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Abstract

Z-sections are used successfully in the metal building industry for purlin and girt systems. They
can be nested for efficient lapping and transportation. With automated machines, they can be
quickly fabricated from coil stock. Recent research has improved understanding of their flexural
behavior. Combining paired Z-sections with bracing creates efficient systems. Heavier Z-sections
can be an alternative to W-shapes in composite floor systems. The proposed system can be erected
with paired members, metal deck, shear studs, and concrete composite slab. It has the potential to
be an efficient solution for composite systems with spans from 30 to 40 feet and can simplify the
fabrication process.

1. Introduction

Z-sections have been used very successfully by the metal building industry for purlin and girt
systems. One of the main advantages of the Z-section for such systems is that the Z-sections can
be nested, which allows for the purlins to be efficiently lapped to provide continuity across the
supports and also allows them to be very compactly transported. With automated rolling and
punching machines, these members can be quickly and automatically fabricated, starting with
coil stock at one end and a finished purlin at the other end, with very little manpower required
in between. Z-sections provide a very efficient structural member; however, due to the member's
rotated principal axes, they are subject to somewhat complex flexural behavior. Recent research
on these systems has dramatically improved understanding of the behavior.

Because Z-sections have rotated principal axes, they will undergo lateral deflection due to a
vertically applied (gravity) load. This may be one of the reasons why they have not seen much
use in structural systems outside of metal buildings. However, the recent research by Seek and
Avci (2024) has shown that by combining purlins in pairs and bracing between them, very
efficient systems can be developed. The system proposed herein adopts this philosophy and
combines paired Z-sections oriented back-to-back with an x-brace diaphragm applied near the
third points of the members as shown in Fig. 1.
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Figure 1: Z-sections oriented back-to-back with an x-brace diaphragm
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With the heavier gauge coil stock and forming techniques currently used to make HSS sections,
heavier Z- sections (with depths 18” to 24” and thicknesses from 0.1875” to 0.75”) can be
developed as an alternative to W-shapes in composite floor systems. Further studies on Z
sections may allow for the development of thinner configurations. This proposed system would
be erected as follows: (1) Assemble a pair of members on the ground with bracing installed near
the third points. (2) Lift the paired members as an assembly using the bracing locations as pick
points (3) Drop the members into place (Since the flange of the Z-shape is only on one side of
the web they can easily be dropped into position.). (4) Metal deck and shear studs are applied,
and concrete composite slab is created by current installation methodologies. A threaded rod
could be used to stabilize the ends and provide some alignment adjustment to facilitate
connection fit up. There are several end connection configurations that can utilized - a simple
shear tab or a partial seat at the top flange for example. The system is inherently stable with two
members so with a quick positive connection, the crane can be released for the next pick while
the remaining requisite bolts are installed.
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Figure 2: Erection of paired Z-sections



The proposed solution has the potential to be an efficient solution for composite systems with
spans from 30 to 40 feet. The systems would allow for the implementation of high-strength steels,
as many are available in coil form. The system has the potential to simplify the fabrication process,
as the metal building industry has already demonstrated that these systems can be fabricated
directly from steel coils with minimal human supervision required. The paired system also lends
itself to a modular system with pre-installed sandwich panels or CLT panels.

1.1 Research Objectives

The goal of this project is to determine if a composite floor system framed with cold-rolled Z-
sections can provide a competitive alternative to a comparable system framed with traditional
W-shapes. The project will target the following objectives

Develop stiffened Z-shaped cross sections comparable to W14X22, W16X26-31,
W18X35-40, W21x44-50 and W24x55-62 standard shapes

1.2 Scope and Significance

This research project has the potential to pave the way for a groundbreaking methodology in steel
construction. By exploring the use of heavier gauge cold-formed steel, we aim to unlock
opportunities for creating optimized shapes and cross sections, which could revolutionize the
industry. Additionally, the adoption of higher strength steels could further enhance the
competitiveness of steel construction.

1.3 Research Questions or Hypotheses
Can a composite floor system framed with cold-rolled Z-sections provide a competitive alternative
to a comparable system framed with traditional W-shapes?

