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Abstract 
Laced built-up members were often used in old truss steel bridge members. These members often 
comprise plates, channels, and angle sections connected by various lacing systems such as lacing 
bars or angles. According to current design practices, the main components of built-up sections 
are designed to reach failure load before the transverse members. The inclusion of lacing systems 
aims to ensure that each main component behaves together as a member to achieve the highest 
capacity. AISC recommends that lacing members shall be able to resist shear force equal to 2% of 
the available compressive strength of the built-up member. The Standards specify dimensional 
requirements for both built-up and lacing members, while AASHTO provisions adopted similar 
suggestion to AISC yet impose limits on the slenderness of built-up members. However, existing 
bridge members may not always meet these design requirements and several questions regarding 
the influence of lacing stability and lacing arrangement on the shear force and compressive strength 
of built-up members remain. This paper studies a wide range of non-linear numerical models of 
laced built-up members consisting of pairs of hot-rolled C-shape sections interconnected with 
double (X) and single (diagonal) flat lacing bars. The developed models are validated against 
existing test data. The study further discusses the impact of lacing arrangement and the overall 
stability of lacing members under shear force. The numerical results are then used to evaluate a 
proposed design shear force equation for the lacing system, showing it provides more accurate and 
consistent predictions than current design recommendations. 
 
1. Introduction 
Built-up members are commonly found in older truss steel bridge structures. These members, as 
depicted in Figure 1, typically consist of plates, channels, and angle sections, linked by transverse 
elements like batten plates, lacing bars, or perforated plates. In laced members with angles, lacing 
bars may be applied on all four sides, or the angles can be paired with continuous web plates to 
create two C-sections. To calculate the capacity of steel built-up members, the lacing system must 
be capable of resisting the internal forces in the connecting elements before the member fails. 
Figure 2a illustrates a typical laced built-up member under compression. In such cases, the lacing 
system’s strength is crucial for the member’s stability. This is especially important for built-up 
members with initial global deflections (Figure 2b), where the lacing members must resist internal 
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forces. These forces, such as bending moments and shear forces, are calculated based on the 
deformed shape (second-order analysis), as shown in Figure 2c. For design, these forces are 
distributed to the diagonal lacing members, which may experience either compression or tension, 
as depicted in Figure 2d. 
 

  
Figure 1: Notations and typical built-up members are commonly used in steel truss bridges. 

 
The current design approach for built-up compressive members ensures that the main components 
fail before the connecting elements. The connecting elements, such as lacing bars, are included to 
make the main components function as a single unit for higher capacity and to resist shear forces 
from bending and external loads. According to EC 3, shear force is calculated based on the 
maximum second-order moment at the midpoint of a built-up member, which is caused by an 
initial deflection of the entire member. This second-order moment is computed for built-up 
compression members with hinged ends, considering an initial bow imperfection e0 and the first-
order bending moment at the midsection MI, where e0 is equal to L / 500. The elastic shear 
deformation of the lacing system is assumed to be continuous and is determined from the column's 
shear stiffness Sv, which varies based on the lacing arrangement. For a single lacing system with 
two planes of lacings, Sv is expressed as follows: 
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For double lacing system with two planes of lacings, Sv is given by: 
 

 
2
0

3

2 d
v

EA ch
S

d
  (2) 

 
Here, Ad is the cross-sectional area of lacing members, h0 is the distance between the centroids of 
the chords, and c and d represent the distance between connectors and the length of diagonal, 
respectively (see Figure 2). In contrast to the EC 3 approach, the AISC Standard provides a 
simplified equation for calculating the design shear force in built-up members. For single and 
double lacing systems, the minimum shear force is set at 2% of the available compressive 
resistance Nu of the built-up member, as long as the slenderness ratio does not exceed 140 for 
single lacing and 200 for double lacing. This criterion applies if the angle of the lacing to the axis 
of the built-up member is at least 60 degrees for single lacing and 45 degrees for double lacing. 
However, the AASHTO provisions do not specify a recommended design shear force for laced 
built-up members, apart from an additional restriction from the AISC Standard. This restriction 
limits the slenderness ratio of the built-up member to 120 for primary truss members and 140 for 
secondary truss members. 
 

