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Abstract 
The current design practice for steel structures is largely governed by component-based methods. 
However, with recent advances and the increasing accessibility of nonlinear structural modeling 
and analysis tools, there has been growing interest in developing and adopting system-based design 
methods, such as the Direct Analysis Method specified in the American Institute of Steel 
Construction Specification for Structural Steel Buildings and the Direct Design Method currently 
being implemented in the Australian and New Zealand design specification. These methods 
explicitly capture most, if not all, component-level limit states directly in the analysis, simplifying 
or eliminating separate component-level limit state checks while ensuring overall stability of a 
structure and accounting for beneficial inelastic load redistribution effects. A key practical 
challenge with these methods has been the lack of a formal framework to ensure adequate system-
level reliability. The Direct Analysis Method, for example, relies on component-level resistance 
factors and relatively ad hoc cross-sectional stiffness reduction factors to achieve target levels of 
system-level reliability, while the Direct Design Method addresses this issue more formally using 
rigorously calibrated system-level resistance factors. To evaluate and quantify the realized system-
level reliabilities of these design methods under varying conditions of uncertainty, a series of 
benchmark structural steel frames were designed according to both methods using the Genetic 
Algorithm and then analyzed under uncertainty. The effects of two key nonlinearities that dominate 
system response were considered: stability-driven geometric nonlinearity and yielding-driven 
material nonlinearity, both of which significantly influence system-level reliability outcomes. The 
findings of this study highlight the importance of incorporating system-based design approaches 
to better capture the complexities of the actual structural response, while providing valuable 
insights into improving the robustness of current design methods through an investigation of the 
system-level reliabilities achieved by these methods. 
 
1. Introduction 
The assessment of the stability of steel structures remains one of the most challenging aspects of 
design due to the complex interactions between structural members that influence the overall 
system-level response. To appropriately account for geometric and material nonlinearities, which 
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directly influence a structure's response, it is necessary to incorporate these nonlinearities into 
structural analyses and design provisions. Accordingly, most design specifications worldwide 
permit the use of various forms of nonlinear structural analyses, combined with appropriate design 
provisions, to directly account for beneficial system-level load redistribution effects – an approach 
that is fundamental to achieving materially and economically efficient designs. 
 
1.1. Direct Analysis Method 
In the United States, starting from 1986, the American Institute of Steel Construction (AISC) Load 
and Resistance Factor Design (LRFD) Specification for Structural Steel Buildings (AISC, 1986) 
required, at a minimum, the use of 2nd-order elastic analysis (accounting for geometric 
nonlinearities while assuming material linearity) to compute the required axial 𝑃! and flexural 𝑀! 
strengths for each structural member. However, because this approach could not account for the 
spread of plasticity in structural members, it still necessitated the use of the Effective Length 
Method (ELM), which required an additional set of elastic or inelastic buckling analyses to 
determine the effective length factors 𝐾 for structural members under compression to compute 
their available compressive design strengths, thereby complicating the design process. 
 
In the early 2000s, the Structural Stability Research Council formed a task committee to develop 
improved design provisions for steel structures that could directly account for geometric 
nonlinearities and indirectly account for material nonlinearities while simplifying the design 
process by eliminating the need for the ELM. Through a series of comprehensive studies (Deierlein 
et al., 2002; Maleck, 2001; Maleck and White, 2003; Surovek-Maleck and White, 2004a, 2004b; 
Martinez-Garcia, 2006), the task committee developed a new design method, termed the Direct 
Analysis Method (DAM), which was formally introduced in the 2005 edition of the AISC 
Specification for Structural Steel Buildings (AISC, 2005) and remains largely unchanged in the 
most recent 2022 edition of the Specification6 (AISC, 2022). 
 
The key benefit of the DAM is that it eliminates the need to compute effective length factors by 
allowing them to be set to unity (𝐾 = 1) when determining the available compressive design 
strengths of structural members under compression. This significantly simplifies the design 
process by eliminating the need for additional buckling analyses. However, in exchange, the DAM 
requires the use of reductions to cross-sectional stiffnesses of structural members, which implicitly 
account for the effect of partial yielding due to the spread of plasticity accentuated by the presence 
of the initial residual stresses and also attempt to account for component-level uncertainties. For 
instance, a reduction factor of 0.80 must be applied to the stiffness of all structural members, and 
an additional factor 𝜏" must be applied to their flexural stiffness. The stiffness reduction factor 𝜏" 
is given by 

 𝜏! =

⎩
⎨

⎧ 1, if	
𝑃"
𝑃#$

≤ 0.5

4
𝑃"
𝑃#$

11 −
𝑃"
𝑃#$
3 , if	

𝑃"
𝑃#$

> 0.5
, (1) 

where 𝑃#$  is the cross-sectional compressive strength of a structural member. For structural 
members with nonslender cross-sections, which are used throughout this study, the cross-sectional 

 
6 For brevity, the AISC Specification for Structural Steel Buildings will be referred to as the Specification henceforth in this paper. 
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compressive strength is given by 𝑃#$ = 𝐹%𝐴& , where 𝐹%  is yield stress and 𝐴&  is gross cross-
sectional area. Taken together, the DAM requires one to apply a factor of 0.80 to the axial cross-
sectional stiffnesses (𝐸𝐴 → 0.80𝐸𝐴 ) and a factor of 0.80𝜏"  to the flexural cross-sectional 
stiffnesses (𝐸𝐼'' → 0.80𝜏"𝐸𝐼'') to implicitly account for partial yielding of structural members in 
the design process. Additionally, DAM requires one to take into the account the initial frame out-
of-plumbness imperfections, either through direct modeling or the use of notional loads. 
 
