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Abstract 

In the reported research the effect of prebuckling in-plane deflections on the critical moment to 

lateral-torsional buckling of beams is investigated. The paper focuses on the influence of support 

conditions, particularly that of intermediate discrete lateral supports. Parametric numerical and 

analytical studies are presented: critical moment values have been calculated with and without 

considering the effect of prebuckling deflection, using derived analytical formula, and finite 

element method. One of the most important conclusions is that – unlike suggested by earlier 

literature, – the prebuckling deflections are not always positive, but for certain supports can 

decrease the critical moment. Another important conclusion is that the calculated efficiency of an 

intermediate lateral support is greatly dependent on whether the prebuckling deflection is 

considered or not. 

 

1. Introduction 

Lateral-torsional buckling (LTB) can be the governing behavior/failure mode for a laterally 

unsupported beam. Linear buckling analysis (LBA), leading to the critical load(s) and buckling 

shape(s), alone is typically not enough to characterize the load-bearing capacity, still, LBA is a 

useful tool to understand the behavior. In addition, the critical load (e.g., critical moment) is widely 

used in design calculations. 

 

In classic LBA, the equations – either differential equations or energy equations – to be solved are 

written on the original, undeformed geometry. However, the primary, first-order deformations 

might influence the solution. As the load is increased on the structure, the primary deflections 

increase, and by the time when buckling occurs, the structure is already deflected. This deflected 

shape is referred to here as prebuckling deflection. It is to understand that the prebuckling 

deflection is not an imperfection, since it is due to the loading, and it exists even if the original 

structure is perfect. If the prebuckling deflection is considered in the LBA, the associated critical 

load is different from the one without considering it. It is reasonable to assume that prebuckling 

deflection is never zero, however, whether it has important or negligible effect on the buckling, is 

dependent on the structure. 
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In the case of beams subjected to LTB, the effect of the prebuckling deflection was included even 

in the very first analytical solution for the LTB problem by Michell (1899). Later, the solution 

without the prebuckling deflection effect became widely known from the work of Timoshenko 

(1906) who clarified the importance of warping, and published the well-known classic formula for 

the critical moment for LTB. The influence of prebuckling displacement, then, was discussed in a 

relatively small number of papers; a review is provided in Abureden and Adany (2025a).  

 

There seems to be a consensus in earlier literature that the prebuckling deformations increase the 

critical moment, and that the increase is dominantly determined by the lateral rigidity of the beam. 

However, there are some discrepancies, too, both in the proposed analytical expressions and in the 

numerical results. Moreover, these previous researches mostly focused on the simplest case of 

LTB, namely: simply supported single-span beams, subjected to uniform bending, and with doubly 

symmetric I-shaped cross-sections. Other cases were hardly investigated. In the research reported 

here the aim is to expand our understanding on how the prebuckling deflection influences the LTB 

phenomenon.  

 

This paper focuses on the effect of supports, including intermediate discrete lateral supports. In 

Section 2 the completed calculations are briefly summarized. The results of the numerical studies 

are summarized in Section 3: critical moment values with and without considering the effect of 

prebuckling deflection are calculated, using analytical formulae and beam finite element method. 

Finally, in Section 4 the main conclusions are drawn. 

 

2. Scope 

 

2.1 Beams considered 

In this study simple beams are analyzed with doubly symmetric cross-sections, subjected to 

uniform moment distribution along the length, see Fig. 1. Various end supports and intermediate 

lateral supports are considered. Regarding the end supports, both are pinned in the primary plane, 

i.e., both beam ends can freely rotate about the x-axis. The restraints against the y-axis rotation and 

warping are either ‘pinned’ or ‘fixed’. If the end of the beam is free to rotate in the lateral direction 

(i.e., pinned around the y-axis), it is denoted as ‘Pr’, while if it is fixed against lateral rotation, it is 

denoted as ‘Fr’. Similarly, whether the warping can freely occur or prevented, it is ‘Pw’ or ‘Fw’. 

Accordingly, for example, PrPw-PrPw identifies the basic case of lateral-torsional buckling, when 

forked supports are applied. Or PrFw-PrFw is the case when the lateral rotations are allowed but 

the warping is restrained at both ends. 

 
Figure 1: Intermediate discrete lateral supports considered 

 

The middle cross-section of the beam is laterally supported, in one of the configurations as follows: 

Top flange Laterally Supported (TLS), Centroid Laterally Supported (CLS), Bottom flange 

Laterally Supported (BLS), and All the cross-section Laterally Supported (ALS). Fig. 2 illustrates 

these cases. As a reference, the No Lateral Supports (NLS) case is considered, too. It is to 
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emphasize that ‘lateral support’ means that the lateral translation is prevented at one (or multiple) 

cross-sections points, see Fig. 2. As a result, in the case of CLS the twisting rotation of the cross-

section can freely occur; in the case of TLS and BLS the twisting rotation of the middle cross-

section is not prevented but is linked to the lateral translations; while in the case of ALS the 

twisting rotation of the middle cross-section is fully prevented.  

