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Practical computational modeling of the structure and its bracing system

for the design of primary metal building frames
Bálint Vaszilievits-Sömjén1, Aakash Reddy

Eetikala2 Donald W. White3,

Abstract

In current practice, the primary frames of metal buildings are typically designed using planar 
2D  structural  analysis.  The  frame  is  considered  laterally  restrained out-of-plane by  the 
connected  secondary  structural  elements,  such  as  purlins,  girts  and  flange diagonal bracing. 
The  points  of  connection  of  these  secondary  members typically are  assumed to act  as  fully 
braced for the design of the primary framing. The secondary elements must meet the stiffness 
and strength requirements specified in AISC 360-22 Appendix 6 to qualify as suitable bracing 
elements per AISC 360.

However, satisfying the existing  bracing  stiffness  requirements  can  lead  to  challenges, 
particularly in buildings where the roof purlins support standing seam roof panels and in large- 
span buildings where ordinary bracing systems may not be sufficient.

This paper demonstrates an approach to the above design problem focusing on direct modeling 
of the primary structure using thin-walled open-section beam theory frame elements along with 
the direct modeling of the out-of-plane restraint from the bracing system (purlins, girts, flange 
diagonal bracing, wall and roof panels, and the building longitudinal bracing). The structural 
analysis for the force demands on the primary structure still focuses on the 2D planar response, 
while the overall stability assessment focuses on the 3D system behavior. The proposed method 
calculates and uses elastic critical load multipliers to predict the corresponding global buckling 
strength of the stabilized members. The results from the proposed approach are compared and 
contrasted with other design-based calculations.

1. Lateral-torsional buckling strength of members stabilized by bracing not fulfilling full 
bracing stiffness requirements - Introduction

When evaluating the lateral-torsional buckling (LTB) strength of a member using the formulas 
outlined  in  Chapter  F  of the AISC  360 Specification (AISC,  2022), a  primary dependent 
variable is  the  unbraced  length  (Lb).  This  crucial  metric  is  defined  as  the  distance  between 
points either braced against lateral displacement of the compression flange or braced against 
the twist of the cross-section. The potential use of an LTB effective length factor to account 
for the influence of boundary conditions is discussed in the Commentary to the Specification. 
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However, the AISC 360 Appendix 6 stability bracing requirements focus on developing the 

calculated member strengths associated with the use of effective length factors K = 1.0.  

To ascertain whether a member qualifies for the use of Lb in the determination of its strength, 

the connected bracing must meet the stiffness and strength criteria specified in Appendix 6 of 

AISC 360. These requirements, formulated to provide practical solutions for prevalent 

situations in routine steel structures, present challenges in the context of load-bearing portal 

frames in metal buildings. This is due to peculiarities uncommon in many other steel structures, 

including: 

• Utilization of web-tapered and general non-prismatic members. 

• Incorporation of purlins and girts attached only to the outside member flange for lateral 

stabilization, while the member is exposed to combined axial compression and major-

axis bending. 

• Implementation of torsional restraint through flange diagonal braces connecting the 

inside flange to the purlins or girts, while the member being exposed to combined axial 

compression and major-axis bending. 

• Use of roof systems that cannot be classified as rigid in their plane, hence not providing 

full lateral support at each purlin line for the roof girder. 

Due to these distinctive characteristics, there arises a need to explore alternative approaches 

that are compatible with the nuances of metal buildings and allow for improved assessment of 

the bracing system stiffness and strength. It would be useful to develop a design methodology 

capable of easily predicting a member's LTB strength based on the provided stiffness and 

strength of the specified bracing system. 

Appendix 6 of AISC 360 focuses predominantly on the bracing stiffness and strength 

requirements to develop the full-bracing strength of steel members (based on unbraced lengths 

subjected either to concentric axial compression in the absence of applied bending moment or 

applied bending moment in the absence of axial compression, using K = 1 for axial compression 

as well as for LTB). Appendix 6 aims to provide bracing design rules that are simple to apply 

for routine situations with members subjected solely to axial compression or bending. The 

Section 6.4 commentary to Appendix 6 provides limited recommendations for calculating the 

bracing stiffness and strength requirements for routine members subjected to combined axial 

compression and bending.  