Although the DAM can technically be classified as a system-based design method, because it can 
account for system-level effects of a structures by directly considering geometric nonlinearities 
and implicitly considering material nonlinearities, it remains largely component-based as it still 
requires, albeit simplified, component-level limit state checks to ensure the overall stability of a 
structure. If the analysis according to the requirements of the DAM method is denoted by 𝑓()*(⋅), 
the strength criterion for each structural member can expressed mathematically in a familiar LRFD 
format as 

 𝜙%𝑅#% ≥ 𝑓&'( 19 𝛾)𝑞#)
)

3 = 𝑅"% , (2) 

where 𝜙+ is the component-level resistance factor related to the limit state governing its response, 
𝑅#+ is the nominal strength against this limit state, 𝑅!+ is the required strength of the structural 
member found from the analysis, 𝛾,  represents load factors from load combinations that are 
considered during the design of the structure, and 𝑞#,  represents nominal loads acting on the 
structure.  
 
Because the limit state checks are performed at the component level, ensuring uniform reliabilities 
for each structural members, the DAM, in effect, tries to ensure adequate system-level reliability 
by indirectly accounting for the interactions between structural members through the incorporation 
of geometric and material nonlinearities in the analysis. 
 
1.2. Direct Design Method 
Due to advances, and the increasing accessibility of nonlinear structural modeling and analysis 
tools, in 2005, the Specification also permitted the design of steel structures as actual systems by 
using rigorous 2nd-order inelastic analysis, which fully accounts for complex interactions between 
structural members as well as initial geometric and material imperfections. This approach, referred 
to here as the Advanced Inelastic Analysis Method (AIAM), allows for a more holistic 
understanding of system-level response. It is also worth noting that several earlier studies further 
reinforced this decision by demonstrating the potential for significant weight savings with the 
AIAM (Miller, 1995; Ziemian, 1990; Ziemian and Miller, 1997). For example, Ziemian, McGuire, 
and Deierlein (1992) showed that weight reductions of up to 15% could be achieved compared to 
simpler design methods based on the ELM, which cannot fully capture the beneficial effects of 
load redistribution. 
 
The provisions of the current version of the AIAM, outlined in Section 1.3 of Appendix 1 of the 
most recent edition of the Specification, require that the modulus of elasticity 𝐸 and yield stress 𝐹% 
of all structural members be reduced by a factor of 0.90. However, as noted in the Commentary to 
Appendix 1, this reduction factor is conservative and is not derived by rigorous system reliability 
analysis. Consequently, AIAM does not guarantee that a specific level of system reliability is 
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achieved when used. To address this limitation, in 2016, Zhang et al. proposed a new design 
method, termed the Direct Design Method (DDM)7. Similar to the AIAM, the DDM relies on 
rigorous 2nd-order inelastic analysis but ensures a target level of system reliability by applying a 
system-level resistance factor 𝜙$ to the entire structure, directly accounting for any potential risks 
associated with geometric and material uncertainties that influence the stability and strength of a 
system. 
 
If the analysis according to the requirements of the DDM method is denoted by 𝑓((*(⋅), the 
strength criterion for the entire structure can expressed mathematically as 

 𝜙$𝑅#$ ≥ 𝑓&&( 19 𝛾)𝑞#)
)

3 = 𝑅"$,	 (3) 

where 𝜙$ the system-level resistance factor, independent of any specific system-level limit state, 
𝑅#$ is its nominal ultimate strength against the applied loads, and 𝑅!$ is its required strength. In 
conducting the 2nd-order inelastic analyses, when the applied loads are increased incrementally by 
using a load proportionality factor 𝜆, the ultimate nominal strength of the entire structure can 
alternatively be denoted using 𝜆-# and the strength criterion in Eq. (3) can be rewritten into a more 
convenient form: 

 𝜙$𝜆*# ≥ 1.	 (4) 

 
In the DDM, any target level of system reliability can be, in principle, achieved by calibrating 𝜙$ 
in Eq. (4) through rigorous system-level reliability analysis. Although the DDM has not been yet 
formally adopted in the Australian and New Zealand design specifications for structural steel 
buildings, the studies by Zhang et al. (2016) recommend using 𝜙$ of 0.85 for low- and mid-rise 
structural steel frames. This calibration corresponds to a system reliability index 𝛽$  of 2.9 for 
frames under gravity loads only and 2.7 for frames subjected to combined gravity and wind loads. 
Consequently, 𝜙$ of 0.85 is used throughout the study presented herein. 
 
