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Abstract 

Due to steel’s high strength-to-weight ratio, members are composed of slender elements, which 

can make them prone to local buckling—a failure mode that can lead to global instability or 

fracture due to high localized strains. There are concerns that the current AISC 341 slenderness 

limits do not lead to consistent seismic performance across members and systems. This research 

project aims to address this shortcoming by developing a mechanics-based predictive model for 

the buckling of steel plate members under seismic loading. 

 

Using ABAQUS, we performed a comprehensive analytical study to investigate the strain capacity 

of plate elements subjected to inelastic cyclic loading. We compared the responses of plate 

elements under monotonic loading with those under various cyclic loading protocols to determine 

the onset of buckling. Our study examined the effects of plate slenderness ratio, applied loading 

protocol, and cyclic material model on the buckling behavior. 

 

The findings reveal significant insights into the buckling behavior of steel elements under cyclic 

loading, highlighting the influence of boundary conditions, slenderness ratio and loading history. 

A simplified analytical model was developed to predict the occurrence of buckling. This 

fundamental knowledge is crucial for the AISC to develop and implement improved seismic 

compactness criteria, ensuring more consistent and predictable performance of steel structures in 

seismic conditions. This research contributes to the broader understanding of local buckling 

mechanisms, offering practical implications for the design and reliability of steel structures. 

 

1. Introduction 

Due to steel’s high strength-to-weight ratio, the cross-sections of steel elements can be slender, 

making them susceptible to local buckling. This phenomenon becomes particularly critical in 

seismic conditions, where cyclic loading induces large localized strains and accelerates structural 

degradation. Local buckling not only compromises load-carrying capacity but can also lead to 

strain concentrations in the buckled areas, potentially causing fractures due to ultra-low cycle 

fatigue (Fell et al., 2009). The study by Torabian and Schafer (2014) demonstrated that slender 

plates exhibit significant out-of-plane deflections in the post-buckling regime. However, they can 
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still maintain some load-carrying capacity due to stress redistribution. Nonetheless, increased 

slenderness amplifies strain localization, which in turn accelerates progressive strength 

deterioration and can lead to fracture. Torabian and Schafer (2014) also emphasized the role of 

local slenderness in influencing the strain capacity and rotational behavior of steel members, 

highlighting that slenderness directly impacts not only the onset but also the progression of 

buckling and failure modes. 

 

Slenderness may be defined as a dimensionless parameter, 𝜆, that quantifies the propensity of a 

structural element to buckle, defined by its geometric and material properties, such as width-to-

thickness ratio and yield strength. For a plate element: 

 

 𝜆 =
𝑏

𝑡
√

𝐹𝑦(12)(1−𝜈2)

𝜋2𝐸𝑘
 (1) 

 

Where b and t are the plate width and thickness, respectively, Fy is the material yield stress, E is 

the modulus of elasticity, v is the Poisson’s ratio and k is a plate buckling coefficient related to the 

boundary conditions. Slenderness plays a critical role in stability. Higher slenderness leads to early 

local buckling and reduced energy dissipation (Grondin et al., 1998; Fukumoto and Kusama, 

1985). Conversely, lower slenderness ratios enhance energy dissipation and delay buckling, which 

is essential for seismic resilience. Grondin et al. (1998) found that as plate slenderness increases, 

the load-carrying capacity decreases, and the likelihood of local buckling rises. This reduction in 

capacity is also associated with changes in the mode of failure, shifting from stable post-buckling 

behavior (e.g., Euler buckling) to less desirable forms like plate buckling.  

 

Cyclic loading accelerates stiffness degradation and strain accumulation in structural members due 

to cyclic plasticity, residual stresses, and the Bauschinger effect. Fukumoto and Kusama (1985) 

found that thin-walled plates experience significant stiffness loss and energy dissipation after local 

buckling, driven by residual stresses and local deformation. Yao et al. (2016) similarly observed 

that cyclic loading reduces in-plane rigidity and increases residual deformation, compromising the 

plate’s overall load-carrying capacity. The Bauschinger effect that reduces yield stress during load 

reversal amplifies localized buckling as well as the residual bending deformations under reverse 

cyclic loading, worsening deformation in weakened areas (Goto et al., 1995).  