2. Overview of Previous Research

Seek and Avci (2024) developed a process utilizing the Direct Strength Method to predict the local
buckling and distortional buckling strength of purlins with paired torsion bracing. In this paper,
they have reformulated the methodology to account for the effect of slope in the structural behavior
of the roof systems. The methodology utilizes the component stiffness method to calculate the
anchorage forces within the purlin system and incorporates the effects of first-order and
approximate second-order torsion for the prediction of stress distributions along purlin cross
sections. The research showed that by properly accounting for the various biaxial bending and
torsional moments and correctly quantifying the brace forces, the complex behavior of the Z-
section could be accurately predicted, allowing for optimized performance of the members.

Seek, M. W., Avci, O. (2024). “Assessment of Purlins with Paired Torsion Bracing using Direct
Strength Method: Sloped Roof Systems.” Structures. Accepted March 5, 2024

2.1 Key Findings from Literature

- Paired torsion bracing is commonly used in purlin roof systems to support standing seam
sheathing.

- The bracing is intended for torsion only and does not provide lateral restraint to the purlins. -
This system eliminates the need for external anchoring as the sheathing provides the entire lateral
restraint.



- Torsion braces are typically used between two adjacent purlins, and the torsion-only bracing
configuration is achieved when the torsion braces are applied in an alternating arrangement.

- The component stiffness method is used for the assessment of interacting forces between the
purlins, external braces, and sheathing, and is expanded to estimate geometric 2nd-order effects
for the development of strength prediction methodology.

- The true stress distribution throughout the purlin cross sections is determined by taking the
interaction between the braces, sheathing, and purlins into consideration, including torsion and
biaxial bending effects in the calculations of the true stress distributions along the purlins.

2.2 Gaps in Knowledge

The research findings indicate that highly effective structural systems can be developed through
the integration of paired purlins and the bracing between them. The proposed system employs
paired Z-sections arranged back-to-back, supplemented by an X-brace diaphragm positioned at
approximately the third points of the members. However, it was unclear whether the Z-shape
would offer competitive advantages concerning both capacity and weight.

3. Development of Z-sections

For this research initiative, we are utilizing an analytical approach that commences with the
geometric design of the Z-sections. Throughout the design phase, our focus is on ensuring that the
moment of inertia and section modulus of the Z-sections are comparable to those of the lightest
W-shapes available in each depth class for members commonly used in composite floor systems
(ie, W14 through W21).

To facilitate this evaluation, the development of the cross sections adhered to the following
philosophy. The bottom flange would be larger than the top flange to improve behavior of the
composite section. The depth of each section was held to the nearest inch and for each given depth,
the same cross-sectional dimensions were maintained and only the thickness of the material
changed. The length of the flat plate needed to form the cross section targeted even two-inch
increments.

Our primary objective is to develop Z-sections that have comparable wight and moment of inertia
to existing W-shapes to compare the difference in behavior. To develop the cross section, the
minimum bend radius for Hollow Structural Sections (HSS) (1.5 x thickness) was used. The
detailed values for the moment of inertia and the section modulus for each Z-Section are provided
in the table below. We have adopted the following naming convention. For example, the
14754.5/7x0.1875 has an out-to-out depth of 14 in., a top flange width of 4.5 in, a bottom flange
width of 7 in. and a thickness of 0.1875 in. The flange dimensions are measured from the web to
the center of the stiffener bend. For each section a total stiffener length of 2 in. was used. An
extensive list of cross section properties including location of centroid, shear center, plastic section
properties, and torsion properties is provided in Appendix A for both the Z-sections and their
comparable W-shape.



Table 1: Moment of inertia and section modulus comparation.

MOMENT OF INERTIA SECTION MODULUS Area
PERCENTAGE ., PERCENTAGE
BEAM TYPE OF | DIFE szt Szb AREA in OF AREA DIFF
14754.5/7x0.1875 163.92 52.57 e 21.55 25.63 5.35 o
W14X22 199.00 7.00 17.6% 29.10 29.10 6.49 17.5%
16754.5/7x0.25 291.94 68.54 0% 33.75 39.73 7.56 6%
W16X26 301.00 9.59 38.34 38.34 7.68
16Z54.5/7x0.3125 356.77 83.51 % 41.22 48.58 9.35 5 4%
WI6X3L 375.00 12.40 4717 4717 9.13
18755.5/8x0.3125 521.11 122.39 5 2% 53.99 62.42 10.60 5 0%
WIBX35 510.00 15.30 57.63 57.63 10.30
18755.5/8x0.375 612.93 14356 1% 63.48 73.46 12.60 6.0%
W18x40 613.32 19.14 68.53 68.53 11.78
21754.5/7x0.375 803.05 98.31 % 7141 82.32 12.97 2%
W21X44 843.00 20.70 81.45 8145 13.00
21754.5/7x0.4375 918.49 111.80 1% 81.64 94.20 15.00 o 0%
W21X50 984.00 24.90 94.62 94.62 14.70
24756/8.5%0.375 1267.72 17175 99.61 11246 15.22
6.1% -6.0%
W24X55 1350.00 29.10 114.41 114.41 16.20
24756/8.5x0.4375 1454.50 196.09 6.2% 114.25 129.07 17.62 a0%
W24X62 1550.00 34.50 7 130.80 130.80 18.20 e

