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Abstract 
This paper investigates the local buckling behavior of steel Circular Hollow Sections (CHS). 
Design recommendations for CHS are known to be somewhat conservative and sometimes 
inappropriate, namely with respect to section classification. CHS sections also provide a peculiar 
response to local buckling, being quite sensitive to initial geometrical imperfections (both with 
respect to their shape and amplitude), as a result of a shell-like response. 
This paper reports numerical investigations towards a better characterization of initial 
imperfections in the response of CHS sections under compression. The results of non-linear shell 
F.E. sensitivity studies on geometrical imperfections are provided, comparing different shapes and 
amplitudes to literature results. Typically, the introduction of initial imperfections has relied on 
the first eigenmode; however, the local buckling response can vary significantly compared to 
experimental stub column tests in some cases, especially for slender sections. Finally, the paper 
concludes with practical modeling recommendations for more accurate representations of CHS 
section behavior under compression. 
 
1. Introduction 
The structural response of Circular Hollow Sections (CHS) is dominated by a shell-like response, 
contrary to Square and Rectangular Hollow Sections in which the behavior is plate-like. This 
difference results in CHS exhibiting structural performances that are highly dependent on initial 
imperfections. As classical references explain (Petersen, 2012, 2020; Rotter, 2023; S. Timoshenko, 
1959; Ziemian, 2010), this peculiarity arises from the presence of nonzero third-order terms in the 
polynomial expansion of the total potential energy, as opposed to plates or columns where this 
term is zero (Bažant & Cedolin, 1991). Tests have demonstrated quite a number of different post-
buckling shapes for shells under compression, including inward and outward buckling wave 
patterns, a “diamond shape” (sometimes also denoted as the Yoshimura pattern (Bažant & Cedolin, 
1991; ESDEP, 2018)), or a so-called “elephant foot failure mode”, see Fig. 1.  
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Figure 1: CHS failure modes. (a) Elephant foot failure (b) Diamond shape pattern (Guo et al., 2016). 

 
Experimental series also indicate a rather non-uniform behavior depending on the slenderness of 
the section (e.g., diameter-to-thickness D / t ratio). 
Through various experimental tests, notable disparities were noted between the predicted 
theoretical critical loads and the actual test loads, with failure loads sometimes as low as 10% of 
the theoretical critical load. Empirical knockdown factors were subsequently introduced in an 
attempt to design such types of sections (Bažant & Cedolin, 1991; ESDEP, 2018; S. P. Timoshenko 
& Gere, 1963). 
Nowadays, guidelines for section design or local buckling in Circular Hollow Sections (CHS) 
remain ambiguous. Standards typically classify sections based on D / t ratios, yet adopt different 
design strategies: 
 AISC 360-22 (American Institute of Steel Construction, 2022) provides a design procedure 

leading to an effective area; which is analogous to the concept of the effective width 
method for slender plates, except it relies on a lower mechanical background; 

 CSA S16-19 (Canadian Standards Association, 2009) relies on an effective yield stress; 
 Eurocode 3 (EC3, 2005) lacks explicit recommendations for slender sections. For slender 

cases (Class 4 sections), EC3 recommends that it should be designed following its Part 1-
6 design rules, which are meant for tanks and silos, which are totally different in geometry 
and proportions (also, tanks and silos remain used for resisting internal pressure, not axial 
compression). 

The difference in concepts among these standards, especially for slender sections, highlights the 
complexity of the issue and emphasizes the need for further improvements. 
Several authors have studied the behavior of short CHS members under axial load, reporting stub 
column tests as well as non-linear finite element (FE) calculations (Chan et al., 2015; Guo et al., 
2016; Jiao & Zhao, 2003; Ma et al., 2016a; Research Fund for Coal and Steel, 2019; Tutuncu & 
O’Rourke, 2006). Of prime importance, the way of introducing imperfections within the FE model 
has been typically defined based on the shape of the first eigenmode, scaled by different factors 
depending on geometrical parameters. Lately, authors have kept relying on the first eigenmode, 
yet artificially modifying the thickness with the goal of obtaining uniform shapes, without 
dependance on the D / t ratio (Meng & Gardner, 2020a). 
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The objective of this paper is to make a comparison between different ways of introducing generic 
initial imperfections, in the aim of developing reliable FE models for further studies. In this respect, 
stub column test data from the literature were first collected and are summarized in Section 2, 
accompanied with a comparison between experimental results and code predictions from various 
codes. Then, the development of non-linear FE numerical models is addressed in Section 3. Next, 
in Section 4, a discussion on the influence of the structural response of five different ways of 
introducing initial imperfections is proposed, along with a study related to the selection of 
imperfection amplitudes. Finally, recommendations on the modelling of initial imperfections 
within FE models are proposed. 
 