 
Figure 2: Second-order effects in laced built-up columns. 

 
The American Standards set dimensional limits for the lacing system, but the equations for 
determining the design shear force are limited because they depend on the specific dimensions of 
the lacing member. Many older truss bridge members, particularly those built in the 1950s, may 
not meet the slenderness limits defined by the current standards. Additionally, the equations from 
both standards do not consider shear deformations caused by flexural buckling instability in the 
lacing member, meaning the slenderness effect of the lacing member should be taken into account. 
Therefore, the design rules need to be updated, especially for members that do not meet the 
dimensional requirements set by the code. Specifically, improvements should (i) address potential 
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buckling in the lacing members and (ii) consider the impact of different lacing arrangements on 
second-order shear forces in built-up members. The formulas for predicting shear forces Vu in 
built-up members, as suggested by both standards, are summarized in Table 1. 
 

Table 1: Design 2nd order shear force provided by current design standards. 
Codes Design shear force in built-up members 
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2. Numerical investigations 
 
2.1 Basic features of numerical models 
The finite element models of the laced built-up members were created using the non-linear Finite 
Element (FE) software ABAQUS. The built-up sections are widely spaced components, consisting 
of two longitudinal columns (main chords) arranged either tip-to-tip ([ ]) or back-to-back (] [), 
referred to as the main chords. These main chords are connected by flat lacing bars, which are 
arranged in either X-configurations (double lacing) or diagonal-configurations (single lacing) at 
intermediate spans and are reinforced with tie-plates at both ends. The four-node shell element 
(S4R) was selected to model the main chords, lacing bars, and tie-plates, as it has been shown to 
provide excellent accuracy in previous studies on mono-symmetric and plate sections. A mesh size 
of 1/20th of the web dimension of the main chords was chosen, as it provided a good balance 
between computational efficiency and numerical accuracy and was used for further investigations. 
 

 

Figure 3: Cross-sectional modeling – (a) Tip-to-tip section – (b) Back-to-back section. 
 
Figure 3 shows the numerical model considered for laced built-up members. All tie-plates and 
lacing members are connected to the flange of the main component through a line of connectors. 
The cross-sectional model of the main C components is composed of three shell plates with 
constant thickness, leading to problems at the joint areas by forming the missing fillet areas and 
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overlapping areas (see Figure 4a). For hot-rolled sections, the absence of fillet zones in the FE 
model decreases the actual second moment of area and torsional stiffness of the cross-section 
(especially St Venant’s torsional stiffness) (Li and Boissonnade 2022). As depicted in Figure 4b, 
extra square hollow beam sections were added to the cross-sectional model at the center gravity of 
radius zones. Since the missing area is equal to the intersection of the flange plate and web plate, 
this improvement enables the model to more accurately capture the section area by including the 
fillet area, thereby providing additional torsional. Furthermore, additional spring elements with 
strong stiffness were added to the fillet zones of the section to prevent local buckling in these areas, 
ensuring that local buckling occurs outside the fillet areas of the flanges and web plates. 
 

 
Figure 4: Modeling the joint between the web and flange of a main component. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Connection modeling – (a) Connection between tie-plates to main chord – (b) Connection between lacing 

members to main chord. 

The “rivet connector” is assumed to behave in such a way that rotation is free, meaning the lacing 
bar is free to rotate in the plane of the lacing system. Figure 5a shows the connection line between 
two corresponding nodes of the lacing member and the chord, representing the rivet connection. 
A kinematic constraint is assigned through this connection line, allowing both nodes, i.e., reference 
node (node 1) and coupling node (node 2), to share the same translational degrees of freedom in 
the x’, y’, and z’ directions, as well as the same rotational degrees of freedom around the x’ and z’ 
axes. The rotational degree of freedom around the longitudinal axis of the rivet, i.e., the y’ axis, is 

Kinematic constraint: 
ux’(1) = ux’(2) 
uy’(1) = uy’(2) 
uz’(1) = uz’(2) 
x’(1) = x’(2) 
z’(1) = z’(2) 