3.1 Composite properties

To facilitate the analysis of composite properties and enable a comprehensive comparison between
W-shapes and Z-shapes, we have developed a specialized spreadsheet. Initially, we included the
AISC shapes properties table, which contains relevant information about W-shapes. Following
this, we created a data table for Z-shapes to allow for a direct and effective comparison of both
cross-sectional profiles.

The spreadsheet is designed to present a side-by-side comparison of the W-Shape (indicated by a
blue top ribbon) and the Z-Shape (indicated by a green top ribbon) see Figure 3. In the spreadsheet,
the user can specify the beam cross section, beam span and spacing, as well as the depth of the
deck and concrete cover over the deck. The spreadsheet calculates the moment of inertia and plastic
moment strength of the fully composite cross section. Strength checks are provided for 3 states: 1)
steel self-weight and construction load prior to concrete placement, 2) self-weight and construction
load during concrete, and 3) occupancy loading. For the limit states during construction, the
strength of the Z-section is based on the yield moment while the W-shape is evaluated at the plastic
moment. With more detailed analysis, it is expected that the Z-section can resist moments that
exceed the yield moment during construction.

An evaluation of vibration characteristics is provided according to the calculation method provided
in AISC Design Guide 11. The spreadsheet calculates the partial composite strength of the system
based on a percent composite value specified by the user. Users input their values into the yellow
cells and choose options from the dropdown menus in the blue cells, while results will be displayed
in the green cells. Additionally, the orange cells provide a clear pass or fail evaluation based on
the results obtained.
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Figure 5: Z-Shape Composite calculation



To illustrate the elements of the calculator, a representative bay of a floor system is analyzed. A
framing system for a typical exterior bay, as shown in Figure 6, will be evaluated for composite
and partial composite using W-shapes and Z-shapes. The floor system is to be designed for an
occupancy live load of 80 psf. Lightweight concrete with a unit weight of 110 pcf is used.
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Figure 6: Layout of exterior bay
Properties are as follows for W16x26:
Span = 30 ft Es: 29,000
Spacing = 7.5 ft datap: 3.25 in
be = 7.5 ft Aimetal: 2 in
Beam: W163X26 drotat: 5.25 in
Area: 7.68 in”
d: 15.7 in fy: 50,000
Ix: 301 in* 6: 0.85
wh: 26 Mu: 159
fc: 4000 psi
W 110
centroid 7.85

Figure 7: W16x26 properties



Properties are as follows for 16254.5/7x0.25:

Span = 30 ft Es: 29.000
Spacing = 7.5 ft digap: 3.25 in
be = 7.5 fi Ametat: 2 i
Beam: 16754.5/7x0.25 drotar 5.25 in
Area: 7.56 in
d: 16 in fy: 50.000
Ix: 292 in’ : 0.85
whb 25.8 Ib Mu: 159
fc: 4000 pst
W 110
centroid 7.35

Figure 8: 162S4.5/7x0.25 properties

W-shape is evaluated based on plastic moment strength of the bare steel section. For the Z-section,
we are conservatively using the yield moment. It is expected that the Z-sections have capacity
above their yield moment but more detailed analysis is required.

It is essential to recognize the centroid of the Z-section is lower than that of the comparable W-
shape, which results in an increased composite moment of inertia. In this example, the fully
composite moment of inertia of the W16x26 is 1081.84 in* while the moment of inertia of the
16ZS4.5/7x0.25 is 1172.21 in* which represents a nearly 10% increase. Additionally, the plastic
design moment for the W16x26 is 359.21 kip-ft while the design strength of the 162S4.5/7x0.25
is 5% higher at 376.48 Kip-ft.