A significant focus of the AISC Appendix 6 bracing design rules is the provision of sufficient 

brace stiffness so that the second-order amplification of bracing displacements and forces is 

limited to levels that can be satisfied economically by routine bracing components. The 

challenge for the implementation of these rules in metal building design is their application for 

more complex bracing situations, including situations where certain bracing components may 

have relatively small stiffness.  

The proposed solution addresses the stiffness requirements via practical computational 

modeling of the main metal building frames and their bracing systems. The engineer performs 

the member and bracing design given elastic eigenvalue buckling solutions using realistic 

models of the structure and its bracing system. The main frame members are designed for the 

in-plane force requirements obtained from a planar second-order elastic analysis based on the 

AISC direct analysis method. The bracing members are designed for force requirements 

provided by simple rules.  In the following, first a design methodology based on the provided 
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bracing stiffness is presented. Second, a proposal for the determination of the bracing forces is 
discussed.

2. Use of the General Method for the design of structures with full bracing specified in 
accordance with stiffness requirements of Appendix 6.
The  General  Method,  described  in Vaszilievits-Sömjén,  et  al.  (2023), is a methodology 
especially suited  to the  design  of  metal  building frames. The  General  Method  approach  is 
closely related to the design procedures discussed in AISC/MBMA Design Guide 25 (White et 
al. 2021). In the examples presented by the above authors, the lateral bracing was assumed to 
be stiff enough and strong enough to fulfill the AISC 360 full bracing requirements. Therefore, 
the  bracing  was  modeled using infinitely  rigid out-of-plane lateral  supports.  Based  on  this 
condition, elastic linear buckling calculations were performed. The linear buckling eigenvalue 
problem then provided the elastic critical load multiplier used to determine the out-of-plane 
slenderness λop, equal to the square root of the ratio of the critical cross-section strength to the 
out-of-plane elastic buckling strength. The parameter λop is then employed as the fundamental 
dependent variable for the out-of-plane buckling strength verifications.

3. Recommended  Approach - use  of  General  Method  for  the  design  of  structures 
considering the specific provided bracing characteristics and configuration
In  the  General  Method  of  design, lateral  supports  can  be  readily modeled  as springs 
representing the provided stiffness of the bracing system. The complete 3D structure can be 
modelled  together  with  its  bracing  system,  including  the  consideration  of the  membrane 
stiffness  of  the  roof  system.  It  is  important  to recognize that typical 12 DOF  beam  finite 
elements are not suitable for providing the elastic load multipliers used by this method. More 
advanced frame finite  elements,  including  warping displacements, are necessary  for  such
application.

3.1 Consequence of bracing stiffness on the LTB strength
Consider a fork supported member shown on Figure 2 with uniform cross-section subjected to 
a uniform bending moment along its length. In addition, consider a lateral point brace at the 
level of the upper flange, positioned at the mid-span. The distance between the end supports 
and the middle lateral support position is Lb.

The member strength based on Lb is valid if the bracing stiffness of the middle brace point is 
sufficiently high. In the AISC 360 procedures, the stiffness of a lateral brace is considered to 
be  sufficiently  high if  the second-order amplification  of  any  initial  out-of-plane  lateral 
displacement  of  the compressed  flange  at  the brace  point is limited  to  a  factor  of  2.0. 
Alternatively, AISC 360 also considers the bracing to be sufficient if solely a torsional brace 
having  sufficient  stiffness  is  provided  at  the  brace  point,  restraining  the  rotation  about  the 
member’s longitudinal axis. In this case, the overall lateral rigid-body movement of the cross 
section at the brace is unrestrained. For torsional bracing, the objective of the rules in AISC 
360 is similarly to limit the amplification of any initial twist rotation of the brace point to a 
factor  of  2.0.  Recent  research  has  shown  that the prior  AISC  torsional  bracing  stiffness 
requirements generally need to be increased to meet this objective (Reichenbach et al. 2021). 
These increased requirements are largely due to the influence of lateral rigid-body movement 
of the member cross-section at the braced point.