2. Test data on CHS in compression – Design predictions from existing codes 
2.1 Test data with detailed information available in literature 
An extensive literature review allowed to collect some 42 stub column tests carefully documented. 
All collected tests contained enough information on initial imperfections, allowing an adequate 
development of refined non-linear finite element models. In Table 1, key parameters of the 
different tests are reported. It is seen that tests cover a wide range of parameters, varying from 
stocky to slender section shapes, from low to high strength steels and involving different 
fabrication processes. A typical test arrangement for a stub column test is shown in Fig. 2. 
 

             
Figure 2: Test setups. (Guo et al., 2016) and (Meng & Gardner, 2020a). 

 
It is worth mentioning that reported maximum values of initial imperfection amplitude w0 rely on 
quite different experimental techniques, such as transducers or laser displacement meter, with a 
minimum precision of 0.01 mm. 
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Table 1: Detailed test data obtained from literature. 

Test # D  
[mm] 

t  
[mm] 

D / t  
[–]  

E  
[MPa] 

Fy 
[MPa] 

w0 
[mm]  Fabrication Source Class 

EC3 
Type AISC 
and CSA 

1 95.5 5.3 18.0 208406 476 0.19 HR (Chan et al., 2015) 1 Non-Slender 
2 95.5 5.3 18.0 208406 476 0.23 HR (Chan et al., 2015) 1 Non-Slender 
3 95.5 5.4 17.7 208406 476 0.19 HR (Chan et al., 2015) 1 Non-Slender 
4 95.6 7.5 12.7 206374 424 0.18 HR (Chan et al., 2015) 1 Non-Slender 
5 95.6 7.4 12.9 206374 424 0.17 HR (Chan et al., 2015) 1 Non-Slender 
6 95.6 7.4 12.9 206374 424 0.07 HR (Chan et al., 2015) 1 Non-Slender 
7 150.0 2.0 75.0 188000 190 0.12 CF (Guo et al., 2016) 2 Non-Slender 
8 150.0 2.0 75.0 188000 190 0.24 CF (Guo et al., 2016) 2 Non-Slender 
9 150.0 2.0 75.0 188000 190 0.13 CF (Guo et al., 2016) 2 Non-Slender 

10 200.0 2.0 100.0 188000 190 0.59 CF (Guo et al., 2016) 3 Non-Slender 
11 200.0 2.0 100.0 188000 190 0.56 CF (Guo et al., 2016) 3 Non-Slender 
12 200.0 2.0 100.0 188000 190 0.37 CF (Guo et al., 2016) 3 Non-Slender 
13 250.0 2.0 125.0 188000 190 1.68 CF (Guo et al., 2016) 4 Slender 
14 250.0 2.0 125.0 188000 190 0.54 CF (Guo et al., 2016) 4 Slender 
15 250.0 2.0 125.0 188000 190 0.61 CF (Guo et al., 2016) 4 Slender 
16 300.0 2.0 150.0 188000 190 1.55 CF (Guo et al., 2016) 4 Slender 
17 300.0 2.0 150.0 188000 190 0.65 CF (Guo et al., 2016) 4 Slender 
18 300.0 2.0 150.0 188000 190 0.37 CF (Guo et al., 2016) 4 Slender 
19 400.0 2.0 200.0 188000 190 2.21 CF (Guo et al., 2016) 4 Slender 
20 400.0 2.0 200.0 188000 190 2.30 CF (Guo et al., 2016) 4 Slender 
21 600.0 2.0 300.0 188000 190 3.12 CF (Guo et al., 2016) 4 Slender 
22 600.0 2.0 300.0 188000 190 4.17 CF (Guo et al., 2016) 4 Slender 
23 89.0 3.9 22.8 205000 1180 0.07 CF (Ma et al., 2016b) 4 Slender 
24 139.5 5.9 23.6 205000 1180 0.17 CF (Ma et al., 2016b) 4 Slender 
25 89.0 3.0 30.1 210000 1053 0.17 CF (Ma et al., 2016b) 4 Slender 
26 140.1 4.0 35.2 213300 742 0.10 CF (Research Fund for Coal 