Using the same slab configuration (2” deck with 3.25” cover) and beam spacing of 7°-6” (assuming
the full width of the slab is effective), the fully composite design moment strength and moment of
inertia for each Z-section and W-shape are shown in Tables 5 respectively. The comparison shows
typically a slight increase in both the design moment strength and moment of inertia.

In order to ensure stability during the construction process, the moment strength is evaluated for
two conditions. The first condition is during the installation of the steel members, prior to the
placing concrete. During this phase, it is assumed that there will be a dead load of 10 psf and a live
load of 50 psf, resulting in a required moment strength of 78 k-ft. The second phase takes place
during the placement of the concrete. In this phase, the applied dead load increases to 42 psf, while
the live load is reduced to 20 psf. For the given loading conditions, the required moment strength
is adjusted to 70 k-ft. These required moments are compared to the design strength of the bare steel
section. For the W16x26, the full plastic moment strength (166 Kip-ft) is used and provides much
greater strength than required. For the Z-shape, the design yield moment (127 Kip-ft) is
conservatively used. It is anticipated that the capacity of the bare Z-section will exceed the yield
moment however more detailed analysis is required.



For analyzing the strength during service, the composite strength of the system is used. For this
example, the required moment strength for the occupancy load case is 159 kip-ft. The fully
composite strength of both the W-shape and Z-section, 359 kip-ft and 376 kip-ft respectively, is
much greater than what is required. Therefore, to produce a more efficient design, it is desirable
to design the composite floor as partially composite.

To simplify the calculation of the partially composite properties for the Z-section, the geometry of
the Z was subdivided into simplified areas in the same way that the cross section of a W-shape is
simplified. Figure 9(a) depicts the geometry distribution of a Z section, whereas Figure 7(b)
illustrates the geometry distribution of a W section. Similar to the way that the fillet of the W-
shape is approximated as a rectangular area, for the Z-shape, the flange stiffener and the two bend
radii adjacent to the flange are lumped into an area and distributed evenly over the projected height
of the stiffener. Additionally, Table 2 presents a comprehensive analysis of the cross-sectional
geometry for all Z shapes.

Figure 9: Geometry distribution for Z-shapes and W-shapes

Table 2: cross section geometry

Cross Section Geometry

BEAM TYPE 8 9 t Difiange Dbflange  Dweb

14254.5/7x0.1875 0.334 | 0.0609 | 0.7149 | 0.1076 | 2.4492 | 0.1076 | 1.1836 | 0.0609 | 0.334 | 0.1875 | 1.6526 | 1.4651 | 10.69 | 0.77721 | 0.7149 | 1.1836 2.01
16Z54.5/7x0.25 0.4271 | 0.1082 | 0.8959 | 0.1913 | 3.6875 | 0.1913 | 1.5209 | 0.1082 | 0.4271 0.25 1.6928 | 1.4428 | 12.61 | 1.0873 | 0.8959 | 1.5209 3.15
16254.5/7x0.3125 0.5112 | 0.1691 | 1.0483 | 0.299 | 4.5117 | 0.299 | 1.8295 | 0.1691 | 0.5112 | 0.3125 | 1.733 | 1.4205 | 12.53 | 1.42321| 1.0483 | 1.8295 | 3.92
18255.5/8x0.3125 0.5861 | 0.2435 | 1.547 | 0.4305 | 6.0469 | 0.4305 | 2.4845 | 0.2435 | 0.5861 | 0.3125 | 1.7731 | 1.4606 | 14.45 | 1.71654 | 1.547 | 2.4845 4.52
18Z55.5/8x0.375 0.5861 | 0.2435 | 1.547 | 0.4305 | 6.0469 | 0.4305 | 2.4845 | 0.2435 | 0.5861 | 0.375 | 1.7731 | 1.3981 | 14.45 |1.78439 | 1.547 | 2.4845 5.42
21284.5/7x0.375 0.5861 | 0.2435 | 1.172 | 0.4305 | 7.1719 | 0.4305 | 2.1095 | 0.2435 | 0.5861 | 0.375 | 1.7731 | 1.3981 | 17.45 |1.78439 | 1.172 | 2.1095 6.55
21Z54.5/7x0.4375 0.6965 | 0.2486 | 1.4074 | 0.4395 | 8.4219 | 0.4395 | 2.5012 | 0.2486 | 0.6965 | 0.4375 | 1.8133 | 1.3758 | 17.37 | 1.98651 | 1.4074 | 2.5012 | 7.60
24756/8.5x0.375 0.5861 | 0.2435 | 1.7345 | 0.4305 | 8.2969 | 0.4305 | 2.672 | 0.2435 | 0.5861 | 0.375 | 1.7731 | 1.3981 | 20.45 | 1.78439 | 1.7345 | 2.672 7.67
24756/8.5x0.4375 0.6519 | 0.3314 | 1.9233 | 0.586 | 9.543 | 0.586 | 3.0171 | 0.3314 | 0.6519 | 0.4375 | 1.8133 | 1.3758 | 20.37 |2.17121| 1.9233 | 3.0171 | 8.91

