provisions and commentary 
implementing the calculations.   
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(3) Determine the out-of-plane elastic buckling load-to-demand ratio. Using an eigenvalue 
buckling analysis and a 14-dof frame finite element based on thin-walled open-section beam 
theory, the elastic out-of-plane buckling load-to-demand ratio for the combined axial 
compression and flexural loadings is  

 e.op = 9.24 (48) 

for the crane column. Figure 5 shows the corresponding buckling mode. The contours indicate 
the magnitude of the out-of-plane displacements in this mode.  

 
Figure 5: Out-of-plane buckling mode for the right-hand column in the clear-span crane-building frame 

(4) Calculate the out-of-plane member slenderness. The out-of-plane member slenderness for 
crane column, subjected to combined axial compression and bending, is  
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(5) Finalize the verification of the member strength. Given the above value of op determined for 
the combined loading, the crane column axial compressive strength in terms of stress is  

  2

0.658 48.8 ksiop

cr yF F   (50) 

The web effective width corresponding to Fcr is then determined as bew = 11.0 in. while the 
flanges are nonslender and fully effective under axial compression. This results in a cross-
section effective area of Ae = 16.7 in2 and an axial compressive resistance of 

 Pn = Fcr Ae = 816 kips (51) 

Similarly, the resistance in flexure, which is governed by LTB, is; 
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 (52) 

where Rpg = 1.00, Rpc = Mp/Myc = 1.06 since the web is compact, and ML = 0.5Myc = 6130 kip-in. 
Finally, the unity check for the crane column is determined as 
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It is notable that the current provisions in AISC 360 and DG25 for the above member are limited 
by the highly-conservative TFY limit state calculation. The above calculations recognize the 
substantial inelastic reserve capacity that singly-symmetric I-section members with a larger flange 
subjected to flexural compression can have.    

The calculations for Steps 2 through 5 of the roof girder are similar to the above crane-column 
calculations. However, the roof girder web classifies as noncompact for the critical cross-section 
located at the inside of the knee. The Step 3 governing elastic out-of-plane buckling mode for the 
roof girder is shown in Fig. 6. The buckling load-to-demand ratio is e.op = 12.94 and the final unity 
check value for the roof girder is UC = 0.485.  

 
Figure 6: Out-of-plane buckling mode for the right-hand portion of the roof girder, clear-span crane-building frame 

8. Software Considerations 
For the most effective implementation of the recommended design approach, computer software 
is required. To perform the necessary calculations, 14-dof beam-column finite elements based on 
thin-walled open-section beam theory are needed. One essential attribute of these element types is 
the proper consistent linearization of the nonlinear equations as well as the handling of 
nonprismatic member geometry (i.e., variations in the cross-section geometry along the length). 
DG25 Appendix C1 discusses the essential software features necessary for these frame elements. 

Another essential attribute is the modelling of the compatibility between members with different 
cross-sections where special attention is needed to address the warping continuity between the 
members. For typical metal building frames, the knee joint between the exterior columns and the 
roof girders is one of the most important locations exposed to this problem. This is because the 
knee joint typically has the deepest sections and the largest internal moments. At this location, the 
transfer of warping deformations between the columns and roof girders also involves cross-section 
distortion. 

It can be shown that the topology of the connection at the knee joints significantly influences the 
rate and direction of the transfer of warping deformations across this zone. Figure 7 shows the 
differences in the deformations associated with out-of-plane displacements at several representa-
tive knee joints. Several possibilities are recommended in the literature addressing the definition 
of knee joints and the transfer of warping deformations with 14-DOF beam finite elements using 
multi-point constraint (MPC) equations parametrized as a function of the most common joint 
topologies (Basaglia et al. 2012).  
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Figure 7: Representative knee joint topologies showing the corresponding deformations under the application of 
torsion 

In addition, for less common connection configurations, a general approach may be employed for 
modelling the joint region using suitable beam and/or shell finite elements (Vaszilievits-Sömjén 
and Szalai 2018; Vaszilievits-Sömjén and Szalai 2019) or shell elements (MacPhedran and 
Grondin 2009; Wu and Mohareb 2013; Koczubiej and Cichon 2014; Shayan and Rasmussen 
2014), linked via MPC equations at the boundaries of the joint to members modelled with 14-dof 
beam-column finite elements . Figure 8 illustrates this concept. Consteel (2023) is one example of 
professional software that provides all of the above capabilities.  