and Steel, 2019) 4 Slender 
27 140.4 4.9 28.6 212500 730 0.08 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
28 139.8 6.0 23.1 207900 779 0.15 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
29 140.1 7.9 17.8 205700 785 0.12 CF (Research Fund for Coal 

and Steel, 2019) 2 Non-Slender 
30 140.3 9.9 14.1 205600 788 0.10 CF (Research Fund for Coal 

and Steel, 2019) 1 Non-Slender 
31 168.4 4.0 42.6 211700 720 0.12 CF (Research Fund for Coal 

and Steel, 2019) 4 Slender 
32 193.7 5.6 34.6 217050 378 0.75 HR (Research Fund for Coal 

and Steel, 2019) 2 Non-Slender 
33 193.7 9.1 21.3 224000 807 1.09 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
34 219.1 7.0 31.3 212607 425 0.39 HR (Research Fund for Coal 

and Steel, 2019) 2 Non-Slender 
35 219.1 10.8 20.3 196245 942 0.42 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
36 219.1 10.8 20.3 196245 942 0.30 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
37 219.1 10.8 20.3 196245 942 0.41 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
38 244.0 7.5 32.5 193398 407 0.95 HR (Research Fund for Coal 

and Steel, 2019) 2 Non-Slender 
39 323.9 4.6 70.4 194906 429 0.61 CF (Research Fund for Coal 

and Steel, 2019) 4 Slender 
40 323.9 6.2 52.2 193307 372 0.92 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
41 323.9 8.0 40.7 200000 515 0.34 CF (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
42 355.6 8.0 44.5 200000 405 0.82 HR (Research Fund for Coal 

and Steel, 2019) 3 Non-Slender 
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2.2 Correspondence with design code predictions 
Typically, current codes predict the local axial resistance of CHS depending on their D / t ratio. 
EC3 classifies the cross section into four different classes, while AISC 360-22 and CSA S16-19 
classifies sections into slender/non-slender categories. In Fig. 3 and Table 2, results comparing 
code predictions to test results are summarized. 
 

Table 2: Design predictions from codes. 
 EC3* AISC 360-22 CSA S16-19 

Mean 0.92 0.97 0.89 
COV 14.0% 19.3% 16.3% 

% > 1.00 27% 33% 26% 
*EC3 does not give straightforward rules for Class 4 sections under axial compression. 
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      (a) Zoom on results, up to D / t = 100.                              (b) Full set of results, up to D / t = 300. 

Figure 3: Design predictions from codes. 
 

The major trend observed is that for the range of semi-compact to slender sections (D / t> 80, 
corresponding to Class 3 and Class 4 sections), design codes are predicting unsafe 
resistances – only CSA seems to provide a better approach for very high slender sections. It is also 
bothersome that EC3 does not give straightforward rules for the design of Class 4 sections. 
Accordingly, improvements in design recommendations are necessary. 
 
3. Development of F.E. models 
In order to propose improved recommendations for FE modelling in Geometrically and Materially 
Nonlinear Analyses with Imperfections (GMNIA) for CHS, it is first necessary to develop suitable 
FE models. The models were developed in the commercial FE software ABAQUS (Dassault 
Systemes, 2022), and rely on GMNIA analyses based on the “Riks method” as solver, allowing to 
handle complex and non-linear problems. The use of the S4R shell element was also adopted owing 
to its proven effectiveness in similar CHS studies, as cited in previous research ((Buchanan et al., 
2018), (Meng et al., 2020)); this quadrangular shell element is based on Kirchhoff’s bending 
assumptions and features reduced integration, ensuring precision in simulating the structural 
behavior. 
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Rigid body boundary conditions corresponding to thick end plates were adopted in the numerical 
models. Consequently, longitudinal displacement 𝑈𝑈𝑥𝑥  of one end was prevented while on the 
opposite end a compression load was applied at a reference point (see Fig. 4). 
 

 
Figure 4: Boundary conditions in numerical models. 