Once the geometry was established, we proceeded to calculate the location of the plastic neutral
axis, which is essential for determining partially composite moment strength. The calculations
are performed systematically for the user, with the only required input being the desired
percentage of fully composite. As shown in Figure 10, the nominal moment strength, Mn, value
for the 162Z2S4.5/7x0.2 shape at 15% composite is 188.82, whereas the W-shape exhibits a value
of 194.77. The decrease in moment strength is a function of the redistribution of the area on
the Z shape, this generates a conservative approximation.



Partial Composite Section Properties Using w shapes

Cott = 384
Cmax= 384
Cos = 0045

Percentage Of Composite 15%
Qu= 5716 tf= 0345 tw= 0250
a= 019 k= 0.747 =" 13.625
= 18075
1.8075
55

Aflange= 18075
A= 3.55
Amie=  0.167
Koy 0402
Toy= 0415
Ag— 4416
Ag= 3264

hpna= 10.15

Mn= 10477
$Mn 17529

Partial Composite Section Properties Using ZS shapes

Camt = 377.884
Cmax= 377.884
Camp = 994.5

Percentage Of Composite 15%
Qu= 56.6826 tf= 0.25 tw= 025
a= 019 k= 1.532089 T= 12.93582223
Apfangs= 1.5200
Aflange= 090 Attangs’ 0.8939
Awe= 323 Biganes 3.5836
Armier= 095
K= 128
Toe= 074
Agr= 435
A= 321

hpna= 9.02

Mn= 18882
oMn: 169.94

Figure 10: Partial composite sections for W-shapes and Z-shapes

3.2 Vibration Analysis

A dedicated portion of the calculator is designed to assess the vibration response of the composite
floor system due to walking excitations. In accordance with the standards outlined in the AISC
Design Guide 11, this analysis utilizes the walking excitation criterion, which is defined as low-
frequency vibrations occurring at frequencies below 9 Hz. This methodology enables a
comprehensive evaluation of how typical activities, such as walking or running, influence both the
structural integrity and the comfort of occupants. By approximating the response of the floor to
these vibrational effects, we can ensure that the design adheres to established performance
standards and provides a serviceable environment for the occupants.

The vibration evaluation process commences with a detailed analysis of the beams. This involves
calculating the transformed moment of inertia, which indicates how the beam will resist bending
under load. Next, the mid-span deflection is assessed, measuring how much the beam deflects at
its center when subjected to a load. Finally, the beam panel mode frequency, expressed in hertz
(Hz), is determined to identify the natural frequency at which the beam vibrates. We will perform
similar calculations for the girder designated as a W21x50, with a span measuring 30 feet.

10



Following this, we will assess the combined panel mode to verify that the peak acceleration is
below the tolerance limit established in Table 3 (Table 4.1 of the AISC Design Guide 11).

Table 3: Recommended Acceleration limits for floors (from AISC DG11)

Recommended Tolerance Limits for Building Floors

Occupancy Acceleration Limit a./g x 100%
Offices, residences, churches, schools
and quiet areas

Shopping malls

0.50%

1.50%

The results of this analysis are shown in Figure 11 for the W-shape and Figure 12 for the Z-section.
Both of the systems satisfy the acceleration limit of 0.50%, with the Z-section showing a slightly
improved performance. Because the Z-section has a larger composite moment of inertia, the
frequency of the panel is slightly increased and more weight in the panel mode is activated, which
results in the slightly lower acceleration of the Z-section floor system. Ultimately, the vibration
serviceability criteria controls the design of this floor system.