2. Benchmark Structural Steel Frames 
To investigate the realized system-level reliabilities achieved by the DAM and DDM, the first 12 
structural steel frames presented in Ziemian and Ziemian (2021) are selected for comparison. 
These frames represent a wide range of geometric configurations, showcasing varying sensitivities 
to nonlinear geometric and material effects. In all frames, the structural members are oriented to 
experience flexure about their major axes, with the exception of frames #8 and #10. The frames 
are also assumed to be fully braced out-of-plane, allowing for fully planar analyses. While the load 
magnitudes provided by Ziemian and Ziemian (2021) are used for further design according to the 
DAM and DDM in this study, the elastic moduli 𝐸 and yield stresses 𝐹% are assumed to be 200 
GPa (29000 ksi) and 345 MPa (50 ksi), respectively. 
 
Instead of considering only one load combination per frame, as was done in Ziemian and Ziemian 
(2021), three load combinations of interest from the ASCE 7-22: Minimum Design Loads and 

 
7 Note that the referenced studies use the term “Direct Analysis Method” as an umbrella term for all design method based on the rigorous 2nd-
order inelastic analysis. However, in this study, this term is specifically used to refer to the system-based design method proposed in the 
referenced studies which ensures adequate system-level reliability using the system-level resistance factor 𝜙!. 
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Associated Criteria for Buildings and Other Structures (ASCE, 2021) are considered for during 
the design of frames subjected to combined gravity and wind loads: 

 =
1.4𝐷#

1.2𝐷# + 1.6𝐿#
1.2𝐷# + 0.5𝐿# + 1.0𝑊#

. (5) 

For the frames subjected to gravity loads only (frames #4, #9, and #10), the three load 
combinations in Eq. (5) reduce to two as the wind load does not need to be considered: 

 D 1.4𝐷#
1.2𝐷# + 1.6𝐿#

.	 (6) 

 
As discussed later, the analyses of the selected structural steel frames are conducted using 
traditional line finite elements, which are incapable of capturing limit states associated with local 
section instabilities. Therefore, the selection of sections was restricted to those classified as 
compact in flexure about both the major and minor axes and nonslender in axial compression. This 
classification ensures that the chosen sections can reach their full plastic capacity before any local 
instabilities occur, thereby justifying the use of line finite elements in the conducted analyses. 
 
The W-shaped sections listed in the 16th edition of the AISC Steel Construction Manual (AISC, 
2023) were used as the base set for designing the structural steel frames in accordance with the 
DAM and DDM. These W-shaped sections were classified as compact and nonslender based on 
the requirements stipulated in Chapter B of the Specification. Out of the 289 available W-shaped 
sections, 168 were found to be compact in flexure about both the major and minor axes and 
nonslender in axial compression. Following standard practice, the selection of sections for columns 
was further restricted to W8X… through W14X… sections. As a result, 168 sections were 
available for selection for beams and braces, and 72 sections were available for selection for 
columns. 
 
3. Methodology 
3.1. Structural Design Optimization Scheme 
For a robust comparison of the realized system-level reliabilities achieved by the DAM and DDM, 
it is important to obtain the most optimal structural steel frame designs, with the least possible 
weight, that satisfy all the requirements of each design method. While it is possible to achieve this 
manually through a trial-and-error approach for frames with only a few structural members, this 
approach quickly becomes impractical for larger, more complex frames with larger number of 
members. To address this challenge, optimization techniques are employed to systematically 
identify the lightest structural configurations that meet all applicable design constraints. In fact, 
there exists an entire field of structural design optimization dedicated to studying and developing 
methodologies for achieving materially and economically efficient designs while satisfying the 
performance requirements – either linear or nonlinear constraints – prescribed by the provisions 
of the chosen design method. 
 
In general, the process of structural design can be formulated as a well-posed mathematical 
optimization problem, where the weight 𝑊(𝑝⃗) of a structure is minimized with respect to the 
parameters 𝑝  – design variables – that describe the structure. In the case of this study, the 
parameters 𝑝⃗ are the cross-sectional dimensions and properties of the W-shaped sections permitted 
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for selection in the design. Given that the selection of sections in this study is restricted only to 
those listed in the AISC Steel Construction Manual, the parameters 𝑝⃗ are discrete, thereby making 
the optimization problem at hand inherently discrete in nature. For this reason, it is convenient to 
introduce a new set of 𝑁.  integer design variables 𝛼⃗ , where 𝑁.  is the number of structural 
members in a structure of interest, with respect to which the optimization will be performed, such 
that 𝑝 = 𝑝(𝛼⃗) and, thus, 𝑊 = 𝑊(𝛼⃗). In effect, the 𝑖th component of the design vector 𝛼⃗ defines 
the section that will be prescribed to the 𝑖 th structural member of a structure from the list of 
available sections: 168 sections if the member is a beam or a brace, and 72 sections if the member 
is a column. 
 
3.1.1. Strength Constraints 
As mentioned before, the structural design optimization scheme should not only yield designs with 
the least possible weight but also satisfy the performance requirements – strength constraints – 
imposed by the provisions of the chosen design method. 
 