 
Data on dimensions, strain-stress relationships and geometric imperfections were introduced into 
the FE simulations following the detailed experimental measurements reported by the authors in 
their tests. For residual stresses, authors have indicated that they are negligible for hot-rolled 
sections, whereas for cold-formed sections, they are present inherently in the material stress-strain 
relationship (Jiao & Zhao, 2003; Research Fund for Coal and Steel, 2019; Zheng et al., 2016). 
Effects of residual stresses appear to become significant – around 15% difference – only for large 
D / t ratios (e.g., D / t > 500, Guo et al., 2016)); since such high slenderness ratios lie outside of 
the scope of CHS applications, residual stresses were not considered in this study. 
It has been shown by various authors that numerical results involving shell-types responses, as is 
the case here, are strongly influenced by the adopted mesh density. Accordingly, a relative mesh 
size of 0.1 ⋅ √𝐷𝐷. 𝑡𝑡 was employed for modeling the CHS stub columns. This mesh was shown to be 
fine enough to capture the local buckling behavior of CHS while still maintain good computational 
efficiency (Meng & Gardner, 2020a). 
 

 
Figure 5: (a) Coarse mesh. (b) (Very) dense mesh used. 

 
4. Sensitivity of F.E. models to initial geometrical imperfections and modeling 
recommendations 
4.1 General considerations 
Although imperfections are obviously distributed in an arbitrary way in any member, with random 
amplitudes, there is a need to provide general recommendations about this since all specimens 
cannot be measured. Normally, it is common to use the first eigenmode as the shape for initial 
imperfections (Ma et al., 2016b; Silvestre & Gardner, 2011; Yun et al., 2020). Beyond requiring a 
preliminary LBA calculation providing the buckling shape, a major inconvenience in this 
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procedure lies in that it makes the pattern dependent on the applied load, while real life 
imperfections are expressed in a somewhat random way, which cannot not load dependent. Also, 
in some cases this may not the best or safest choice as some authors explain (Degee et al., 2008; 
Farzanian et al., 2023; Pavlovčič et al., 2007; Schafer & Peköz, 1998). 
Lately, different authors have presented studies based on the use of the first eigenmode, but using 
a modified thickness in the LBA preliminary calculation step (e.g., tmod = D / 5), in order to “force” 
similar eigenshapes in all cases, without dependance on the D / t ratio (Meng et al., 2020; Meng & 
Gardner, 2020b; Research Fund for Coal and Steel, 2019). This procedure led to a good agreement 
between tests and numerical results for compact and semi-compact sections. Another classical 
alternative consists in defining an initially-imperfect predefined geometry, generally based on 
sinusoidal patterns – background of such sine-based patterns lies in elastic stability theory (Bažant 
& Cedolin, 1991; Den Hartog, 1952; S. P. Timoshenko & Gere, 1963). 
As literature evidences, the definition of the maximum amplitude to be set plays a role as important 
as the shape pattern. In this way, different recommendations have been proposed (American 
Institute of Steel Construction, 2022; EC3, 2005; McCann et al., 2016; Meng & Gardner, 2020b), 
usually depending on the geometry of the sections, although a wide scatter in the measured 
amplitudes and proposed formulas has been reported (Meng & Gardner, 2020b). 
Alternative ways to set initial geometrical imperfections are presented in the following. First, 
different techniques and their associated results on the influence of the shape of initial 
imperfections are discussed, using the measured values on amplitudes; then further examination 
over the effect of the amplitude is detailed. 
 
4.2 Use of eigenmodes 
At first, the initial shape investigated herein is the first eigenmode. This has been proved to be 
suitable for many cases, namely plate-like behavior. The popularity of this procedure comes from 
its simplicity, as (i) it is based on a perfect geometry, (ii) is usually readily available in commercial 
FE software and (iii) its application is easy to implement in extensive parametric analyses. The 
shape of this imperfection is shown in Fig. 6; for comparison purposes, this shape will be denoted 
as “Shape 1” in the following. 

 
Figure 6: Shape 1 – First eigenmode. 
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As explained before, a variation in this “classical” approach consists in the use of the first 
eigenmode yet with a modified thickness tmod = D / 5. This shape is called herein “Shape 2” and is 
represented in Fig. 7. 
 

 
Figure 7: Shape 2 – First eigenmode for modified thickness (tmod = D / 5). 