Kinematic constraint: 
ux(1) = ux(2) 
uy(1) = uy(2) 
uz(1) = uz(2) 
x(1) = x(2) 
y(1) = y(2) 
z(1) = z(2) 

z 
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not constrained, allowing both nodes to rotate freely around this axis. All degrees of freedom of 
the coupling node are defined with respect to the reference node located on the chord. Finally, the 
end tie-plates are connected to the chord member by using the tie constraint, representing either a 
rivet or bolted connection. As depicted in Figure 5b, a similar approach has been followed and 
kinematic constraints have been defined to ensure that each node in the connected area shares the 
same displacement and rotation.  

  
Figure 6: Boundary conditions of built-up members in the numerical models. 

 
The boundary conditions of the built-up column were defined as pinned-pinned, as shown in 
Figure 6. All nodes at each end of the member were constrained to have the same displacement as 
the reference point, which is located at the center of gravity of the cross-section. Torsional rotation 
and translational displacement along the x and y directions were restrained at both ends, with 
constraints ux = uy = θz = 0. The load was applied to the model through the reference point at one 
end in the axial direction (z direction), while the axial displacement at the opposite end was 
restricted (uz = 0). To accurately represent the actual support position and loading conditions when 
the FE models are used to replicate experimental setups, the position of the reference point could 
be adjusted translationally and longitudinally by specific distances ex and ez, respectively. The 
material model employed was a quad-linear stress-strain relationship, characterized by an elastic 
linear portion, a yield plateau, and a two-stage non-linear strain hardening. This relationship was 
calibrated into true stress and logarithmic plastic strain as required within the ABAQUS 
environment.  

  
Figure 7: Residual stresses proposed in the literature – (a) Reduced residual stresses for C sections in (Lindner and 

Glitsch 2004) – (b) Proposed residual stresses for C sections in (Beyer et al. 2018). 
 
In the modeling of residual stress for C-sections, an intriguing challenge arises due to the lack of 
experimental data for hot-rolled channel sections. Given this constraint, most researchers have 
resorted to adapting existing data from related profiles, such as hot-rolled I shape sections. This 

 Reference point 
N 
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approach was notably employed by Lindner and Glitsch (Lindner and Glitsch 2004), who proposed 
a methodology to extract residual stress patterns from I shape sections and subsequently adjusted 
them to suit channel sections (see Figure 7a). This residual stresses pattern was later further used 
by Beyer et al. (Beyer et al. 2018), who proposed residual stresses distribution patterns in finite 
element models for UPE sections subjected to major-axis bending. The authors suggested to take 
max = 0.15fy  and  = 1 + btf / (htw). 
 

     
Figure 8: Definition of – (a) Local geometrical imperfections – (b) Global geometrical imperfections. 

 
The geometrical imperfections are introduced both locally and globally by adjusting the 
coordinates of nodes using sinusoidal functions (see Figure 8). Local imperfections, affecting the 
web and flange plates, are characterized by plate buckling lengths ai,w and ai,f, respectively. 
Specifically, ai,w = h – 2(tf + r), while  ai,f = 2(b – tw – r). For local imperfections, the amplitude 
e0,local,i is taken as ai / 200, as suggested by Eurocode 3 Part 1.5 and by Gérard et al. (Gérard et al. 
2021) for I sections. These amplitude values are applied independently to each plate, where ia  
corresponds to each “plate buckling length”. The half-wave length aL, defined as the average of 
the web and flange buckling lengths, aL = (ai,w + ai,f) / 2, is chosen here since it has been reported 
by Gérard et al. 2019 (Gérard et al. 2019) to provide reasonable and appropriate resistance 
predictions. As depicted in Figure 8a, an odd number of half-waves is used to maintain the weakest 
cross-section located at mid-span along the member's length. The global imperfection, denoted as 
e0,global is introduced along the minor-axis.  
 