 

To mitigate these risks, AISC specifications provide slenderness limits for cross-sectional 

elements. AISC 360 (AISC, 2022b) classifies steel elements (like webs and flanges) based on 

slenderness to predict their resistance to local buckling. For seismic design per AISC 341 (AISC, 

2022a), additional classifications ("highly ductile" and "moderately ductile") aim to ensure large 

deformations under cyclic loads, but their performance objectives and limits lack consistency and 

experimental validation. This research aims to enhance the accuracy of predicting the onset of 

buckling under seismic loading by developing a detailed mechanics-based finite element model. 

Using ABAQUS, the study investigates the buckling behavior of individual steel plates under 

inelastic cyclic loading, considering the effects of slenderness, boundary conditions, and cyclic 

loading protocols. Plates were analyzed using different material models and boundary conditions, 

and imperfection shapes were defined based on initial buckling modes from linear elastic analyses. 

These findings provide crucial insights into buckling mechanisms, contributing to the refinement 

of AISC seismic compactness criteria and ensuring more reliable and consistent seismic 
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performance of steel structures. This paper outlines the methodology, key findings, and their 

implications for seismic design. 

 

2. Modeling Details 

A parametric study was performed on plate elements in order better understand the buckling 

response of plates under cyclic inelastic loading, and to investigate the effect of various parameters. 

The finite element modeling was conducted using ABAQUS (ABAQUS, 2023), following 

methodologies outlined in related studies such as Torabian and Schafer (2014). The model 

geometry consisted of a rectangular steel plate with dimensions of 250 mm in length and 50 mm 

in width, representing an aspect ratio of 5:1. To investigate the effects of slenderness, varying 

thicknesses were applied. The slenderness parameter was calculated with Eq. 1. The plates were 

meshed using 4-node linear shell elements with reduced integration and hourglass control (S4R in 

ABAQUS). Models were meshed with maximum finite element dimensions of approximately 2 

mm per side. Further mesh refinement did not yield appreciable differences in element behavior. 

 

Four boundary condition configurations were modeled to investigate the effect of boundary 

conditions of plate ductility. Unstiffened plates, which are supported on one longitudinal side and 

free on the other, were analyzed with both simple (rotation free) and clamped (rotation fixed) 

boundary conditions on the supported side. Flanges in wide flange steel members are considered 

to be unstiffened elements, supported by the web on one side and free on the other. Similarly, 

stiffened plates, which are supported on both longitudinal sides, were also analyzed with simple 

and clamped boundary conditions. Webs of wide flange members and walls of square and 

rectangular HSS members are examples of stiffened elements. These boundary conditions were 

incorporated into the finite element models by appropriately constraining or releasing degrees of 

freedom (DOF) along specific edges of the plate, see Figure 1. 

 

 
Figure 1: Finite Element Mesh and Boundary Conditions for Unstiffened Plate with Simple Support 

 

Loading was applied to each plate using specified displacement of the nodes on the left side of the 

plate. In addition to monotonic compression, several cyclic loading protocols were applied: (1) 

symmetric loading with constant amplitude displacement cycles, denoted as ±4𝑑𝑦 and ±15𝑑𝑦, 

where 𝑑𝑦 is the yield displacement of the plate, (2) a gradually increasing symmetric loading 

protocol, denoted as SLP, which is based on the loading protocol utilized for full-scale HSS brace 
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specimen as described in Kaldestad (2022), and (3) a specialized protocol called ±4𝑑𝑦𝐹, which 

involved applying only half the cycles that led to buckling from the standard ±4𝑑𝑦 loading 

protocol, and then applying a monotonically increasing compression up to buckling initiation, see 

Figure 2 where the displacement (U) normalized by the yield displacement (𝑑𝑦) is on the Y-axis 

and the number of half-cycles is on the X-axis. Additionally, to interrogate the effect of initial 

loading direction, loading protocols with one tension excursion followed by compression to the 

point of buckling were applied. 

 

 
Figure 2: Loading Protocols 

 

The cyclic hardening behavior of the material was modeled using ABAQUS's built-in cyclic 

plasticity framework. This approach employs a von Mises yield criterion combined with isotropic 

and kinematic hardening, based on the Armstrong and Frederick (1966) model. A single backstress 

term represents kinematic hardening, while isotropic hardening was captured through an 

exponential model. The hardening parameters used in the study were based on calibrated 

parameters for A500 Grade C steel, from Kaldestad (2022). Three material model calibrations 

were utilized to explore the influence of minor variations in hardening properties on buckling 

performance under cyclic loading. The material model calibration parameters are given in Table 

1. 