In any case, when one conducts an elastic linear buckling analysis (ELBA) of the member and 
its bracing system, the above example member will buckle into a single wave pattern between 
its ends for smaller values of the bracing stiffness, and it will buckle into two half sine waves
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with an inflection point and zero lateral displacement or twist at the middle brace for larger 

values of the bracing stiffness (see Figure 1). The smallest value of the bracing stiffness causing 

the member to buckle into two half sine waves (in this example) is referred to as the ideal 

bracing stiffness, i.  

 

 

 

  

     

  

 

 

 

 

  

 

 

 

  

   

 

 

  

  

   

   

 

Figure 1: Buckling mode shapes in the case of a lateral brace with smaller or larger stiffness

than the ideal bracing limit.

The  use  of  the  stiffness  requirements  of  Appendix  6  ensures sufficiently high  stiffness for 
routine bracing situations. These requirements aim for the use of bracing stiffnesses of at least 
2i/ = 2i/0.75 = 2.67i for lateral bracing, and 3i/ = 3i/0.75 = 4i for torsional bracing

(based  in  effect  on  the  member  inelastic  or  elastic  LTB  moment). If  the bracing stiffness  is 
larger than these minimum required values, used  justify  the  use  of Lb in  LTB  equation, the 
member is said to be fully braced and the LTB strength is assumed to be at its value based on 
rigid bracing.

In contrast, if the stiffness is smaller than Appendix 6 requirement, the physical member’s LTB 
strength will tend to be reduced. The AISC 360 Appendix 6 provides a simple way of designing 
bracing systems with these smaller stiffness values. If the moment demand is smaller than the 
factored AISC member LTB strength based on Lb, the engineer is allowed to back-calculate a 
fictitious length that makes the factored flexural resistance equal to the moment demand. In 
contrast, Eurocode 3 (CEN, 2022) procedures consider the full bracing strength to be developed 
when the ideal bracing stiffness, i, is reached. The corresponding base Eurocode 3-member 
strength  curves  tend  to  be  much  more  conservative  than  the  AISC  LTB  strength curves, 
however.

If the bracing of the middle support does not meet the full bracing stiffness requirement under 
the current AISC Appendix 6 requirements, the engineer can conservatively neglect the bracing 
and calculate the LTB strength without considering its stabilization effect, thus employing 2Lb

in the LTB design strength equations.

3.2 LTB strength considering lateral bracing not meeting the stiffness requirements.
The LTB strength corresponding to lateral brace stiffness varying between zero and the value 
for full bracing can be readily obtained by FEA simulation. The proposed General Method of 
design can be also applied by directly modeling stiffness of the bracing system.

Figure 2 shows a simply-supported member laterally restrained at its mid-span at its top flange. 
The member uses a welded I-section with the dimensions of a W21x44 and its unbraced lengths 
are Lb = 10 ft. The lateral stiffness of the brace is varied from zero to the full bracing stiffness 
based on AISC 360. As a result, the elastic eigenvalue will change as a function of the specified 
stiffness of the lateral brace. 
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Figure 2: Simply-supported beam laterally braced at its mid-span. 

Considering the variation of elastic eigenvalue as a function of the brace stiffness, the 

slenderness value λop defined as 
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also changes. In this formula, sg is the smallest cross-section strength-to-demand ratio and e.op 

is the out-of-plane elastic eigenvalue, see in Vaszilievits-Sömjén, et al. (2023). 

In the application of the General Method in the context of the AISC 360 Specification, the LTB 

strength as a function of the slenderness λ𝑜𝑝 can be written in the following form, similar to the 

LTB strength formulas in AISC/MBMA DG25 (White et al., 2021): 
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The λ𝑜𝑝  slenderness value, determined on a model that incorporates the actual provided 

stiffness of the bracing system, allows for a prediction of the strength of the member. This 

provides an alternative approach for design, applicable when the bracing elements do not 

satisfy the full bracing condition. It should be noted that the “plateau strength” for above 

example member, RpgRpcMyc, is equal to the plastic moment, Mp. In addition, ML is taken equal 

to 0.5Myc as recommended by Slein et al. (2023) and Phillips et al. (2023a and b).  