 

 
Figure 2: Intermediate discrete lateral supports considered 

 

Previous studies showed that the prebuckling effect is majorly dependent on the ratio of the minor-

axis and major-axis flexural stiffnesses (i.e., the 𝐸𝐼𝑦 𝐸𝐼𝑥⁄ =𝐼𝑦 𝐼𝑥⁄  ratio). Accordingly, several cross 

sections are considered so that the flanges remain the same (200×20 mm), the web thicknesses 

remains the same (12 mm), but the depth of the cross-section varies (between 150 and 500 mm). 

This results in 𝐼𝑦 𝐼𝑥⁄  ratios between 0.05 and 0.75. The L beam length varies, too (between 2.5 and 

50 m), i.e., the length range is extremely wide. Isotropic steel is considered, with a Young’s 

modulus equal to 210000 MPa, and Poisson’s ratio equal to 0.3. 

 

2.1 Methods applied 

To calculate the critical moment values with and without the prebuckling effect, analytical and 

numerical methods have been employed. New critical moment formulae have been derived using 

the energy method, following the principles proposed in Pi and Trahair (1992).  

 

For numerical analyses, the finite element method (FEM) has been employed, using beam finite 

elements. (Note, shell elements have also been used, but these results are not discussed in this 

paper.) For the FEM analyses the Ansys APDL (Ansys, 2020) has been used which offers the 

BEAM188 element, a 2-node element with 7 degrees of freedom at each node (three translations, 

three rotations, and the warping degree of freedom). When the prebuckling deflections are not 

considered, a classic linear buckling analysis (LBA) can be completed, directly included in most 

FEM software implementations. However, to obtain the critical moment with the prebuckling 

effect needs an iterative LBA procedure, as follows. 

Step 1: Classic LBA, to calculate 𝑀𝑐𝑟 (which, in this step, will be equal to 𝑀𝑐𝑟0). 

Step 2: Linear static analysis to get the deflected shape (i.e., the prebuckling shape), using the 

𝑀𝑐𝑟 as load from the previous Step. 

Step 3: LBA on the deflected shape, using the deflected shape from the previous Step, from 

which a new value for 𝑀𝑐𝑟 is obtained. 

Then Steps 2 and 3 can be repeated till convergence.  
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3. Results: the effect of prebuckling deflections 

In earlier papers multiple formulae were proposed to calculate the effect of prebuckling deflection 

on the critical moment. However, by introducing appropriate simplifications, as detailed in in 

Abureden and Adany (2025a), most of the previously proposed formulae take the following 

format. 
 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐼𝑦

𝐼𝑥
)⁄  

(1) 

 
where 𝑀𝑐𝑟0  and 𝑀𝑐𝑟  is the critical moment without and with the effect of prebuckling 

deformations considered, 𝐼𝑥 and 𝐼𝑦 are the second moments of area for the x (major) and y (minor) 

axes, respectively. This formula suggests that (i) 𝑀𝑐𝑟  is larger than 𝑀𝑐𝑟0, i.e., the prebuckling 

deflection increases the critical moment, and (ii) 𝑀𝑐𝑟 monotonously increases as 𝐼𝑦/𝐼𝑥 increases. 

The (relative) moment increase, therefore, can conveniently be expressed as: 
 

𝑀𝑐𝑟 −𝑀𝑐𝑟0

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
)⁄ − 1 (2) 

 
The above formula predicts a significant moment increase if the inertia ratio is large, e.g., the 

increase is 100% when 𝐼𝑦/𝐼𝑥 = 0.75 . Moreover, the critical moment tends to infinity as 𝐼𝑦 

approaches 𝐼𝑥, i.e., minor-axis LTB is nonexistent. It is also to observe that the moment increase 

is independent of the beam length.  

 

The above formula can be justified for simply supported beams with open cross-sections, but not 

for other cases, see e.g., Abureden and Adany (2025b). The moment increase is greatly influenced 

(i) by the supports and (ii) by the length. This is illustrated in Fig. 3, where the results of beams 

with simple (forked) end supports are presented, considering various intermediate discrete lateral 

supports. 

 
Figure 3: The effect of beam length on the moment increase: TLS (left) and CLS (right) 

 

There are important observations as follows. (i) Typically, the introduction of some discrete lateral 

support reduces the moment increase. The reduction can be drastic. For example, when 𝐼𝑦/𝐼𝑥 =

0.75, the moment increase without any intermediate support is 100%, but it can be a negative 
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increase in the presence of a centrally place lateral support. (ii) When an intermediate support is 

present, the beam length has significant effect. (iii) The tendency of the moment increase curves 

is far from being monotonously increasing. This can be explained by the buckling shapes. The 

buckling shape can be symmetric or point-symmetric; the various shapes are differently affected 

by the prebuckling deflections, and sometimes there is mode switch when the prebuckling 

deflection is considered. (iv) The position of the discrete lateral support (within the cross-section) 

has significant effect. 