2.2 Validation of numerical models 
The FE models were validated against 23 test results reported in (Astaneh-Asl et al. 1998), (Kleiser 
and Uang 1999), (Lee and Bruneau 2008), (Bonab, et al. 2013), and (Kalochairetis et al. 2014). 
The tests cover 10 laced built-up members where the main components are composed of four 
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angles connected in pairs with continuous web plates to form two C sections (4L+2P), as well as 
13 laced built-up members where the chord members consist in two channel sections (2C).  The 
lacing configuration, test loading, loading positions, and the results of the validation study, i.e., 
ultimate load of test (Nu,test) and FE model (Nu,FE) and the load ratio Nu,FE / Nu,test , are presented in 
Table 2 for specimens loaded under cyclic conditions and Table 3 for specimens loaded under 
static conditions. In Table 2, the three tests reported by Astaneh-Asl et al. (Astaneh-Asl et al. 1998) 
and (Astaneh-Asl et al. 1998) and Kleiser and Uang 1999 (Kleiser and Uang 1999) utilized 
specimens fabricated to represent the back-to-back laced members of San Francisco-Oakland Bay 
Bridge (SFOBB), with the lacing system riveted to the main components. The as-built specimens 
were axially loaded with pinned-pinned support at eccentricities (ex) of 381 mm, 127 mm, 0 mm, 
respectively. In the test reported by Lee and Bruneau (Lee and Bruneau 2008), the experimental 
program comprised twelve diagonal bracing members. Since four specimens were closely spaced 
built-up sections and one specimen (Bx8-60) had setup errors at the beginning of the test, making 
its results unusable for validating the FE model, only seven specimens (By8-60, By8-120, By16-
60, By16-120, Bx8-120, Bx816-60, and Bx16-120) were selected for validation. These specimens 
consisted of widely spaced built-up sections, fabricated on the basis of data from existing bridges, 
with lacing members connected to the main components by bolts. All specimens were configured 
as diagonal bracing members in a rigid frame and subjected to lateral shear forces. According to 
the experimental setup, all specimens in Table 2 were loaded under displacement control following 
the ATC-24 cyclic-loading protocol (Case 1). Yet, since this study focuses on the static behavior 
of the compressive laced built-up members, static loading (Case 2) was also considered.  

Table 2: Summary of FE vs. test ultimate load for specimens loaded under cyclic conditions. 

Reference Specimens Test loadings Loading positions Ultimate loads and ratios 
  Case 1 Case 2 

ex,left ez,left ex,right ez,right Nu,test Nu,FE / Nu,test Nu,FE / Nu,test 
(mm) (mm) (mm) (mm) (kN) (-) (-) 

(Astaneh-Asl et al. 
1998; Kleiser and 

Uang 1999) 

Specimen 1 Cyclic (N + My) 381 400 0 400 928.79 1.017 0.960 
Specimen 2 Cyclic (N + My) 127 400 0 400 1633.83 1.012 1.012 
Specimen 3 Cyclic (N) 0 400 0 400 2885.12 0.990 0.954 

(Lee and Bruneau 
2008) 

By8-120 Cyclic (V) 0 0 0 0 295.81 0.952 0.952 
By16-60 Cyclic (V) 0 0 0 0 521.64 0.912 0.911 
By16-120 Cyclic (V) 0 0 0 0 447.00 0.981 0.977 
Bx8-60 Cyclic (V) 0 0 0 0 267.16 1.041 1.047 
Bx8-120 Cyclic (V) 0 0 0 0 213.51 1.113 1.110 
Bx16-60 Cyclic (V) 0 0 0 0 506.87 1.090 1.094 
Bx16-120 Cyclic (V) 0 0 0 0 409.50 1.024 1.024 

       Mean 1.013 1.004 
      C.o.V. 5.9 % 6.5 % 
      Min. 0.912 0.911 
      Max. 1.113 1.110 
         