The DAM, for example, dictates that the strength criterion given in Eq. (2) must be satisfied for 
each structural member. In this study, three possible component-level limit states are considered: 

1. If a structural member is under pure axial tensile load (𝑃! > 0 and 𝑀! = 0), the Eq. (2) is 
rewritten as 

 𝜙%+𝑃#+ ≥ |𝑃"|,	 (7) 

where 𝜙+/  is the component-level resistance factor related to the tensile yielding in the 
gross cross-section of the member and is equal to 0.90, and 𝑃#/  is the nominal tensile 
strength of the member determined in accordance with Chapter D of the Specification. 

2. If a structural member is under pure axial compressive load (𝑃! < 0 and 𝑀! = 0), the Eq. 
(2) is rewritten as 

 𝜙%%𝑃#% ≥ |𝑃"|,	 (8) 

where 𝜙++ is the component-level resistance factor related to the flexural buckling of the 
member and is equal to 0.90, and 𝑃#+ is the nominal compressive strength of the member 
determined in accordance with Chapter E of the Specification. 

3. If a structural member is under combined axial and flexural load (𝑃! ≠ 0 and 𝑀! ≠ 0), the 
Eq. (2) is rewritten as 

 

⎩
⎪
⎨

⎪
⎧|𝑃"|
𝑃%

+
8
9
|𝑀"|
𝑀%

≤ 1,
|𝑃"|
𝑃%

≥ 0.2

1
2
|𝑃"|
𝑃%

+
|𝑀"|
𝑀%

≤ 1,
|𝑃"|
𝑃%

< 0.2
, (9) 

where 𝑃+ = 𝜙+𝑃# is available axial design strength determined in accordance with Chapter 
D if 𝑃! > 0 and Chapter E if 𝑃! < 0, and 𝑀+ = 𝜙+"𝑀#  is the available flexural design 
strength, where 𝜙+" is the component-level resistance factor related to the yielding due to 
flexure of the member and is equal to 0.90, and 𝑀#  is the nominal flexural strength 
determined in accordance with Chapter F of the Specification. Eq. (9) is commonly referred 
to as the beam-column interaction equation. 

Taken together, the strength criteria given in Eq. (7), (8), and (9) constitute the strength constraints, 
denoted by 𝑔,

0(𝛼⃗), that must be satisfied (i.e., take values less than or equal to 0) for each structural 
member 𝑖 for each load combination 𝑗 of interest within the structural design optimization scheme: 
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 𝑔)
,(𝛼⃗) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ P𝑃")

, P − 𝜙%+𝑃#+)
, , if	𝑃")

, > 0	and	𝑀")
, = 0

P𝑃")
, P − 𝜙%%𝑃#%)

, , if	𝑃")
, < 0	and	𝑀")

, = 0
P𝑃")

, P
𝑃%)
, +

8
9
P𝑀")

, P
𝑀%)
, − 1, if	P𝑃")

, P/𝑃%)
, ≥ 0.2	and	𝑀")

, ≠ 0

1
2
P𝑃")

, P
𝑃%)
, +

P𝑀")
, P

𝑀%)
, − 1, if	P𝑃")

, P/𝑃%)
, < 0.2	and	𝑀")

, ≠ 0

≤ 0,	 (10) 

noting that the required and nominal axial and flexural strengths 𝑃! , 𝑀! , 𝑃# , and 𝑀#  of the 
structural members are dependent on the design vector 𝛼⃗ with respect to which the optimization 
will be performed. 
 
For the DDM, the strength constraints, denoted by 𝑔0(𝛼⃗), is simply given by Eq. (4) and is only 
checked for the entire structure for each load combination 𝑗 of interest within the structural design 
optimization scheme: 

 𝑔,(𝛼⃗) = 1 − 𝜙$𝜆*#
, ≤ 0,	 (11) 

noting that the ultimate nominal strength (load proportionally factor) 𝜆-# of a structure, obtained 
from 2nd-order inelastic analysis, is dependent on the design vector 𝛼⃗ with respect to which the 
optimization will be performed. 
 
3.1.2. Constructability Constraints 
While this study ignores serviceability requirements, as they typically dominate the design process 
by imposing, albeit implicitly, much stricter constraints on the overall stability of a structure than 
strength requirements, it does incorporate constructability constraints to ensure geometric 
compatibility between structural members at connection locations. In this study, three types of 
constructability constraints are considered. 

1. At the beam-to-column connections, if the column is oriented to bend about its major axis, 
the flange width of the column 𝑏1,+ must be greater than or equal to the flange width of the 
beam 𝑏1," as shown in Figure 1 (a). 

2. At the beam-to-column connections, if the column is oriented to bend about its minor axis, 
the web depth of the column 𝑑+ − 2𝑡1,+ must be greater than or equal to the flange width 
of the beam 𝑏1," as shown in Figure 1 (b). 

3. At the column-to-column connections, the both the depth 𝑑"+ and flange width 𝑏1,"+ of the 
bottom column must be greater than or equal to the depth 𝑑/+ and flange width 𝑏1,/+ of the 
top column as shown in Figure 1 (c). 