Welded I-Section with W21x44 dimensions 
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The following discussion compares the results from the above General Method calculation to 

the the results from a full nonlinear shell FEA in Abaqus (Simulia, 2024) for the member 

described in Figure 2.  A sweep imperfection of the compression flange with an amplitude of 

Lb/2000 is specified in each of the unbraced lengths, and an out-of-alignment of the single mid-

length brace point on the compression flange of Lb/500 is defined (see Figure 3). The one-half 

best-fit Prawel residual stress pattern is specified, which is representative of the residual 

stresses in welded I-section members (Slein et al. (2023), Phillips et al., (2023a and b)).  

 
Figure 3: Initial imperfect geometry (contours indicate lateral displacement magnitude).  

 

Figure 4 shows the ratio of the elastic critical moment to the member plastic moment, Mcr/Mp, 

the prediction by the General Method calcuations based on the elastic eigenvalues for the 

different bracing stiffness values, Mn/Mp, and the strength determined from the FEA simulation, 

MFEA/Mp. The FEA simulation strength starts at 29 % of the plastic moment for zero brace 

stiffness and asymptotically approaches 67% of the plastic moment as the bracing stiffness is 

increased. At the required AISC full bracing stiffness of 2.67i = 4(0.9)(3,185 kip-in)/20.3 

in./120 in./0.75 = 6.27 kip/in, the FEA simulation shows that 0.67Mp is developed. 

Correspondingly, the General Method solution predicts a strength very close to the FEA 

simulation result for zero bracing stiffness, then a gradual increase in strength to the full-

bracing value at br = i (associated with ideal bracing for the elastic critical moment) 

approximately equal to  2(4,495 kip-in)/20.3 in./ 120 in. = 3.69 kip/in. For br equal to this i, 

the General Method full-bracing strength is 0.68Mp, whereas the FEA simulation indicates that 

the physical member would develop only 63% of its plastic moment strength. These are 

considered to be reasonable approximations.  

If similar examples with other unbraced lengths are considered, the results are simlar to those 

shown in Figure 6 for longer unbraced lengths where the LTB response is predominantly 

elastic. The General Method results tend to be slightly more conservative for shorter unbraced 

lengths, where the i based on developing the elastic critical moment becomes relatively large 

(due to the large value of the elastic critical moment relative to Mp). However, the General 

Method mapping from the elastic buckling moment to the design resistance still gives a 

reasonably accurate characterization of the FEA simulation results.  
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Figure 4: M/Mp as a function of the lateral brace stiffness. 

Figure 5 shows the results for the above example member if a torsional brace is employed at 

its mid-span rather than a lateral brace. Web transverse stiffeners are employed at the brace 

location to prevent web distortion there. The torsional brace restrains the relative lateral 

displacement of the flanges but does not provide any restraint to overall lateral movement of 

the member cross section at the brace point. In this case, the FEA simulation indicates that at 

a torsional brace stiffness of 3i/ = 4i = 4[(0.9)(3,185 kip-in)]2(240 in.)/29,000 ksi/20.3 in.4 

= 13,400 kip-in/rad, a member moment of only 0.62Mp is developed. However, the General 

Method solution suggests that the full bracing strength is achieved at i  (associated with the 

elastic critical moment for full bracing) approximately equal to (4,495 kip-in)2(240 in.)/29,000 

ksi/20.3 in.4 = 8,240 kip-in/rad, where the FEA simulation indicates a nominal flexural 

resistance of 0.61Mp. It is clear that the beam has difficulty reaching the theoretical full-bracing 

resistance in the FEA test simulation. This is due to the onset of rigid-body lateral displacement 

of the beam cross section at the brace point, even when the overall twisting of the cross-section 

at this point is highly restrained.  

In spite of the limitations of the General Method in capturing the torsional bracing response in 

the above solution, one can argue that the General Method results do capture the overall trend 

in the strength gains with increases in the torsional bracing stiffness. The above AISC solution 

by the General Method can be improved by using an effective torsional brace stiffness of only 

one-fourth of the actual torsional brace stiffness. However, the FEA test simulation still 

indicates a strength of only 0.64Mp at a br = 45,000 kip-in./rad. Therefore, the problem here 

is in part due to the fact that torsional bracing, in actuality, is not as efficient as lateral bracing 

in developing member flexural strengths.  