 
Conversely, the specimens originally loaded under static conditions are presented Table 3. The test 
programs investigated by Bonab et al. (Bonab et al. 2013) comprise nine specimens, all of which 
were back-to-back built-up members with a single lacing system. Additionally, the experimental 
programs reported by Kalochairetis et al. (Kalochairetis et al. 2014) consist in five 
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groups – Group 1 to Group 5 – of laced built-up sections with double lacing systems. Since the 
main components of the Group 3 specimen were made of I-sections rather than C-sections, only 
four groups were selected for validating the numerical model – these members consisted of two 
C-sections arranged tip-to-tip. In Table 3, all main components of each specimen were 
interconnected to the lacing system by welding. For lacing with welded connections, an additional 
rotational constraint, where y’(1) = y’(2), is incorporated into the kinematic constraint shown in 
Figure 5a. The specimens were set up under simple supports, which the distance between support 
and the end of member is denoted as ez, and were loaded under concentric compression load (N). 
Specimens reported in (Kalochairetis et al. 2014) were subjected to combined compression and 
bending (N + My). It is noteworthy that all specimens in Table 3 were constrained to prevent out-
of-plane displacement (ux = 0) at the mid-section.  

Table 3: Summary of FE vs. test ultimate load for specimens loaded under static conditions. 
Reference Specimens Test loadings Loading positions Ultimate loads and ratios 

(Case 2) 
ex,left ez,left ex,right ez,right Nu,test Nu,FE Nu,FE / Nu,test 
(mm) (mm) (mm) (mm) (kN) (kN) (-) 

(Bonab et al. 2013) 

L140B8(R1) Static (N) 0 140 0 140 204.76 199.62 0.97 
L140B8(R2) Static (N) 0 140 0 140 183.86 185.91 1.01 
L140B8(R3) Static (N) 0 140 0 140 159.09 160.88 1.01 

L140B10(R1) Static (N) 0 95 0 95 289.05 253.81 0.88 
L170B7(R1) Static (N) 0 95 0 95 151.95 136.04 0.90 
L170B7(R2) Static (N) 0 95 0 95 135.19 138.34 0.88 
L170B7(R3) Static (N) 0 95 0 95 124.32 113.17 0.91 
L170B8(R2) Static (N) 0 95 0 95 162.40 153.10 0.94 
L170B8(R3) Static (N) 0 95 0 95 146.29 141.82 0.97 

(Kalochairetis et al. 
2014) 

Group 1 Static (N + My) 100 162.5 100 162.5 200.00 211.12 1.06 
Group 2 Static (N + My) 100 162.5 100 162.5 206.00 215.29 1.05 
Group 4 Static (N + My) 100 162.5 -80 162.5 230.00 246.73 1.07 
Group 5 Static (N + My) 50 162.5 50 162.5 247.00 250.24 1.01 

                                              Mean 0.985  
      C.o.V. 6.3 %  
      Min. 0.880 

                                              Max. 1.070 

 
Due to a lack of information on actual measured geometrical imperfections for some specimens 
and no residual stresses measurements conducted for all test programs, a sensitivity study was 
initially performed to determine appropriate amplitudes of local and global geometric 
imperfections, which will later be adopted in numerical parametric studies. Table 4 compares the 
experimental results with those of the FE numerical predictions for various amplitudes of initial 
local and global geometric imperfections. The experimental results from Bonab et al. 2013 (Bonab 
et al. 2013) were not included in Table 4 since the imperfections of those specimens were caused 
by load repetitions, and the amount of geometric imperfections was determined through a modified 
Southwell plot (Southwell 1997). The results show that the amplitude combination of 
e0,local,i = ai / 200 for local imperfection and e0,global = L / 500 for global built-up members provides 
the best mean value (Nu,FE / Nu,test = 1.006) among all amplitudes, with a C.o.V. of 7.3 %. 
Therefore, this imperfection combination was adopted for specimens without imperfection 
measurements and used for further parametric studies in this investigation.  
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Figure 9: Comparison between test and FE – (a) Hysteretic curve for specimen 3 reported in (Astaneh-Asl et al. 
1998) – (b) Load-displacement curves for specimens Group 2 and Group 5 reported in (Kalochairetis et al. 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Comparison between test and FE failure modes for Specimen By8-120 reported in (Lee and Bruneau 
2008) – (stress is in ksi). 