If there are 𝑁344  beam-to-column connections in a structure, the constructability constraints at the 
𝑘th beam-to-column connection, denoted by 𝑢5(𝛼⃗), can be expressed as: 

 𝑢-(𝛼⃗) = D
𝑏.,! − 𝑏.,% , if	column	is	oriented	to	bend	about	its	major	axis

𝑏.,! − (𝑑% − 2𝑡.,%), if	column	is	oriented	to	bend	about	its	minor	axis ≤ 0.	 (12) 

Similarly, if there are 𝑁444  column-to-column connections in a structure, the constructability 
constraints at the 𝑙th beam-to-column connection, denoted by 𝑣⃗6(𝛼⃗), can be expressed as: 

 𝑣0(𝛼⃗) = g𝑣01
(𝛼⃗) ≤ 0

𝑣02(𝛼⃗) ≤ 0h = g
𝑑+% − 𝑑!% ≤ 0

𝑏.,+% − 𝑏.,!% ≤ 0h. (13) 
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To summarize, the structural design optimization problem can then be formulated as:  
 minimize 𝑊(𝛼⃗) = 𝜌∑ 𝐴3)𝐿)

4!
)51  with respect to 𝛼⃗, (14) 

 subject to Box constraints  

  

If 𝑖th member is a beam or a brace: 
1 ≤ 𝛼) ≤ 168,  
If 𝑖th member is a column: 
1 ≤ 𝛼) ≤ 72,  

𝑖 ∈ {1,… ,𝑁6},   

  Strength constraints  

  For the DAM: 𝑔)
,(𝛼⃗) ≤ 0 in Eq. (10), 𝑖 ∈ {1,… ,𝑁6}, 𝑗 ∈ {1,… ,𝑁78},   

  For the DDM: 𝑔,(𝛼⃗) ≤ 0 in Eq. (11), 𝑗 ∈ {1,… ,𝑁78},   

  Constructability constraints  

  𝑢-(𝛼⃗) ≤ 0 in Eq. (12), 𝑘 ∈ {1,… ,𝑁988},   

  𝑣01(𝛼⃗) ≤ 0 and 𝑣02(𝛼⃗) ≤ 0 in Eq. (13), 𝑙 ∈ {1,… ,𝑁888},   

where 𝜌 is the density of steel assumed be 8000 kg/m3 (0.290 lb/in.3) throughout this study, 𝐿, is 
the length of the 𝑖th structural member, and 𝑁74  is the number of load combinations considered in 
the design process. 
 

(a) Beam-to-column connections: 
Major-axis bending 

(b) Beam-to-column connections: 
Minor-axis bending 

  
 (c) Column-to-column connections  

 

 

 

Figure 1: Graphical representation of the constructability constraints used in the developed structural design 
optimization scheme. 
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3.1.3. Genetic Algorithm 
The discrete optimization problem with nonlinear constraints formulated in Eq. (14) was solved 
using the Genetic Algorithm (GA) implemented in the Metaheuristics.jl package (Mejía-de-Dios 
and Mezura-Montes, 2022), an open-source package written in the Julia programming language 
(Bezanson et al., 2017) that implements several global optimization metaheuristic algorithms for 
solving single- and multi-objective optimization problems. A key distinction of the implementation 
of the GA in the Metaheuristics.jl package, compared to other implementations that typically rely 
on the Penalty Method to guide the algorithm toward the constrained optimum, is its use of the 
Constrained Violation Rule (Deb, 2000). Unlike the Penalty Method, which penalizes the objective 
function for constraint violations, the Constrained Violation Rule computes the average constraint 
violation to perform pairwise comparisons of individuals in the population during the selection 
process; thus, enabling the algorithm to focus on feasibility during the optimization process 
without relying on arbitrary penalty parameters. Moreover, the Constrained Violation Rule ensures 
that the entire population will reach the feasible region if at least one feasible solution is identified 
or provided. 
 
In the used optimization scheme, the Binary Tournament Selection was used as the selection 
operator to ensure that fitter individuals had a higher probability of being chosen while maintaining 
diversity within the population, the Simulated Binomial Crossover (Deb and Agrawal, 1995) was 
used as the crossover operator to generate offspring by combining the genetic material of parent 
solutions in a way that encourages exploration of the design space, and the Polynomial Mutation 
(Deb and Deb, 2014) was used as the mutation operator to introduce small and controlled variations 
to individual solutions, improving the algorithm's ability to escape local optima. Additionally, an 
elitist strategy was used to ensure that the fittest individuals from the current generation were 
carried over to the next, thereby preserving high-quality solutions throughout the optimization 
process. The described setup had demonstrated the best convergence rates. 
 
For each benchmark structural steel frame, the optimization process was repeated 10 times, with 
an initial population of 100 individuals in each run. Among these runs, the individual with the least 
weight that satisfied all strength and constructability constraints was selected as the optimal design. 
 