 
Figure 8: System composed of a panel zone molded by suitable beam and/or shell finite elements  and connected 

members modeled using 14-dof frame finite elements 

Another consideration in the application of eigenvalue buckling methods for assessing out-of-
plane stability is the question of “what is a member?” In the examples shown in Sections 5 and 6, 
it is common that the member would be defined as the entire length between the beam-column 
bottom and top. However, in general, any particular length may be considered as a member. Given 
the member definitions, the elastic buckling modes of a system are calculated using the global 
structural model, considering the continuity between its members. The most effective application 
of the General Method requires the consideration of the most relevant buckling mode and the 
corresponding critical elastic load factor for the proper stability design of the member under 
examination. In the case of a complex 3D structural model with a large number of different but 
relevant buckling modes it is usually not evident which is the most relevant mode for the design 
of a certain member (Szalai 2010). This is a relevancy problem. It is common, that different 
buckling modes describe the stability behavior of distinct parts of the model. For that reason, a 
scaling procedure may be employed to facilitate the selection of the appropriate buckling mode for 
the stability design of different members. The deformation energy generated by the ith buckling 
mode is used as a basic measure, formulated as follows: 

 1
2

T
i sE  v K v  (54) 

where v is the vector of nodal displacements of the actual buckling mode shape, Ks is the member 
stiffness matrix compiled from the elementary 14x14 element stiffness matrices, and Ei is the 
deformation energy of the ith member within the structural system.  
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Using these measures, a specific scaling procedure can be constructed defining a so-called mode 
relevance factor (MRF), which identifies which members are considered relevant (critical) for the 
ith buckling mode. The basic assumption for this factor is that each buckling mode has one or more 
specific members which are the most critical, and all the members are compared to these members 
to assess the contribution to the buckling: 

 
 

100
max

i
i

i

E
MRF

E
  (55) 

For the most critical member this factor always takes exactly 100%, and the more critical a member 
the closer is the MRF to 100%. The buckling mode shape is considered as irrelevant for members 
where the MRF factor falls below minimum threshold. Consteel (2023) provides one 
implementation of these capabilities.  

9. Comparison of AISC 360-DG25 and Eurocode 3 Details  
During the preparation of this paper, several philosophical and technical differences between AISC 
360 and Eurocode 3 have been observed. The following summary is offered in the spirit of further 
development of both standards and possible harmonization between them. 

Eurocode 3 defines the buckling resistance of compressed members and members subject to 
bending in a similar way. This is not the case in AISC 360, where member strengths in the case of 
compression and flexure are defined differently. Eurocode 3 defines one single limit state for both 
cases. AISC 360 defines similarly one single limit state for compression but defines multiple limit 
states for flexure. That is, FLB is addressed as part of the overall axial compressive resistance but 
is defined as an independent limit state for flexure. There is experimental evidence for handling 
FLB as a limit state independent of LTB for practical I-section geometries (Latif and White 2021). 
Whether this evidence is sufficient to justify a different form of the resistance calculations for 
flexure could be given further scrutiny.  

Eurocode 3 uses multiple strength curves both for compression and bending following the Ayrton-
Perry concepts. The reduction factors χ and χLT are defined based on a nondimensional slenderness 
parameter similar to op. However, the nondimensional slenderness term is always taken as a ratio 
relative to the maximum cross-section strength in Eurocode 3. Conversely, the comparable term 
in AISC 360/DG25 is the yield axial load or yield moment on the gross cross-section.  

In Eurocode 3, the member buckling resistance is calculated by multiplying the cross-section 
resistance by the above reduction factors. The Eurocode 3 use of cross-section resistance with a 
single reduction factor including the effect of all relevant limit states allows for an elegant 
formalization of the resistance equations. In contrast, the AISC 360 buckling resistance of slender-
element members is not just a simple reduction applied the cross-section resistance. The unified 
effective width approach in AISC 360 is based on the concept that the axial compressive strength, 
in terms of stress, can be based sufficiently on the gross cross-section properties, and that the plate 
effective widths tend to be larger when the member fails at a smaller nominal axial stress level. 
The Eurocode 3 approach for calculation of the axial compressive strength is based more on the 
concept that the maximum plate stress is essentially at Fy due to axial compression and amplified 
bending, at the limit of the resistance. Therefore, one calculates the Eurocode 3 cross-section 
strength using plate effective widths based on Fy, identifies the proper selection from the multiple 
strength curves, and assumes there is no impact of member overall slenderness on the plate 
effective widths.  
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In the design approach illustrated in this paper, it is recommended that the critical cross-section 
for a given member verification should be taken as the cross-section having the smallest strength-
to-demand ratio, s (see Eq. 1). In the Eurocode 3 approach, the cross-section with the minimum 
s always gives the largest unity check (since the cross-section strength is simply reduced by χ and 
χLT as a function of the member’s slenderness in the Eurocode 3 equations). However, the largest 
unity check from the AISC 360/DG25 calculations potentially can occur at a cross-section other 
than the one with the minimum s. Nevertheless, the difference in the unity check determined by 
performing the full member strength verifications at a number of different cross-sections (as 
recommended in DG25) versus the value obtained using just the cross-section having the minimum 
s is small. Therefore, it is recommended that the unity check value obtained using solely the cross-
section with the minimum s is good enough. In the limit that the member slenderness approaches 
zero, one always obtains the cross-section strength in both Eurocode 3 and DG25.  