 
Table 1: Material Model Calibrations 

Material 

Calibration1 

Yield Stress 

(MPa) 

Q∞ 

(MPa) 

b C1 

(MPa) 

γ1 

1 469 69 6 2068 25 

2 448 51.7 5 3000 30 

3 448 207 3 2896 35 

                                 1. All calibrations utilized E=200,000 MPa and ν=0.3. 

 

Imperfections were introduced into the model to replicate realistic initial deviations from flatness, 

which may trigger buckling under sufficient deformation. The imperfection shapes were defined 

based on the first buckled mode shape obtained from a linear elastic buckling analysis. The 

maximum imperfection amplitude was calculated using the equation: 
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 𝜔₀=𝛾𝜆²/𝑡 (2) 

 

where 𝜔0 is the imperfection amplitude, 𝛾=0.066 based on the recommendations in Torabian and 

Schafer (2014), 𝜆 is the slenderness parameter, and 𝑡 is the plate thickness. The results from the 

parametric studies, which included varying slenderness ratios, material properties, boundary 

conditions, and loading protocols, were utilized to develop a simplified analytical model, which 

may predict the buckling behavior of steel plates under cyclic loading, contributing to the broader 

goal of enhancing seismic design criteria. 
 

Table 2 Parametric Variation 

Parameter Value Notes 

Slenderness (𝜆) 0.2-0.6  

Plate buckling coefficient (k) 0.425 Unstiffened plate, simple BC 

 1.227 Unstiffened plate, clamped BC 

 4.0 Stiffened plate, simple BC 

 6.97 Stiffened plate, clamped BC 

 

Material model calibrations 3 See Table 1 

Loading protocols 1 monotonic 

4 cyclic 

See Figure 2 

 

The analysis procedure for each plate involved multiple steps. First, a linear elastic buckling 

analysis was performed to identify the buckling modes and determine the initial imperfection 

shapes. Subsequently, nonlinear static analyses were conducted to capture the inelastic buckling 

response under cyclic loading. The primary outputs recorded during each analysis include: (1) 

applied displacement, (2) the total reaction force, (3) the applied displacement and cycle number 

at the initiation of buckling. The buckling point in each analysis was identified from the global 

force-displacement response as the point in the when the applied force reached a maximum under 

increasing compressive displacement. Figure 3a shows the buckling point under monotonic 

loading and Figure 3b shows the buckling point under cyclic loading for a representative specimen. 

Under monotonic loading, the applied displacement at buckling initiation may be normalized by 

the displacement at yielding: 

 𝛽𝑚𝑜𝑛𝑜 =
𝛿𝑚

𝛿𝑦
 (3) 

From previous works of Torabian and Schafer (2014), this value can be related to the non-

dimensional slenderness parameter, 𝜆. For cyclic loading, several additional metrics were 

calculated to evaluate the cyclic buckling response, including cumulative compressive 

displacement and cumulative compressive plastic displacement. Cumulative compressive 

displacement is defined as: 

 

 𝛿𝑐𝑐 = ∑ 𝛿𝑖,𝑐
𝑛
𝑖=1  (4) 

 

Where 𝛿𝑖,𝑐 is the compressive deformation applied during cycle i, and n is the total number of 

load cycles up to and including the initiation of buckling. Reporting the capacity in this manner 

is instructive, as the cumulative deformation provides information on the total seismic energy 

dissipated by the component prior to buckling. This value may also be normalized by the yield 

displacement to determine 𝛽𝑐𝑦𝑐𝑙𝑖𝑐, the normalized cumulative compressive displacement. 
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(a) 

 

(b) 

Figure 3: Force-Displacement Response of (a) Monotonic Specimen and (b) Cyclic Specimen 

 

3. Results of parametric study 

After completing the parametric study, the results were analyzed to determine trends and to 

guide the development of the predictive model for inelastic cyclic buckling. General results will 

be presented in this section, followed by a detailed discussion on the developed model. 