3.1.4. Finite Element Modeling and Analysis 
The 2nd-order elastic and inelastic analyses required by the DAM and DDM were performed using 
OpenSeesPy, an open-source Python package for finite element analysis based the OpenSees 
framework (McKenna et al., 2010). For structural steel frame designs according to the DAM, 
elastic beam-column finite elements based on the Euler-Bernoulli Beam Theory were used to 
model the structural members, and for frame designs according to the DDM, which explicitly 
considers material nonlinearities, displacement-based finite elements with fiber-type sections were 
employed. For the DDM analyses, similar to the approach used by Zhang et al. (2016), the 
European Convention for Constructional Steelwork’s (ECCS) self-equilibrating residual stress 
pattern was adopted. In both methods, each structural member was discretized into 4 finite 
elements. Initial nominal frame out-of-plumbness imperfections 𝜓# with magnitude of 1/500 were 
directly modeled to avoid the development of fictitious shear forces and moments during the 
analyses. For simplicity, and in accordance with standard design practices, loads were applied 
proportionally, meaning that gravity and wind loads were applied simultaneously. To appropriately 
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account for potentially large deflections, the corotational geometric transformation was used in 
analysis according to both methods. For the DAM, the Load Control Method was employed to 
incrementally apply the loads, while for the DDM, the Arclength Control Method was used. 
 
It is also important to address how the stiffness reduction factor 𝜏"  is computed for the frame 
designs according to the DAM in the formulated structural optimization scheme. Ideally, 𝜏" must 
be updated at each increment of the finite element solver; however, this approach requires one to 
update the cross-sectional stiffnesses of all structural components, which cannot be done simply 
without rebuilding the finite element model, at each increment and is, therefore, computationally 
expensive. To simplify the process, this study adopts an alternative approach:  

1. A 1st-order elastic analysis is performed under the assumption that 𝜏" = 1 for all structural 
members. Note that the other stiffness reduction factor of 0.80 is still applied. 

2. The required axial strengths 𝑃! are extracted from the results of performed 1st-order elastic 
analysis and the approximate stiffness reduction factor 𝜏̂" is computed using Eq. (1) for 
each structural member. 

3. The finite element model is rebuilt with properly reduced axial and flexural cross-sectional 
stiffnesses of all structural members and the 2nd-order elastic analysis is performed. 

The results of the last performed 2nd-order elastic analysis are then used to compute the strength 
constraints given by Eq. (10) within the developed structural design optimization scheme. 
 
3.2. System Reliability Analysis 
The failure of a structure is defined as an event where the ultimate random (actual) strength of the 
structure, determined from the 2nd-order inelastic analysis and represented by 𝝀𝒖8, is insufficient 
to resist the random load acting on it. Mathematically, this occurs when 𝝀𝒖 does not exceed unity, 
meaning the structure is unable to support the applied load fully without collapsing. If 𝑁974  
random load combinations are considered in the system reliability analysis of a structure, then the 
limit state function for the structure can be expressed as: 

 𝑮w𝑿yy⃗ z = min{
𝝀𝒖1 − 1
⋮

𝝀𝒖
4"#$ − 1

~,	 (15) 

where 𝑿SS⃗  is used to represent all random variables that contribute to the response of that structure 
and are described in the following sections. 
 
The system-level probabilities of failure 𝑃1,$%$ were estimated using Monte Carlo simulations due 
to the simplicity and robustness of this approach. In each simulation, a random sample of a frame 
was generated by randomly assigning values to the geometric and material properties based on 
their respective probability distributions. Then, a 2nd-order inelastic analysis of the frame was 
performed to determine whether it would collapse under each considered random load combination 
by evaluating the limit state function in Eq. (15). Depending on the magnitude of 𝑃1,$%$, between 
10,000 and 1,000,000 simulations were conducted for each frame design, obtained in accordance 
with the DAM and DDM. To improve the convergence of the Monte Carlo simulations, the 
sampling of random variables was performed using the Latin Hypercube Sampling technique, as 

 
8 In the study presented herein, bold symbols are used to denote random variables. 
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implemented in the Fortuna.jl, an open-source Julia package for structural and system reliability 
analysis (Akchurin, 2024). 
 
The estimated system-level probabilities of failure 𝑃1,$%$ were then converted into system-level 
reliability indices 𝛽$%$, which serve as a more familiar and interpretable metric of reliability, using 
the relationship: 

  𝛽$;$ = Φ<1w1 − 𝑃.,$;$z,	 (16) 

where Φ:;(⋅) is the inverse cumulative density function of the standard normal distribution. 
 
3.2.1. Random Loads and Load Combinations 
Random load combinations were modeled following the methodology proposed by Akchurin et al. 
(2024) based on the Turksta’s rule (Turkstra and Madsen, 1980). For structural steel frames 
subjected to combined gravity and wind loads, the following three random load combinations were 
considered: 

 {
𝑫 + 𝑳𝒂𝒑𝒕
𝑫+ 𝑳𝒎𝒂𝒙

𝑫+ 𝑳𝒂𝒑𝒕 +𝑾𝒎𝒂𝒙

= {
𝑿𝑫𝐷# +𝑿𝑳𝒂𝒑𝒕𝐿#
𝑿𝑫𝐷# +𝑿𝑳𝒎𝒂𝒙𝐿#

𝑿𝑫𝐷# +𝑿𝑳𝒂𝒑𝒕𝐿# +𝑿𝑾𝒎𝒂𝒙𝑊#
,	 (17) 

where 𝑫 is the random dead load, 𝑳𝒂𝒑𝒕 is the random arbitrary point-in-time live load, 𝑳𝒎𝒂𝒙 is the 
random maximum lifetime live load, and 𝑾𝒎𝒂𝒙 is the random maximum lifetime wind load. For 
the frames subjected to gravity loads only (frames #4, #9, and #10), the three random load 
combinations in Eq. (17) reduce to two as the random maximum lifetime wind load 𝑾𝒎𝒂𝒙 does 
not need to be considered: 