In a traditional design according to Eurocode 3, there are typically two different slenderness values 
used in determining member buckling resistances, one for compression and one for bending. In 
the General Method, only one common slenderness value is used for both buckling resistance 
calculations. AISC 360 uses a similar term (Fy /Fe) for compression (similar at least in the case of 
members where all the cross-section elements are nonslender). For flexure, the AISC 360 approach 
is different and is based on the physical length of the beam between braced locations. DG25 has 
introduced an alternative formulation of the AISC 360 strength equations based on the slenderness 
concept. 

In the case of cross-sections with slender components, Eurocode 3 classifies the whole cross-
section as Class 4; however, AISC considers individual slender elements within the cross-section.  

Eurocode 3 uses the effective width concept for the design of Class 4 sections both in compression 
and in flexure, traditionally by applying pure compression and pure bending cases separately, but 
alternatively also together. Alternatively, AISC uses the effective width approach explicitly only 
for compression, not for flexure. The Rpg term for calculation of the resistance of slender-web 
members in flexure was developed as a coarse representation of the cross-section bending 
resistance considering the loss of effectiveness and post-buckling action of the web. The use of 
this term allows for the calculation of flexural resistance for slender-web members in a single step. 
Conversely, the most rigorous Eurocode 3 calculation  of the flexural resistance for a cross-section 
with a Class 4 web requires iteration.  

According to Eurocode 3, the slenderness parameter for the buckling resistance of a Class 4 section 
is calculated based on the effective cross-section. In contrast, AISC uses the gross section 
properties for its slenderness-like parameter, justified based on the logic of the unified effective 
width approach.  

The lateral-torsional buckling resistance calculated based on Eurocode 3 rules for welded sections 
is substantially smaller than the same value according to AISC, even in the case of uniform 
moment distribution. One reason for this behavior is the use of a conservative buckling curve 
proposed by Eurocode 3 for welded sections, accounting for the possibility of higher residual 
stresses. It is also due to the way inelastic LTB strengths are defined in AISC. In the case of 
nonuniform bending moment application, handled by the elastically-determined Cb factor and used 
directly in the AISC LTB equation, this difference becomes even more significant. Evidence from 
recent experimental and analytical research (Phillips et al. 2023a and b) indicates that it can be 
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significantly unconservative to scale the LTB resistance of thinner-web members by the 
elastically-derived Cb factor to strength levels where significant on-set of yielding would be 
expected. The DG25 approach discussed in this paper applies the Cb factor only for manual 
estimation of the elastic buckling moment or flexural stress.  

The General Method implementation as presented in this paper is based on fundamental principles 
and therefore accepts the differences between these standards. Further validation of this approach 
versus experimental test results and test simulations would be appropriate. The predicted strengths 
are in line with results obtained by a traditional design based on either Eurocode 3 or AISC 360. 
Further comparison of the efficacy of the Eurocode 3 and AISC 360 approaches at large with 
respect to their ability to predict experimental and simulation-based resistances as well as their 
ease (speed) of use would be of interest  

10. Conclusion 
Researchers and practicing engineers have made significant progress in developing highly 
effective methods for designing nonprismatic members and frames composed of such members. 
For example, the Eurocode 3 Part 1-1 provides a so-called General Method that generalizes its 
rules for member proportioning, while the AISC/MBMA Design Guide 25 (DG25) provides 
extensions to the AISC 360 Specification. Furthermore, recent research has proposed advance-
ments in the AISC 360/DG25 calculations providing improved accuracy, simplicity, and 
transparency. This paper shows how the best practices and procedures from the recent work in 
Europe and the US can be combined to provide rational and economical calculations addressing 
the complexities of frame designs using nonprismatic members with maximum design speed. The 
specific recommendations include: (1) Apply specific DG25 Direct Analysis Method (DM) rules 
that capture the in-plane stability effects in a manner such that the in-plane stability may be 
assessed on a cross-section by cross-section basis; (2) In the first step of the member design 
verifications, identify the single critical cross-section within each member for the design checks 
as the one having the minimum cross-section strength-to-demand ratio; (3) At least in the final 
design verification stages, determine the appropriate critical out-of-plane elastic buckling load-to-
demand ratios for each member using 14-dof frame finite elements that handle the essential aspects 
associated with the variations in the cross-section geometries along the member lengths as well as 
the general positioning of brace points and the warping and other continuity effects at structural 
joints; (4) Utilize the General Method for the member verifications, considering the actual 
behavior under the combined loading effects explicitly and realistically; and (5) Implement the 
improvements to the AISC 360 procedures recommended in recent research, which eliminate the 
need to consider a tension flange yielding (TFY) limit state while providing a number of additional 
enhancements in the strength predictions.  
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