 

The results are even more scattered if the end support is different from simple (forked) one. This 

is demonstrated by Fig. 4, where the moment increase values for 30-m-long beams are plotted. 

The important observations are as follows. (i) In general, the warping fixity has small effect. This 

observation is in full accordance with the results presented in Abureden and Adany (2025b) for 

beams without intermediate lateral supports. (ii) In the case of ALS, the warping fixity has 

marginal influence, while the rotation fixity (about the minor axis) reduces the moment increase. 

(iii) If the rotation is restrained at one end only, the results are in between the Pr-Pr and Fr-Fr 

cases. (iv) In the case of TLS/CLS/BLS, the curve shapes are not significantly affected by the end 

supports, but the curves with end fixity run below the PrPw-PrPw curves, thus, the end fixity 

reduces the moment increase. Since, in general, both the end fixity and the intermediate lateral 

support decreases 𝑀𝑐𝑟, it finally can be significantly smaller than 𝑀𝑐𝑟0, the maximum decrease 

being 25-35%, depending on the lateral support position. (It is to note that for other beam lengths 

even larger moment degradation can be found.) 

 

 
Figure 4: The effect of end supports on the moment increase: ALS (left) and BLS (right) 

 

 

3. Results: the efficiency of the discrete intermediate lateral supports 

Intermediate lateral supports are widely used in structural engineering constructions. They are 

known to enhance the LTB behavior. It is also known that the position and type of the intermediate 

support influences its efficiency. Based on the here-presented results, however, a further aspect is 

revealed: the efficiency highly depends whether the prebuckling deflections are disregarded or 

considered. To illustrate this, Figs. 5-6 show the efficiency for two sample cases. The efficiency 

is expressed by the 𝑀𝑐𝑟0/𝑀𝑐𝑟0(𝑁𝐿𝑆) or 𝑀𝑐𝑟/𝑀𝑐𝑟(𝑁𝐿𝑆) ratio, where 𝑀𝑐𝑟0 and 𝑀𝑐𝑟  are the critical 

moments with the lateral supports, while 𝑀𝑐𝑟0(𝑁𝐿𝑆) and 𝑀𝑐𝑟(𝑁𝐿𝑆) are the critical moments without 

any lateral intermediate support.  
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Figure 5: Ratio of critical moments with and without intermediate support for L = 5 m, PrPw-PrPw: 

𝑀𝑐𝑟0 (left) and 𝑀𝑐𝑟  (right)  

 

 

 
Figure 6: Ratio of critical moments with and without intermediate support for L = 30 m, FrFw-FrFw: 

𝑀𝑐𝑟0 (left) and 𝑀𝑐𝑟  (right)  

 

The most important observation is the striking difference between the left (without considering the 

prebuckling effect) and right (with considering the prebuckling effect) plots. In general, as 

expected, ALS is the most efficient and BLS is the least efficient, but the actual effect of the lateral 

support is strongly dependent on the problem parameters: the efficiency ratio can be as high as 3.3, 

but in many cases, it is hardly greater than 1. Moreover, there is no simple rule to know whether 

𝑀𝑐𝑟0 or 𝑀𝑐𝑟 benefits more from the presence of some intermediate lateral support. For example, 

in the FrFw-FrFw case shown in Fig. 6, for large and moderately large 𝐼𝑦/𝐼𝑥 ratios, the efficiency 

of BLS is 50% and 0% without and with considering the prebuckling effect, respectively; however, 

the efficiency of ALS is 50% and 80% without and with considering the prebuckling effect, 

respectively. (Hence, the classic analysis predicts the same 50% moment increase for both BLS 

and ALS, but a more realistic prediction is 0% for BLS and 80% for ALS.) 
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4. Conclusions 

In the reported research the LTB behavior is investigated using numerous assumptions and 

simplifications, such as: the material is perfectly elastic and homogeneous, the effect of 

imperfections is disregarded, only classic beam-type displacements are assumed (i.e., the effect of 

shear of localized plate bending deformations are disregarded), etc. Real beams are affected by all 

these factors. Still, it is a common notion that the results from an idealized elastic analysis are 

representative if the beam cross-section is compact and the beam is slender, i.e., it is expected that 

the critical moment values approximate the real LTB capacity in the case of locally compact but 

globally slender beams. However, the presented results illustrate that the critical moment value 

can strongly be affected by the prebuckling deflections. Depending on the structural configuration 

(most importantly: on the end and intermediate supports), the ratio of the critical moments with 

and without considering the prebuckling effect is in the range of 0.6-2.0 for practical doubly 

symmetric beams. Similar conclusions can be reached observing the efficiency of the intermediate 

lateral supports. The calculated efficiency of the lateral support is sometimes significantly different 

depending on whether the prebuckling effect is considered or not. Though further investigations 

are necessary, the obtained results suggest that elastic linear buckling analysis results are not 

always good in predicting the lateral-torsional buckling behavior even if the behavior is primarily 

elastic. 
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