 D
𝑫 + 𝑳𝒂𝒑𝒕
𝑫+ 𝑳𝒎𝒂𝒙

= �
𝑿𝑫𝐷# +𝑿𝑳𝒂𝒑𝒕𝐿#
𝑿𝑫𝐷# +𝑿𝑳𝒎𝒂𝒙𝐿#

.	 (18) 

 
The statistics normalized random variables 𝑿𝑫, 𝑿𝑳𝒂𝒑𝒕, 𝑿𝑳𝒎𝒂𝒙, and 𝑿𝑾𝒎𝒂𝒙, which are used to scale 
the nominal loads 𝐷#, 𝐿#, and 𝑊# acting on the structural steel frames of interest in the system 
reliability analysis, used in this study are based on the statistics used in Akchurin et al. (2024) and 
are presented in Table 1. 
 

Table 1: Statistics of the normalized random variables patinating to the loads. 
Random variable Distribution Mean, 𝝁 COV, 𝑽 

𝑿𝑫	 Normal 1.05 0.10 
𝑿𝑳𝒂𝒑𝒕 	 Gamma 0.22 0.54 
𝑿𝑳𝒎𝒂𝒙 	 Gumbel 1.10 0.19 
𝑿𝑾𝒎𝒂𝒙 	 Gumbel 0.47 0.35 

 
3.2.2. Random Geometric and Material Properties 
The statistics of the random variables representing the uncertainties present in the geometric and 
material properties of a structure, as used in this study, are based on the data provided in Zhang et 
al. (2016). 
 
The normalized random variable associated with the elastic modulus 𝑿𝑬  follows a normal 
distribution with a mean 𝜇 of 1.00 and a coefficient of variation 𝑉 of 0.06, and the normalized 
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random variable associated with the yield stress 𝑿𝑭𝒚 follows a lognormal distribution with 𝜇 of 
1.05 and 𝑉 of 0.10. In the conducted system reliability analyses, it was assumed that the material 
properties of all structural members were perfectly correlated. However, the ECCS residual stress 
pattern used for each structural member was individually scaled by a normally distributed random 
scaling factor 𝝌 with 𝜇 of 1.05 and 𝑉 of 0.21. 
 
The random variable representing the initial frame out-of-plumbness imperfections 𝝍 follows a 
lognormal distribution with 𝜇 of 1/770 and 𝑉 of 1/880. The initial member out-of-straightness 
imperfections were modeled as a linear superposition of the first 3 randomly scaled buckling 
modes of a single column under compression: 

 𝜹(𝑥) =9 𝒂𝒎 sin �
𝑚𝜋𝑥
𝐿 �

F

G51
,	 (19) 

where 𝑥 ∈ [0, 𝐿] is the coordinate along the longitudinal axis of a structural member and 𝒂𝒎 are 
normally distributed random scaling factor with a random sign – either negative or positive – for 
the 𝑚th buckling mode with the statistics provided in Table 3 of Zhang et al. (2016). Lastly, the 
variations in the cross-sectional dimensions of each structural member were considered in the 
system reliability analyses. The statistics and the correlation matrix of the random variables 
associated with the cross-sectional dimensions of W-shaped sections are provided in Tables 1 and 
2 of Zhang et al. (2016). 
 
4. Results 
The results of the performed structural design optimization in accordance with both the DAM and 
DDM are summarized in Table 2. As can be observed, for all structural steel frames, the developed 
structural design optimization scheme successfully found DDM designs with weights that are 
either lower than or equal to those of the corresponding DAM designs. A maximum weight 
reduction of 39% was achieved for frame #10, which has 2 bays and 2 stories, and is subjected to 
gravity loads only, and features columns oriented to bend about their minor axes. On average, the 
DDM produced designs that used 13% less steel weight compared to the DAM designs. 
 

Table 2: Weights 𝑊  of the optimal structural steel frame designs obtained using the developed structural design 
optimization scheme. 

Frame # 𝑾𝑫𝑨𝑴 (kg) 𝑾𝑫𝑫𝑴 (kg) 𝑾𝑫𝑫𝑴/𝑾𝑫𝑨𝑴	
1 1,556 1,452 0.93 
2 6,170 5,903 0.96 
3 964 964 1.00 
4 6,149 4,836 0.79 
5 1,934 1,823 0.94 
6 1,969 1,969 1.00 
7 1,841 1,841 1.00 
8 2,747 2,350 0.86 
9 14,653 11,326 0.77 
10 15,880 9,634 0.61 
11 5,024 4,141 0.82 
12 9,045 7,256 0.80 
  Mean, 𝝁 0.87 
  COV, 𝑽 0.14 
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The system-level reliability indices for all structural steel frames designed in accordance with both 
the DAM and DDM are summarized in Table 3. As can be observed, for most structural steel 
frames, the DAM designs exhibit higher levels of system reliability compared to the corresponding 
DDM designs. This fact reflects the inherent conservatism of the DAM, which applies stiffness 
reductions, leading to designs with higher safety margins but often at the expense of increased 
weight. However, in some cases (frames #5 and #8), the DDM designs outperform the 
corresponding DAM designs in terms of system reliability while still achieving lower weights. 
This result highlights the DDM’s ability to better capture the actual structural response, due to the 
explicit consideration of nonlinear geometric and material effects, leading to more materially and 
economically efficient designs without compromising safety. Furthermore, the DDM provides a 
significantly more uniform set of reliabilities than the DAM. 
 