 
4.3 Iterations based on post-buckling shape 
The second approach is a somewhat peculiar and original procedure, which consists in an iterative 
scheme on the post-buckling shape (last converged step after obtaining peak load) from a prior 
GMNIA case with initial imperfections based on the first eigenmode (Boissonnade et al., 2006). 
The concept of this procedure is to provide the final post-buckling shape as initial imperfection, in 
the aim of including an imperfection pattern associated with the lowest resistance. However, the 
question that arises is if the procedure is suitable or not for parametric studies, as the computing 
time increases significantly through the multiple GMNIA calculation. The shape of this 
imperfection is shown in Fig 8 – and called Shape 3, and it is noted that it is quite different from 
the one of the first eigenmode (see Fig. 6). In this case, the initial geometrical imperfection shape 
is typically related to the “elephant foot failure” (cf. Test #1). Nevertheless, this shape may change 
depending on the slenderness of the section. 
 

 
Figure 8: Shape 3 – Iterations on post-buckling shape. 
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4.4 Use of an annealed mode with sine waves 
Another attempted way was looking for a so-called “annealed mode” within the first eigenmodes 
(see Fig. 9), called Shape 4. This idea came from theoretical solutions (Bažant & Cedolin, 1991; 
Den Hartog, 1952; S. P. Timoshenko & Gere, 1963; Ziemian, 2010) as well as from experimental 
observations, since the failure mode is usually defined affine to this type of pattern. In the 
theoretical solution, the half-wavelength associated with the critical load is given by Eq. (1). 
 
 𝜆𝜆0 = 1.73√𝑟𝑟 ∙ 𝑡𝑡  (1) 
 
Aa per eigenmodes, this shape remains the closest to a so-called “elephant foot failure mode”, 
which is described in many experimental reports and papers (Batikha et al., 2009; Bock et al., 
2023; Saha & Matsagar, 2015). Corresponding practical implementation remains fastidious since 
the corresponding buckling mode usually is not the first one, and has to be found within the list of 
the first eigenmodes, making this procedure unsuited for extensive parametric studies. 
 

 
Figure 9: Shape 4 – Annealed mode pattern. 

 
To overcome this issue, a last shape was studied by using an imperfect geometry defined through 
a sinusoidal pattern. Different half-wavelengths were employed, and a correlation was observed: 
as the half-wavelength became smaller (i.e., the number of half-waves increased), FE ultimate 
loads decreased as well, as shown in Fig. 10. 
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Figure 10: Number of half waves influence. 
 
Based on these observations, a recommendation on the half-wavelength to adopt could be 
established, as is proposed in Eq. (2). 
 
 𝜆𝜆0 = 𝐷𝐷0.35∙𝑡𝑡0.65∙𝐸𝐸

170∙𝐹𝐹𝑦𝑦
  (2) 

 
A comparison between different number of half-waves, the results of the theorical formula 
(Eq. (1)) and the proposed Eq. (2) are presented in Table 3. The proposed Eq. (2) provides 
adequate results as an average value of 1.00 is observed in Table 3, along with a quite low COV 
of 7.6%; this definition shall be used as the half-wavelength for the sinusoidal imperfection pattern, 
called Shape 5, shown in Fig. 11. 
 

Table 3: Half-wavelength influence. 

 5 Half-
waves 

10 Half-
waves 

22 Half-
waves Eq. (1) Eq. (2) 

Mean 1.11 1.05 0.94 0.89 1.00 
COV 18.7% 14.7% 10.5% 18.6% 7.6% 
Min. 0.97 0.93 0.65 0.44 0.81 
Max. 2.16 1.84 1.10 1.07 1.19 

% < 0.90 0.0% 0.0% 21.4% 33.3% 7.1% 
% > 1.10 33.3% 11.9% 0.0% 0.0% 7.1% 
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Figure 11: Shape 5 – Sinusoidal pattern (Test #1 – 𝜆𝜆0 = 73 mm – 6.5 half-waves). 

 
Is important to remark that for this type of imperfection pattern, the mesh shall be fine enough to 
allow multiple elements to be in each half-wave. The recommendations from (Meng & Gardner, 
2020a), proved to be sufficient in this respect. 
 