Vibration Of Steel-Framed Structural System for W- Shape
Ee= 2,307.38 Asummed Loads
Deck Selfweighi= 200 psf Dead Load 4 psf
Slab-deck weight= 40.96 Live Load: 11 psf
n= 931
min[0.4L; §= 90.00 in Girder  W21X50  Girder Length: 30 ft w 50
Transformed Cone. Slab Area
- 3142 & 2080 Area 147 T 084
¥ 922 in §: 1096 in
L= 1,14128 i’ L=" 32744 i
wi= 445.69 plf wy= 1,832.75 pif Evaluation
A= 0.25 in Ag= 035 in Jn= 458 Hz
fi= 7.14 Hz fo= 506 Hz Ay= 0.36
D= 825 iVt D= 15217 YA W= 05,418.50
D= 152.17 in'/ft D~ 109.15 Y/t Accsteration fimit 0.46%
B= 2805 ft By~ 58.68 ft PASS
W= 7741150 b W= 10754159 B S
Figure 11: Vibration for W-shape
Vibration Of Steel-Framed Structural System for Z- Shape
Ec= 2307 Asummed Loads
Deck Selfweight= 2 psf Dead Load: 4 psf
Slab+deck weight= 40.96 Live Load: 11 psf
n= 031
min[0.4L; §}= 00.00 in Girder:  W21X50  Girder L 30 ft w. T
Transformed Cone. Slab F - -
Area = 31.42 d: 2080 Area: 147 w084
§: 000 in §: 1096 in
L= 1237.73 in” L=" 327442 W
wj 44546 pif wo= 1,831.84 pif Evaluation
A= 023 in A= 035 in o= 465 Hz
fi= 7.44 Hz fi= 5.06 Hz A= 037
D= 825 inYft D= 16503 in¥/ft W= 06.878.97
D= 165.03 in'ft D= 109.15 Y8 [ sccsteration timit 0.44%
B~ 2837 ft B~ 5088 ft PASS
W= 7581842 Ib We= 109.690.30 b e =L

Figure 12: Vibration for Z-shape
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3.3 Limitations and Assumptions

The current research does not consider the strength of the studs transferring the transverse shear
between the steel section and concrete slab. There are limitations on the thickness of the base
metal relative to the diameter of the stud which may not be satisfied for larger diameter studs
paired with thinner Z-sections. The analysis of the Z-sections assumes that the Z-sections have a
fully constrained stress distribution. Because the Z-sections have a rotated principal axes, they are
subject to lateral bending effects and depending to the extent of the restraint provided by the braces
relative to the slab/deck the stresses may deviate from a constrained bending stress distribution
which could impact the strength of the Z-section. Analysis assumes that the Z-sections are fully
effective, and local buckling does not control the strength or reduce the moment of inertia.

4. Conclusion

We have successfully developed an analytical tool specifically designed for evaluating the
performance of the proposed Z-sections relative to that of comparable W-shapes in composite floor
systems.

The Z-sections developed provide improved composite performance relative to the W-shape. The
fully composite moment of inertia and design moment strength of the Z-section are greater than
that of the comparable W-shape when considering the relative difference in the cross- sectional
area. Table 5 provides a side-by-side comparison of the fully composite moment of inertia and
design moment strength for each type. Table 5 should be considered in conjunction with Table 1.
In all cases the percent difference in strength between sections exceeds the percent difference in
cross sectional area. The increase in composite capacity for the Z-section is a result of the larger
bottom flange which shifts the elastic and plastic neutral axes. The increase in moment of inertia
helps to improve vibration performance, which often controls the design of composite floor
systems.

Using the tool there is compelling evidence that Z-section beams could be a viable alternative to
W-shapes in composite floor systems. As a result of an unsymmetric section with a larger bottom
flange, the Z-sections exhibit slight increases in composite strength and vibration performance.
As a result of the single bottom flange, the Z-section allows for a direct drop in connection to
girders.