It can also be observed that for frames #4, #9, and #10 subjected to gravity loads only, the DAM 
designs exhibit much higher reliabilities compared to the corresponding DDM designs, likely due 
to the degree of conservatism of the DAM’s stiffness reduction factors for designs governed by 
gravity loads. 
 
Table 3: System-level probabilities of failure 𝑃.,$;$ and reliability indices 𝛽$;$ of the optimal structural steel frame 

designs obtained using the developed structural design optimization scheme. 

Frame # 
DAM DDM 𝜷𝒔𝒚𝒔𝑫𝑨𝑴/𝜷𝒔𝒚𝒔𝑫𝑫𝑴 𝑷𝒇,𝒔𝒚𝒔	 𝜷𝒔𝒚𝒔	 𝑷𝒇,𝒔𝒚𝒔	 𝜷𝒔𝒚𝒔	

1 2.8⨉10-4 3.45 6.8⨉10-4 3.20 1.08 
2 6.0⨉10-5 3.85 3.4⨉10-4 3.40 1.13 
3 4.8⨉10-5 3.90 4.8⨉10-5 3.90 1.00 
4 1.0⨉10-6* 4.75* 3.4⨉10-4 3.40 1.40 
5 3.0⨉10-4 3.43 1.2⨉10-4 3.67 0.93 
6 2.0⨉10-4 3.54 2.0⨉10-4 3.54 1.00 
7 1.6⨉10-3 2.95 1.6⨉10-3 2.95 1.00 
8 1.7⨉10-3 2.93 1.1⨉10-3 3.06 0.96 
9 5.9⨉10-6 4.38 2.0⨉10-3 2.88 1.52 
10 1.0⨉10-6* 4.75* 1.1⨉10-3 3.06 1.56 
11 6.4⨉10-5 3.83 2.7⨉10-3 2.78 1.38 
12 1.1⨉10-4 3.69 2.6⨉10-3 2.79 1.32 

Notes: 
*These frames did not fail once within 1,000,000 Monte Carlo simulations and 𝑃.,$;$ = 1.0 × 10<L,	
corresponding to 𝛽$;$ = 4.75, was used as the lower bound on their system-level reliabilities. 

 
Since the difference between component-level and system-level reliabilities depends on the extent 
to which the structural system permits load redistribution following first yield, it is useful to 
compare the levels of achieved system reliability against a metric representing a structure’s 
inelastic load redistribution capabilities. Following the approach used in Zhang et al. (2018), the 
difference between the nominal ultimate load proportionality factors achieved by the DAM and 
DDM designs, 𝜆FG. − 𝜆FF., is used. The resulting comparison is presented in Figure 2.  
 
As can be observed, for frames with only a few members and, thus, smaller inelastic load 
redistribution capabilities, the DDM is still capable of producing designs with lower weights and 
higher system reliabilities (frames #5 and #8). For larger frames, the DAM results in frame designs 
with approximately linearly increasing reliability for increasing inelastic load redistribution 
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capability metric, while the DDM results in frame designs with more uniform 𝛽$%$ between 2.75 
and 3.00, which is consistent with the calibration performed in Zhang et al. (2016). 
 

 
Figure 2: Comparison of system-level reliability indices 𝛽$;$ achieved the DAM and DDM against the inelastic load 

redistribution 𝜆MN6 − 𝜆MM6 capacity of each benchmark structural steel frame. 
 
5. Conclusions 
This study presents a comprehensive comparison of structural steel frame designs optimized using 
the Genetic Algorithm according to the provisions of the Direct Analysis Method (DAM) and the 
Direct Design Method (DDM). It also provides a comparison of the system-level reliabilities 
achieved by these design methods, demonstrating that while the DAM generally results in designs 
with higher system-level reliabilities, the DDM offers more materially and economically efficient 
designs with more uniform reliabilities, often achieving weights up to 39% lighter without 
compromising safety. Moreover, the system-level reliabilities and inelastic load redistribution 
capabilities further highlight the potential advantages of design methods based on 2nd-order 
inelastic analyses, such as the DDM, particularly in structures with many structural members that 
benefit most from the explicit consideration of nonlinear geometric and material effects. The 
findings of this study emphasize the importance of incorporating system-based design approaches 
in the current design specifications to better capture the complexities of the actual structural 
response, while providing valuable insights into improving the robustness of current design 
methods through an investigation of the system-level reliabilities achieved by these methods. 
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