4.5 Results on initial imperfections shapes 
So far, five different geometrical imperfection patterns were presented (Shape 1: first eigenmode, 
Shape 2: first eigenmode with modified thickness for the LBA computation, Shape 3: iterations on 
post-buckling shape, Shape 4: annealed eigenshape, and Shape 5: sinusoidal pattern). In Table 4, 
a comparison between the numerical FE results obtained with these assumptions and the 
experimental tests is reported – note that for each FE simulation, measured amplitudes of the 
imperfections were considered. 
 

Table 4: Comparison between NFEM / NTEST for different shapes. 
 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 

Mean 1.09 1.09 1.04 0.98 1.00 
COV 15.2% 14.9% 9.9% 6.8% 7.6% 
Min. 0.97 0.97 0.93 0.82 0.81 
Max. 1.91 1.88 1.50 1.09 1.19 

% < 0.90 0.0% 0.0% 0.0% 11.9% 7.1% 
% > 1.10 28.6% 28.6% 16.7% 0.0% 7.1% 

 
It can be seen in Table 4 that for the first two shapes, which are based on the first eigenmode, a 
high COV (15%) is obtained, as well as an important percentage of unsafe values (around 28%) 
and a high maximum value (approx. 1.90), compared to the last two shapes which are based on an 
annealed pattern. The observed behavior for Shape 3 is not good enough to support the 
computational expense that it requires. Although the two last shapes obtained a good agreement, 
the Shape 4 approach is deemed not suitable for extensive studies as the eigenmode number needs 
to be sought in any case; eventually, Shape 5 happens to be the best option according to (i) the 
good quality of the obtained results and to (ii) its possibility to be systematically implemented (no 
need to run previous analyses or to search for particular eigenmode). 
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Nevertheless, the observed odd behavior for the first two shapes can be shown in large parts to be 
associated to (very) slender sections. In Table 5, the same results are presented, excluding the tests 
with D / t ratios greater than or equal to 100. 
 

Table 5: Comparison between NFEM / NTEST for different shapes (D / t < 100). 
 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 

Mean 1.03 1.02 1.00 0.98 0.99 
COV 4.5% 4.6% 5.0% 5.7% 5.1% 
Min. 0.97 0.97 0.93 0.87 0.88 
Max. 1.10 1.10 1.09 1.08 1.08 

% < 0.90 0.0% 0.0% 0.0% 6.9% 3.4% 
% > 1.10 3.4% 3.4% 0.0% 0.0% 0.0% 

 
It is noted that for non-slender sections, all shapes happen to have a good agreement with the 
experimental tests. It is then concluded that a special treatment shall be foreseen for the most 
slender cases. 
 
4.6 Amplitude of initial imperfections 
To this point, all the discussion remained centered over the pattern of initial imperfections, but the 
amplitude w0 has not been examined so far. Different codes and authors have proposed expressions 
for the calculation of the maximum amplitude: (Meng & Gardner, 2020a) proposed Eq. (3), while 
Eq. (4) recalls the recommendations of EC3 and AISC. The parameter Q for AISC shall be taken 
equal to 16.5 while in EC3 Q = 16, 25 or 40, depending on the quality of the manufacturing. 
Another typical way of defining w0 consists in using 1% of the thickness, as is presented in Eq. (5). 
 
 𝑤𝑤0 = 0.01√𝑟𝑟 ∙ 𝑡𝑡  (3) 
 

 𝑤𝑤0 = 1
𝑄𝑄 �

𝑟𝑟
𝑡𝑡
∙ 𝑡𝑡  (4) 

 
 𝑤𝑤0 = 0.01 ∙ 𝑡𝑡  (5) 
 
FE results obtained with amplitudes set from each proposal and based on Shape 5 are plotted in 
Fig. 12 and compared to the reported values of maximum amplitude (max. measured amplitudes). 
It is seen that for non-slender sections (D / t < 80), the proposed equations return values that are 
significantly greater than the measured amplitudes, while for slender sections, the equations seem 
to underestimate the maximum amplitude. 
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      (a) Zoom on results, up to D / t = 100.                              (b) Full set of results, up to D / t = 300. 
Figure 12: Amplitude of initial imperfections. 