 

Fortunately, for metal building frames, practically there is always some lateral bracing stiffness 

in addition to the torsional bracing stiffness at brace points employing diagonal braces from 

the girts or purlins to the inside flange of the member receiving the bracing (even if the stiffness 

of this bracing is very small, such as in the case of roof diaphragms composed of standing seam 

panels). Even a very small amount of lateral bracing stiffness provides significant help in 

avoiding the above difficulties (Prado and White, 2015).  
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Figure 5: M/Mp as a function of torsional brace stiffness.

4 Determination of bracing forces
In general, the force requirements for the design of the bracing components can be obtained by 
performing a second-order analysis including appropriate geometric imperfections that tend to 
maximize the bracing force demands. However, the definition of geometric imperfections that 
will give safe worst-case estimates of the bracing forces is a complex task. Furthermore, these 
imperfections  are  strictly  different  for  every  bracing  component  within  a  given  structure. 
Therefore,  determination  of  bracing  design  forces  directly  from  a  second-order  structural 
analysis with geometric imperfections often is prohibitive except for the simplest of structures
(such as the example beam in Section 4).

Appendix  6  of  the  AISC  360 Specification provides  simple  algebraic  equations  defining 
representative worst-case bracing force requirements for routine cases with relatively simple 
bracing configurations and members subjected either solely to concentric axial compression or 
solely  to  bending  moment.  The  Appendix  6  rules  do  allow  for  the  use  of  a  smaller  bracing

stiffness than that corresponding to full bracing when the member force demands are smaller 
than  the  member  capacities  based  on  the  corresponding  unbraced  lengths  with K =  1.0  (by 
allowing the engineer to calculate the brace stiffness requirement using a fictitious unbraced 
length that makes the member capacity equal to the corresponding force demand). However, 
there is  no  change  to  the  bracing  strength  requirement  equations  in  situations  where  these

“partial bracing” stiffnesses are allowed. As noted in Section 1, the Appendix 6 Section 6.4 
Commentary  provides  some  guidance  for  determining  the  required  bracing  stiffness  and 
strength for members subjected to combined axial compression and flexure. However, it should 
be  noted  that  the  Section  6.4  Commentary  does  not  allow  for  the  consideration  of  partial 
bracing conditions on beam-columns.

Fortunately, there are other options for addressing cases with partial bracing. Upon calculating 
the out-of-plane elastic buckling eigenvalue of metal building frames modeled in combination 
with their bracing systems, it is common for the e.op values to be larger than 2.0 for all the load 
combinations  governing  the  design.  As  such,  it  can  be  argued  that  the  second-order 
amplification of the bracing system displacements and forces will tend to be small. In these
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cases, it should be possible to estimate the bracing system forces using simple approximations 

such as those recommended in Section 6.4 of the AISC 360 Appendix 6 Commentary.  

In cases where the e.op values are less than than 2.0, it is recommended that the bracing system 

forces can be estimated conservatively by applying the amplifier. 

 

.

1

1
1

e op

 =

−


 (4) 

to the base bracing force requirements for rigid bracing (i.e., for br = ) to estimate the 

corresponding bracing force requirements. Studies by Prado and White (2015), Lokhande and 

White (2015), and White et al. (2011) suggest that the maximum bracing system forces at the 

member strength limit are rarely larger than 3 to 4 % of the corresponding member forces. 

Therefore, potentially a maximum cap on the amplified bracing component forces of 3 to 4 % 

may also be appropriate.  However, further studies should be conducted to evaluate the 

appropriateness of such a maximum limit on the estimated bracing force demands.  

Figure 6 shows an example of the lateral brace forces at the member maximum capacities for 

the example described in Figure 2, determined using the FEA test simulations associated with 

the strengths plotted in Figure 6. One can observe that even for a brace stiffness of 

approximately one-half of the ideal bracing stiffness, the bracing force is only 0.018 of the 

member Mn/ho for the fully-braced member.  

 
  

   

  

 

   

   

     

 

 

    

Figure 6: Plot of lateral brace stiffness vs brace force as a percentage of the moment capacity

from full nonlinear shell FEA test simulation for the example beam.

5 Example Metal Building Frame
The  following demonstrations were inspired  by  an  example building provided by  a  leading 
North-American Metal Building company. The intermediate portal frame marked as ‘FL100’ 
in Figure 7 is evaluated using the proposed method.