 

3.1 Monotonic Results 

The monotonic loading protocol served as a baseline for assessing the buckling behavior of steel 

plates by applying a gradually increasing compressive load until failure. The results of the 

monotonic specimens are shown in Figure 4, where slenderness is plotted on the horizontal axis 

and 𝛽𝑚𝑜𝑛𝑜 is plotted on the vertical axis. Each marker in the figure represents a single analysis, 

Buckling Point 

x 

dy 

𝑥

𝑑𝑦
= 𝛽 

Buckling Point 
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and markers are color-coded by boundary conditions. Plates with lower slenderness ratios were 

observed to exhibit higher cumulative displacement capacities before buckling, while slender 

plates experienced early instability. These findings align with those of Torabian and Schafer 

(2014), who similarly observed a similar trend. Their expression for 𝛽𝑚𝑜𝑛𝑜 for elastic-perfectly 

plastic material is also included in Figure 4 for reference. 

 

 
Figure 4: Monotonic Specimen Response 

 

3.2 Cyclic Results 

3.2.1 Results by loading protocol 

Results from the unstiffened cyclic specimens with simple boundary conditions are shown in 

Figure 5, where slenderness is plotted on the horizontal axis and 𝛽𝑐𝑦𝑐𝑙𝑖𝑐 is plotted on the vertical 

axis. Markers are color coded by the cyclic loading protocol. As can be observed from the figure, 

the same qualitative trend applies regardless of loading protocol (increasing deformation capacity 

with decreasing slenderness). However, 𝛽𝑐𝑦𝑐𝑙𝑖𝑐 displays an apparent dependence on loading 

protocol.  

 

For example, the results from the SLP approach the 4dy loading protocol results for most of the 

range of slenderness values considered. However, as the slenderness decreases, the SLP results 

begin to shift toward those observed in the 15dy loading protocol. This behavior can be attributed 

to the gradual increase in cycle amplitude inherent in the SLP. At later cycles, the strain amplitudes 

become significantly larger, diminishing the influence of earlier, smaller cycles. Consequently, the 

SLP results become more comparable to the 15dy protocol, where large-amplitude cycles dominate 

the overall displacement response, see Figure 5. Also, it is observed that larger cycles, such as 

cycles from the 15dy loading protocol, result in reduced cumulative displacement capacity. 
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Figure 5: Unstiffened Simple-Free Plate Under Different Loading Protocols 

 

3.2.2 Boundary Conditions 

Cyclic loading showed that the strain capacity and buckling initiation were not significantly 

influenced by the boundary conditions similar to the previous results from monotonic. Although 

boundary conditions, such as clamped or simply supported edges, play a role in controlling 

lateral displacements and stress redistribution, their effect on the cumulative displacement  

𝛽𝑐𝑦𝑐𝑙𝑖𝑐 and the buckling initiation remained limited across different protocols. 

 

As shown in Figure 6, 𝛽𝑐𝑦𝑐𝑙𝑖𝑐 for plates with varying boundary conditions align closely. For 

instance, the differences between the clamped-clamped (stiffened) and simple-free (unstiffened) 

configurations remained within an acceptable range, even under large-amplitude cycles like 

±15dy. This suggests that the impact of boundary conditions appears to be well-captured by the 

parameter slenderness, λ. 

 

 
Figure 6: Influence of Different Boundary Conditions on Cyclic Loading 
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3.2.3 Material Parameter Variation 

The material models in commercial FE programs are often very accurate, but they can take many 

parameters as input. When calibrating material model parameters to coupon experiments, 

oftentimes only global data (force-displacement) is available for the coupons, not stress and strain. 

Since the global experimental data includes the combined effects of geometric nonlinearity 

(buckling, necking, etc.) and material nonlinearity, obtaining a unique set of constitutive 

parameters which can accurately simulate the material response can challenging. Often, many 

different parameter sets result in similar overall response. To investigate this effect, different 

material model calibrations which attempt to represent the same material (in terms of Fy and Fu) 

were utilized, in order to interrogate this effect. 

 

Interestingly, slight changes in material parameters (e.g., yield stress, strain hardening properties) 

had only a minimal impact on the results. For instance, plates analyzed with modified materials 

(referred to as Mat2 and Mat3) exhibited 𝛽𝑐𝑦𝑐𝑙𝑖𝑐 values that deviated only marginally from the 

baseline material, see Figure 7, where the differences between materials are observed to be 5% or 

less. This consistency suggests that plate geometry and loading conditions have a more pronounced 

influence on buckling behavior than minor material variations.  