However, it would take a significant investment tooling to create these Z-sections and to utilize
them would represent a substantial change in the way that the industry has utilized steel in
composite floor systems for decades. It is not clear whether the advantages that the Z-sections
provide over W-shapes are substantial enough to overcome the momentum that the industry has in
using W-shapes in composite floor systems. However, there may be other applications such as
panelized floor systems or residential systems that may have shorter spans and lower required
loads where a rolled Z-section may provide advantageous performance over a conventional steel
or concrete system. Additional research is also required to better understand the local and
distortional buckling behavior of these thin-walled sections and how their interaction with different
floor systems can affect their strength and behavior.
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Table 4: W-shape and Z-shape comparation of fully composite

Comparison of Fully Composite Properties

% Increase % Increase
BEAM TYPE X for Ix ¢Mn for pMn
14784 5/7x0.1875 733.21 6% 24925 11%
W14X22 776.32 281.58
16Z254.5/7x0.25 117221 , 376.48 )
8% 5%
W16X26 1081.84 35921
16254.5/7x0.3125 1383.04 9% 460.68 8%
W16X31 1274.06 426 .40
18785.5/8x0.3125 1825.23 11% 557.82 9%
WI18X35 1641.65 512.11
18785.5/8x0.375 2075.09 11% 655.59 129
W18x40 1870.64 585.69
217254.5/7x0.375 2664 47 79 750.94 6%
W21X44 2492 46 708.72
21784 .5/7x0.4375 2956.88 6% 859.02 8%
W21X50 2776.63 796.50
247S6/8.5x0.375 374918 , 955.29 ,
W24X55 3643.04 3% 95538 -0.01%
24756/8.5%0.4375 4157.86 4% 1093.10 30
W24X62 4016.26 1065.59 )

4.1 Key Finding

The results obtained from the composite calculator demonstrate that we have successfully
developed Z-shaped geometries with strength characteristics closely aligned with those of W-
shaped geometries. This finding is significant as it establishes a foundation for advancing further
research on the application of cold-formed steel.

4.2 Implications of the Research

This research endeavor aims to establish the foundational stage of a more comprehensive
investigation focused on the comparative analysis of Z and W shapes. By methodically assessing
their geometrical properties and structural performance, this study seeks to offer valuable insights
into the potential applications of cold-formed steel. The objective is to facilitate innovative
approaches to utilizing cold-formed steel, thereby expanding its applicability in construction and
manufacturing processes.

4.3 Potential Applications

The primary objective of this study is to investigate the potential substitution of W-shaped hot-
rolled steel beams with Z-shaped rolled steel beams within construction applications. This
transition may facilitate significant cost reductions for small-scale construction projects, which
constitute a considerable majority of construction activities.

13



By implementing Z-shaped beams, organizations can realize savings in several key areas:

1. Manufacturing Costs: The design of Z-shaped beams allows for more efficient production
processes, potentially resulting in decreased material usage and reduced energy consumption
during fabrication when compared to W-shaped beams.

2. Handling and Transportation: The unique geometry of Z-shaped beams can streamline handling
and storage operations, leading to lower transportation and on-site management expenses.

3. Storage Efficiency: The compact design of Z-shaped beams may optimize storage capabilities,
promoting more effective utilization of space at construction sites and in warehouses.

In addition to cost considerations, it is essential to evaluate the environmental implications
associated with these materials. The production processes for W-shaped beams are associated with
higher carbon emissions in comparison to those involved in the manufacture of cold-formed steel,
which includes Z-shaped configurations. This shift towards Z-shaped beams not only contributes
to cost savings but also aligns with the increasing emphasis on sustainable construction practices.
Overall, the adoption of Z-shaped beams presents both economic advantages and positive
ecological outcomes for the construction industry.

4.4 Contributions to the Field

This research contributes to the field of Civil Engineering by laying the groundwork for the future
development of applications involving cold-formed structural steel. It emphasizes the material's
potential in construction and engineering. By analyzing its properties, benefits, and opportunities
for innovation, this study aims to provide insights into the effective utilization of cold-formed steel
in modern construction practices.

4.5 Lessons Learned

During the research process, we encountered several trials and errors while reconfiguring the
shapes in order to identify the most effective configuration. This process is inherently lengthy and
requires meticulous attention to detail. Each adjustment demands a high degree of precision to
ensure that we progressively move closer to the optimal outcome. Despite the inherent challenges
associated with this rigorous approach, it is essential for achieving accurate and reliable results.

4.6 Recommendations for Further Research

Future research efforts should aim to explore a variety of alternative Z-shaped configurations to
assess their potential for improving the overall strength of the beam. This could involve
experimenting with larger top or bottom flanges, as these structural modifications may contribute
to increased load-bearing capacity. Additionally, it would be valuable to investigate whether
adjusting the 90-degree angles on the lips of the Z-shape affects the strength and performance
characteristics of the beam.
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