In this structure, simply-supported portal frames with 80 feet span are laterally stabilized by 
the roof purlins connected to the outside flanges of its members. The purlins are made of cold- 
formed 8.5” deep Zee sections and carry two different roof system solutions: screwed-down 
trapezoidal sheeting and standing seam roof system. The frames are spaced at 25 feet.
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Figure 7: 3D layout of example metal building showing the position of the portal frame 

considered in this study. 

 

The frame is evaluated for the LRFD gravity load combination 1.2D + 1.6L including the self-

weight of the structure, a collateral load of 3.00 psf and a flat roof snow load of 21 psf.   

In the case of the standing seam roof solution, no screws are used to fix the roof panels to the 

underlying purlins, to avoid the consequences of thermal movement. The attachments to the 

purlins are made with clips which allow the displacement of the panels in the direction parallel 

to their ribs within a specified range. As a consequence of this solution, the roof system lacks 

efficient lateral restraints to the purlins. In addition, the purlins can move relatively freely move 

along their longitudinal direction, except those placed near the roof bracing nodes. The purlins 

with high translational flexibility cannot provide significant lateral restraint to the roof girder, 

only their bending stiffness can be considered in form of a torsional bracing for the girder. The 

torsional bracing is accomplished by adding flange diagonal braces. 

In contrast, a conventional screwed-down roof typically exhibits high shear stiffness which in 

addition to stabilizing the purlins, ties them together. As such, all the purlins are able to provide 

lateral restraint to the roof girder, instead of only those located close to the nodes of the roof 

bracing. In addition to their lateral bracing role, they can provide torsional bracing to the roof 

girder at flange diagonal bracing locations. The flange diagonal braces provide lateral restraint 

to the inside flanges through the torsional stiffness provided by the roof purlins and by the 

attachments to the top flange, and in the case of the screwed-down roof panels, via the roof 

diaphragm stiffness. The flange diagonal braces are L-section members designed for 

compression and connected with bolts to the rafter and to the roof purlin. 

The above complex mechanisms can be modelled readily and evaluated with the proposed 

method, employing special 14 dof frame finite elements. The solutions shown below are 

conducted using the Consteel (2024) software system. 3D models of the frame and its bracing 

systems are presented in which each bracing component is accurately represented with its 

actual stiffness.  
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5.1 Screwed-down roof option.
The 3D model shown in Figure 8 corresponds to the tributary area of the studied portal frame. 
In agreement with the proposed model by Wei et al. (2020), inflection points are assumed in 
the purlins at the boundaries of the tributary area. The ends of the purlins, modelled also with 
14 DOF beam finite elements, are coupled to the rafter with equal displacement constraints so 
that the purlins deflect along with the in-plane deflections of the main frame.

 

 
Figure 8: 3D model of the example portal frame with screwed-down roof panels. 

To simulate the lateral stabilization of the purlins provided by the trapezoidal sheeting, special 

1D line objects have been assigned to the top flange of each purlin, providing lateral and 

torsional restraint. The simulation of the effect of the sheeting’s shear stiffness in the out-of-

plane direction of the frame is realized by adding additional fictitious members between the 

purlins. These members are configured to represent the shear stiffness of the trapezoidal 

sheeting. 

The utilized G' shear stiffness value of the sheeting is determined in accordance with AISI 

S310 (2020). 

Those purlins which are placed close to the nodes of roof bracing are marked with support 

symbols in Figure 8. At these locations, for simplicity, infinitely rigid supports are assumed in 

the out-of-plane direction. 

 

In the model the load is applied directly to the rafter, with the application points at the top of 

the rafter sections, thus considering the load-height effects (see Figure 9). The purlins are not 

directly loaded; they only serve to stabilize the main frame in this model.  
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Figure 9: Load application on the frame.  

 

 
Figure 10: Line mode of the flange diagonal braces connecting the purlins to the bottom of 

roof girder at selected locations. 

 

At locations where the inner flange is in compression from the gravity load combination, flange 

diagonal braces are used to connect the compressed flange to the purlins. The solution shown 

in Figure 10 is able to mobilize the flexural stiffness of the roof purlin and provide rotational 

restraint to the rafter. 