 

 
Figure 7: The Influence of Different Materials Models on 𝛽𝑐𝑦𝑐𝑙𝑖𝑐  for Diferent Slenderness 

 

3.2.4 Effect of tension before compression 

In this study, we also examined the impact of applying tension cycles of varying magnitudes 

(+2dy, +4dy, +6dy, +8dy, +10dy, +12dy and +15dy) before compressing plates to failure. The 

results show that the magnitude of the initial tension cycle significantly influences the plate’s 

behavior during subsequent compression. For all configurations tested, larger tension cycles 

generally increased the plate’s ability to sustain subsequent compressive displacement before 

buckling. For example, unstiffened plates with simple-free boundary conditions demonstrated 

that as the magnitude of the tension cycle increased (e.g., from (+2dy) to (+15dy)), 𝛽 

consistently increased. Similarly, stiffened plates with simple-simple or clamped-clamped 
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boundary conditions showed greater buckling resistance under larger tension cycles. This effect 

was incorporated into the developed analytical model (see Section 4.1). 

 

4. Analytical model to predict buckling under cyclic loading 

4.1 Model development 

Based on a review of the results, a preliminary functional form for an analytical model to predict 

the onset of buckling was developed, along with a preliminary attempt to calibrate the model 

parameters. Given the results presented in the section above, it is important that the model 

incorporate the effects of loading history. Borrowing from concepts in continuum fracture 

mechanics, one possible form of the model is shown below: 

 
𝐵 = ∫ 𝑓(𝑥1, 𝑥2, 𝑥3 … ) 𝑑𝜀 − ∫ 𝑔(𝑥1, 𝑥2, 𝑥3 … ) 𝑑𝜀

𝜀𝑡𝑒𝑛𝑠𝜀𝑐𝑜𝑚𝑝

 (5) 

 

Where B is a scalar index ranging from 0 to 1, with a value of B=0 at the beginning of loading and 

a value of 𝐵=1 when buckling is predicted. The first term represents an integration over each 

compressive strain increment and the second term represents and integration over each tensile 

strain increment. Under compressive loading increments, the index increases towards the critical 

value of 1, and during tensile loading cycles, the index reduces. Thus, load history is included 

directly in the model formulation. This functional form also reflects observations of the plate 

simulations with tension applied first which suggest that large tension excursions can be beneficial 

in terms of increasing the cumulative amount of compressive strain that the plate can withstand.  

 

Preliminary expressions for 𝑓(𝑥1, 𝑥2, 𝑥3 … ) and 𝑔(𝑥1, 𝑥2, 𝑥3 … ) were developed. These can be 

seen in Eq. 5. The parameters which impact the buckling prediction include 𝛽𝑚𝑜𝑛𝑜, the monotonic 

deformation capacity, and a constant c*, which quantifies the rate of decrease of the buckling index 

during tension cycles. 

 𝐵 = ∫
1

𝛽𝑚𝑜𝑛𝑜𝜀𝑦
 𝑑𝜀 − ∫

𝑐∗

𝛽𝑚𝑜𝑛𝑜𝜀𝑦
 𝑑𝜀

𝜀𝑡𝑒𝑛𝑠𝜀𝑐𝑜𝑚𝑝
 (6) 

 

After introducing the general form, modifications to the model were developed. During calculation 

of the buckling index, the elastic unloading portions of both tension and compression cycles within 

any loading protocol were excluded. As a result, 𝛽𝑚𝑜𝑛𝑜 was adjusted to reflect the plastic 

monotonic strain capacity only. These adjustments were found to significantly improve the 

predictive capability of the model. The improvement was attributed to better accounting for the 

Bauschinger effect. By incorporating these adjustments, our method provides a robust mechanism 

for predicting the onset of buckling under complex cyclic loading conditions. 