 
Therefore, to remedy this, Eq. (6) is proposed. Fig. 13 shows that the behavior of the proposed 
equation is more consistent with the reported values, whatever the slenderness range. Also, Eq. (6) 
proposal provides safe yet realistic w0 values. In Table 6, statistical results on the various equations 
considered for w0 are presented; Eq. (6) is shown to achieve the best results, namely leading to the 
lowest (i) COV and (ii) number of unsafe results. 
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2000
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Figure 13: Proposed equation on amplitude of initial imperfections. 
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Table 6: NFEM / NTEST for different amplitudes. 
 Measured Eq. (3) Eq. (4) 

Q = 16 
Eq. (4) 
Q = 25 

Eq. (4) 
Q = 40 

Eq. (4) 
Q = 16.5 Eq. (5) Eq. (6) 

Mean 1.00 1.07 0.92 0.99 1.03 0.93 1.05 0.95 
COV 7.6% 19.1% 19.1% 18.8% 18.9% 19.1% 21.8% 9.3% 
Min. 0.81 0.90 0.69 0.78 0.85 0.69 0.86 0.75 
Max. 1.19 2.09 1.69 1.87 1.99 1.70 2.15 1.12 

% < 0.90 7.1% 2% 50% 36% 14% 50% 29% 21% 
% > 1.10 7.1% 24% 12% 17% 19% 12% 26% 2% 

 
In Table 7, the same statistical analysis is done for non-slender sections (D / t < 100). In this case, 
Eq. (3), Eq. (4) with Q = 40, Eq. (5) and Eq. (6) all provide adequate results. 
 

Table 7: NFEM / NTEST for different amplitudes (D / t < 100). 
 Measured Eq. (3) Eq. (4) 

Q = 16 
Eq. (4) 
Q = 25 

Eq. (4) 
Q = 40 

Eq. (4) 
Q = 16.5 Eq. (5) Eq. (6) 

Mean 0.99 0.98 0.84 0.91 0.95 0.85 0.94 0.96 
COV 5.1% 5.2% 10.2% 7.5% 6.0% 10.0% 6.3% 6.8% 
Min. 0.88 0.90 0.69 0.78 0.85 0.69 0.86 0.82 
Max. 1.08 1.07 0.98 1.02 1.05 0.98 1.05 1.08 

% < 0.90 3.4% 3% 72% 52% 21% 72% 41% 14% 
% > 1.10 0.0% 0% 0% 0% 0% 0% 0% 0% 

 
Given its applicability to both slender and non-slender cases, it is advisable to use Eq. (6) for 
describing the maximum imperfection amplitude when resorting to the proposed sinusoidal 
imperfection pattern (Shape 5). 
 
4.7 Modelling recommendations 
Based on the previous results, it is then recommended to use a sinusoidal imperfection pattern, as 
presented in Section 4.4, with the wavelength proposed in Eq. (2) and with an amplitude ruled by 
Eq. (6). This proved adequate for all ranges of slenderness, contrary to imperfections patterns 
based on the first eigenmode who showed inaccurate for slender sections. 
 
5. Conclusions 
This paper presented a study on the stability behavior of CHS shapes under compression; more 
precisely, the paper focused on the sensitivity to initial imperfections, using detailed test results 
available in the literature. Then, for these test results, GMNIA FE numerical models were 
developed, validated and used for a sensitivity analysis on initial imperfections. A comparison 
between different ways to introduce the distribution and amplitude of initial imperfections was 
also described, and the main observations can be summarized as follows: 

1. A proposal to introduce initial imperfections, based on a sinusoidal shape aiming to be on 
the safe side for slender sections was presented; 

2. There is a limited number of experimental tests on slender CHS sections. This led to 
extrapolation of the results and behavior from compact shapes, while their behavior is quite 
different. Slender sections of course showed very sensitive to initial imperfections, 
compared to compact shapes; 
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3. The current way of introducing initial imperfections, using the shape of the first eigenmode 
with a modified thickness, along with the equations to estimate the amplitude of the initial 
imperfection was found adequate for compact sections yet unsafe for large D / t ratios 
(slender sections); 

4. Current codes have limited information on the design of slender sections. CSA S16-19 and 
AISC 360-22 seem to provide unsafe predictions compared to tests, being more critical in 
the case of the AISC code, while EC3 does not have clear rules for design of slender CHS 
columns, using the design approach for tanks and silos. Further experimental studies need 
to be undertaken to improve the design rules for these types of sections. 
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