The members representing the flange diagonal braces are also modelled with 14 DOF beam 

elements and are connected to the rafter by link elements to model their eccentricities.  

The global buckling results are captured in the proposed λ𝑜𝑝  slenderness, as discussed in 

Section 2. The slenderness values are determined from the elastic buckling eigenvalues of the 

global buckling solution. The mapping from the normalized slenderness to the member strength 

is made as described in Vaszilievits-Sömjén, et al. (2023) and summarized in Table 1. 
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Table 1: Mapping between slenderness and strength values. 

Compression Major-axis bending 

λ𝑜𝑝
2 < 2.25 

 

 

𝑃𝑛 = [0.658λ𝑜𝑝
2
] ∙ 𝐹𝑦 ∙ 𝐴𝑒 

 

λ𝑜𝑝
2 ≥ 2.25 

 

𝑃𝑛 = 0.877 ∙
𝐹𝑦

λ𝑜𝑝
2 ∙ 𝐴𝑒 

 

𝑀𝐿

𝐹𝑦𝑐 ∙ 𝑆𝑥𝑐

<
1

λ𝑜𝑝
2 ≤ 8.16 

𝑀𝑛𝐿𝑇𝐵 = 𝑅𝑝𝑔 ∙ 𝑅𝑝𝑐 ∙ 𝑀𝑦𝑐

[
 
 
 

1 − (1 −
𝑀𝐿

𝑅𝑝𝑐 ∙ 𝑀𝑦𝑐

)

(

 
𝜋 ∙ λ𝑜𝑝 − 1.1

𝜋 ∙ √
𝐹𝑦𝑐∙𝑆𝑥𝑐

𝑀𝐿
− 1.1

)

 

]
 
 
 

 

1

λ𝑜𝑝
2 ≤

𝑀𝐿

𝐹𝑦𝑐 ∙ 𝑆𝑥𝑐

 

𝑀𝑛𝐿𝑇𝐵 =
𝑅𝑝𝑔 ∙ 𝑀𝑦𝑐

λ𝑜𝑝
2  

 

 

Several ELBA buckling modes relevant for the verification of the rafter for combined 

compression and major-axis bending are shown together with the corresponding value of γe,op 

in Table 2. 

 

Table 2: Relevant elastic buckling modes for the frame with screwed-down roof panels.  

Mode 𝛾𝑒.𝑜𝑝 Elastic buckling mode shape 

1 3.66 

 
 

3 4.57 

 
 

5 4.99 
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The final unity check results, considering the interaction of axial compression and major-axis 

bending moments are evaluated in accordance with the AISC 360 Chapter H equations. Details 

for the performed calculations are explained in Vaszilievits-Sömjén, et al. (2023).  

Figure 11 presents the unity checks on the main frame members. Since all the unity checks are 

below 1.00, the strength of the portal frame is sufficient to meet the demand. 

 
  

 

  

 

  

   

  

 

 

 

   

 

  

    

 

 

  

   

 

 

 

Figure 11: Final unity check results on the example portal frame with screwed-down roof

panels.

5.2 Standing seam roof option
The modelling is made conceptually the same way as in the previous example for the frame 
with a standing seam roof (see Figure 12). However, there are some differences due to different 
characteristics of the roof systems that must necessarily be taken into account. For the proposed 
approach, it is assumed that the roof does not provide any shear membrane-type lateral restraint 
neither for the purlins nor for the rafter. The only stabilization effect provided by the sheeting 
is  the  bending  stiffness  of  the clips  connecting  the  sheeting  to  the  roof  purlins,  which  are 
modelled with spring support. It is important to note, that several standing seam solutions are 
available  on  the  market, each  having different characteristics.  All  solutions  require  an 
appropriate design solution. The example illustrated in this paper is not directly related to any 
of  these actual solutions.  The  example  is  intended  only  to showcase  the  flexibility  and 
capability of the design method.

The purlins placed close to the nodes of the roof bracing are supported by the same type of 
rigid supports as in the previous model for the screwed-down roof. The intermediate purlins 
marked with shaded support symbols on Figure 12 are not restrained longitudinally by the roof 
shear stiffness. Their displacement is restrained only by the flexibility of the special purlin clips 
with sliding connectors.