 

To enhance the prediction even more we introduced two parameters, C1 and C2. The first 

parameter, C1, was introduced to modify the contribution of displacement values in the buckling 

index that are coming from the tension cycles. Tension displacements typically arise from the 

reverse cycles in the loading protocol, and their unadjusted magnitude overestimate the damage 

accumulation. By multiplying tension displacements by C1, their impact was proportionally 

reduced to better reflect their contribution to the overall buckling process. However, this 

adjustment alone was not sufficient in cases where B dropped below zero during the damage 

progression. 
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To address this, the second parameter, C2, was introduced as an additional correction factor to 

better predict the initiation of buckling. When B turned negative, C2 was applied to further adjust 

the negative displacements, ensuring that the sum reflected a more realistic progression toward 

buckling. Thus, in the context of Eq. 3, the parameter c* may be defined as: 

 

 
𝑐∗ = {

𝐶1 𝑤ℎ𝑒𝑛 𝐵 ≥ 0
𝐶2 𝑤ℎ𝑒𝑛 𝐵 < 0

 (7) 

 

By iteratively refining the values of C1 and C2, we aimed to bring the value of B at buckling as 

close as possible to a target value of 1 across all loading protocols for a given specimen. This 

method provided a generalized and adaptable framework for assessing buckling behavior across 

different cyclic loading scenarios, making it a valuable tool for predicting structural performance 

in practical applications. 

 

As an example, Figure 8 displays the evolution of the buckling index over the applied loading 

history of each unstiffened, simple-free simulation with 𝜆𝑙=0.349. The yellow line labeled as “Near 

Fault” corresponds to the tension-first loading protocol used in this study, see Section 2. The onset 

of buckling in each simulation is indicated with a marker, and the value of the index at buckling 

can be read from the vertical axis. As can be seen, all values fall in the range of 0.9 < B < 1.1 at 

the occurrence of buckling, regardless of loading protocol. This suggests that the preliminary 

model can predict the occurrence of buckling in a variety of plate geometries with reasonable 

accuracy while incorporating the effects of loading history. 

 

 
Figure 8: Buckling Index Evolution for Analyses with 𝝀𝒍=0.349 

 

4.2 Model calibration 

To verify the generality of the proposed methodology, we incorporated the additional loading 

protocols from the tension effect discussed in Section 2. These loading protocols introduced pre-
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tension cycles of varying magnitudes before compression to failure. This allowed us to evaluate 

whether the predictive framework could reliably estimate the initiation of buckling across different 

highly non-proportional and asymmetric loading scenarios. 

 

Additionally, to refine the prediction process, we developed a MATLAB code to calculate the 

optimal values of C1 and C2 using five representative loading protocols. The code iteratively 

adjusted these parameters to minimize the average error in the prediction of the buckling index:  

 

 
∈𝑗=

1

𝑛
∑|𝐵𝑖,𝑗 − 1|

𝑛

𝑖=1

 

 

(8) 

 

Where 𝐵𝑖,𝑗 is the calculated buckling index at the point of observed buckling in specimen i with 

trial parameter set j, and ∈𝑗 is the error over all n specimens for trial parameter set j. To test the 

generality of these optimized values, the C1 and C2 parameters were then applied to a separate set 

of three different loading protocols. The results showed that the predicted values of B for these 

additional protocols within a range of +/-15% error, demonstrating the robustness of the 

methodology. The loading protocols in Table 1, labeled as Calibration Loading Protocols, 

represent the cases used to derive the optimal C1 and C2 values. These values were subsequently 

tested on the loading protocols labeled as Predictions, further verifying the model's accuracy and 

adaptability. 
 

Table 3: Calibration Results for Select Unstiffened (Simple Free) Cases 

 

Calibrated 

Parameters 

Value of B at buckling 

Calibration loading protocols 
 Value of B at buckling 

Predictions 

C1   C2  4dy  SLP  15dy  TE+10dy TE+15dy  4dyF TE+2dy TE+4dy 

0.434 0.61 0.4 1.07 0.87 - 1.04 1.05  1.07 1.01 0.88 

0.373 0.69 0.5 1.07 0.93 - 0.96 1.02  0.89 0.98 0.96 

0.356 0.7 0.4 1.13 0.88 - 1.05 1.03  0.97 0.93 0.98 

0.34 0.73 0.4 1.13 0.85 1.03 1.04 1.04  0.99 0.98 0.98 

 

However, manual evaluation of C1 and C2 revealed certain limitations of the automated 

optimization process. While the MATLAB code effectively minimized the total error across all 

protocols, it sometimes allowed large individual errors for specific cases while keeping the total 

error low. For instance, the error for some loading protocols exceeded 20%, even when the overall 

error was acceptable. By manually adjusting C1 and C2, we distributed the errors more evenly 

across the different protocols, achieving a more balanced and accurate prediction framework, see 

Figure 9. The approach not only accounts for various boundary conditions and preloading effects 

but also adapts to the nuances of different loading protocols, making it a valuable tool for structural 

performance analysis. 
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Figure 9: Comparison Between Evaluating C1 Using the MATLAB Code and Manual Trial 

 

4.3 Sensitivity of calibration 

To analyze the sensitivity of the buckling prediction methodology to variations in C1 and C2 , we 

created contour plots with C1 values represented on the horizontal axis, C2 values on the vertical 

axis, and the average error from all loading protocols depicted on the contour levels. The average 

error measures how far the predicted B is from the target value of 1, averaged across multiple 

loading protocols. 