The flexibility of the clips can be determined from experimental tests. For this example, the 
values  proposed by Wei et  al.  (2020),  are  used.  The  clips  of  the  24 in. wide  roof  panel  are 
placed along the purlins with a spacing in accordance with the width of panel. The total number 
of clips used on the tributary area of the frame is ncl = 25∙12/24 = 12 pieces, therefore the total 
stiffness provided against displacement in the direction perpendicular to the rafter is βbr = ncl∙kc
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= 12∙0.152 kip/in. = 1.82 kip/in. This value is considered in the form of an elastic spring support 

at the end of the purlins, marked with shaded support symbols on Figure 12. 

 

Several ELBA buckling modes relevant for the LTB strength determination are shown in Table 

3.  

 
Figure 12: 3D model of the example portal frame with standing seam roof panels.  

Table 3: Relevant elastic buckling modes for the frame with standing-seam roof panels. 

Mode 𝛾𝑒.𝑜𝑝 Elastic buckling mode shape 

1 2.84 

 
 

3 3.09 
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9 4.55 

 
 

 

The final unity check results, considering the interaction of axial compression and major-axis 

bending moments are evaluated in according with AISC 360 Chapter H equations. The unity 

check results are summarized in Figure 13. As all the unity checks are close to 1.00, the strength 

of the structure is nearly adequate. However, a number of unity checks are slightly larger than 

1.0. 

 

 
  

  

 

   

 

  

   

  

 

Figure 13: Final unity check results

5.3 Stabilization forces in the bracing components
As the eigenvalues of the buckling modes relevant for the design of the portal frames according 
to Table 2. and Table 3. are all above 2.00, the second order amplification of the brace forces 
is not expected to be significant. Therefore, the brace force and displacement amplification will 
be relatively small, and the brace forces can be assessed by simple equations as discussed in 
Section 4.

5.4. Discussion of results
The elastic buckling modes obtained for the standing seam option are visibly different from the 
ones belonging to the screwed-down roof option. This is due to the differences in the provided 
shear stiffness to the underlying purlins, which as a consequence provide very different lateral 
stabilization to the roof girder.
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The most noticeable difference is that, in the case of the standing seam roof option, the rafter 

is less efficiently stabilized and the bucking mode corresponding to the middle part of rafter 

has become the lowest eigenvalue mode with an eigenvalue dropping from 4.99 to 2.84 

(compare the results from Table 2. and Table 3). Not only has the relevant eigenvalue decreased 

significantly, but also the corresponding mode shape is completely different. The wavelength 

does not correspond to the purlin spacing anymore, but is much longer, due to the freedom of 

the purlins to displace given the low shear stiffness of the standing seam roof system (see Figure 

14). 

 

Screwed-down roof option Standing seam roof option 

  
  

    

  

    

     

 

   

 

 

  

  

  

  

  

    

 

 

 

    

   

  

Figure 14: Representative buckling mode shapes for each of the roof types.

The example building  was  originally  designed  with  a  screwed-down  roof  option,  taking the 
benefit of every purlin acting as an efficient lateral restraint where the upper flange of the rafter 
is in compression. When the standing seam option is modelled using the proposed approach, 
the  available lateral  stabilization  becomes  less  efficient  and  the  slenderness λ valuesop

calculated on the basis of the 𝛾𝑒.𝑜𝑝 values become larger. This results in a drop of the MnLTB

strength values close to the ridge location and gives an increase to the final unity check results

from the original maximum values near 90% to some values slightly above 100%.

6. Conclusions
A complete design workflow has been presented which makes it possible to provide safe and 
practical design  of  metal  building frames  considering  their  complex  bracing  systems.  The 
proposed  method fulfills the  intent  of  AISC  360 Appendix  6  while  addressing  the  various 
complexities of the bracing design not addressed by the appendix.

The presented method utilizes and highlights the use of the General Method as fundamental 
approach for design of metal building frames and their bracing. When this method is used, it 
becomes  possible  to configure the  bracing  in  a  way that structurally best suits  the  standard 
details of metal buildings and check whether the structure considering such bracing can meet

the strength requirements.
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