 

The contour plots allowed us to visualize how different combinations of C1 and C2 affect the 

accuracy of the predictions. In regions where the average error was close to zero, the predictions 

across all protocols were well-aligned with the target value of 1. Areas with larger average errors 

highlighted parameter combinations that produced less accurate predictions, often due to 

overestimations or underestimations of contributions from specific loading protocols. 

 

The contour plots also revealed that, in most cases, the error in the prediction was more sensitive 

to changes in C1 compared to C2. Variations in C1 significantly influenced the average error, 

indicating that adjustments to the tension-related parameter had a more pronounced impact on the 

prediction accuracy, as shown in Figure 10. In contrast, changes in C2 generally resulted in errors 

within the same range, suggesting that the cumulative correction applied by C2 is less critical to 

the overall accuracy in many scenarios. This indicates that the prediction methodology relies more 

heavily on C1 to capture the displacement contributions effectively, while C2 adjustments provide 

stability but with a relatively lower sensitivity. 

 



 14 

 
Figure 10: Contour Plot from Unstiffened Simple Free Boundary Condition with 𝜆 = 0.31 

 

 

5. Conclusions 

This study investigated the initiation of local buckling in steel plates under cyclic loading and 

developed a predictive methodology using mechanics-based modeling. The findings and 

conclusions derived from this work are summarized as follows: 

 

• Loading protocol was found to have a major impact on cumulative displacement at 

buckling. Specimens loaded with small strain amplitude cycles were able to sustain greater 

cumulative displacements prior to buckling as compared to specimens loaded under larger 

strain amplitude cycles 

• Symmetric Loading Protocols (SLP) provided predictions consistent with monotonic 

buckling results at higher slenderness ratios. 

• At lower slenderness ratios, SLP results closely resembled the 15dy loading protocol, 

where larger cycle amplitudes dominated the cumulative displacement. 

• Pre-tension cycles (+2dy to +15dy) delayed buckling initiation and increased displacement 

capacity, demonstrating a beneficial effect of tension delaying buckling. 

 

Role of Slenderness and Boundary Conditions: 

• Higher slenderness ratios led to earlier buckling initiation, under both monotonic and cyclic 

loading. 

• The non-dimensional slenderness parameter, λ, was found to provide a robust 

characterization of effective slenderness, taking into account boundary conditions. 

 

Material Properties: 

• Variations in constitutive calibration had minimal impact on buckling initiation, 

emphasizing the dominance of geometric factors. 

 

Predictive Model Parameters C1 and C2: 
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• C1 adjusted the contribution of tension displacements to account for overestimated 

buckling index accumulation. 

• C2 corrected the buckling index when it turned negative, ensuring alignment with realistic 

damage progression. 

• Optimal C1 and C2 values predicted buckling within a 15% error range for new loading 

protocols. 

• Manual adjustments distributed errors more evenly across protocols, addressing limitations 

of automated optimization. 

 

Sensitivity Analysis: 

• Prediction error was more sensitive to variations in C1 than C2, highlighting the 

importance of tension-related adjustments. 

• Contour plots identified C1 and C2, combinations, minimizing average error across 

protocols. 

 

This study presents a comprehensive and generalized framework for predicting the initiation of 

buckling in slender steel plates under cyclic loading, regardless of the specific loading protocol or 

loading history. The methodology integrates key factors, including cyclic plasticity and boundary 

conditions effects, to ensure reliable predictions. Future work will expand on these findings by 

integrating experimental studies to validate the computational models. Another avenue for future 

research involves exploring the influence of advanced material models, such as high structural 

strength steels and non-conventional materials like stainless steel. Building on the preliminary 

findings, this project aims to develop a mechanics-based Appendix to AISC 341, providing an 

alternative methodology for assessing local buckling resistance under seismic loading conditions. 
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