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-30 -20 -10 0 10 20 30 40

L
oa

d 
 [

kN
]

Displacement  [mm]

Specimen 3 (Test)

Specimen 3 (F.E. - Case 1)

Specimen 3 (F.E. - Case 2)

a 

0

50

100

150

200

250

300

0 2 4 6 8 10 12

L
oa

d 
 [

kN
]

Horizontal displacement  [mm]

Group 2 (Test)
Group 2 (FE)
Group 5 (Test)
Group 5 (FE)

b 



 11 

As presented in Table 2, FE models subjected to cyclic loads show excellent agreement with 
experimental results, with an average Nu,FE / Nu,test ratio of 1.013 and a Coefficient of Variation 
(C.o.V.) of 5.9% for cyclic loading (Case 1). For static loading conditions (Case 2), the results also 
show improvement, with an average Nu,FE / Nu,test ratio of approximately 1.0, with a C.o.V. of 6.5%. 
Figure 9a shows that the hysteresis of specimen 3 obtained from FE model superimposed with the 
hysteresis of test results. There are no significant differences in the initial stiffness and maximum 
compression strength between FE and test results, showing that the impact of discontinuous 
yielding phenomenon has less impact for quad-linear stress-strain models at the initial yielding 
stage. The FE models accurately capture both the initial stiffness, ultimate resistance and post-
peak response of the specimens, as depicted in the load-displacement curves for specimens in 
Group 2 and Group 4 (Figure 9b).Additionally, Figure 10 illustrates that the numerical failure 
mode of Specimen By8-120 aligns closely with the test result.  
 
Strong correlation between FE predictions and test results are also observed for all specimens 
tested by Bonab et al. (Bonab et al. 2013)  and Kalochairetis et al. (Kalochairetis et al. 2014), as 
shown in Table 3. The mean value of Nu,FE / Nu,test ratio is 0.985 with a C.o.V. of 6.3 %. Combined, 
all these results evidence that the developed numerical models reliably predict ultimate resistances 
and adequately capture the buckling behavior of laced built-up members, making them suitable for 
additional sub-studies and further numerical investigations.  
 

Table 4: Comparison between test and FE results for various amplitudes of e0,gloabl. 
References Specimens Lacing 

system 
Ultimate loads and ratios (Case 2) 

  Local amplify: e0,local = ai / 200  
 Global amplify: e0,global 

L / 3000 L / 1500 L / 1000 L / 500 
Ntest Nu,FE / Nu,test Nu,FE / Nu,test Nu,FE / Nu,test Nu,FE / Nu,test 
(kN) (-) (-) (-) (-) 

(Astaneh-Asl et al. 
1998; Kleiser and 

Uang 1999) 

Specimen 1 
Double 

928.79 0.96 0.96 0.96 0.96 
Specimen 2 1633.83 1.01 1.01 1.00 0.98 
Specimen 3 2885.12 0.95 0.92 0.90 0.85 

(Lee and Bruneau 
2008) 

By8-120 

Single 

295.81 1.19 1.13 1.07 0.95 
By16-60 521.64 1.12 1.07 1.02 0.91 
By16-120 447.00 1.25 1.17 1.11 0.98 
Bx8-60 267.16 1.26 1.21 1.16 1.05 
Bx8-120 213.51 1.36 1.29 1.24 1.11 
Bx16-60 506.87 1.30 1.29 1.29 1.09 
Bx16-120 409.50 1.28 1.20 1.15 1.02 

(Kalochairetis et 
al. 2014) 

Group 1 

Double 

200.00 1.08 1.08 1.07 1.06 
Group 2 206.00 1.06 1.06 1.05 1.04 
Group 4 230.00 1.08 1.07 1.07 1.07 
Group 5 247.00 1.04 1.02 1.03 1.01 

   Mean 1.139 1.106 1.081 1.006 
   C.o.V. 11.7 % 10.4 % 9.6 % 7.3 % 
   Min. 0.954 0.925 0.903 0.845 
   Max. 1.363 1.295 1.289 1.110 

 
2.3 Influence of slenderness of lacing members 
This section investigates the influence of the lacing members’ slenderness on both the ultimate 
load and the shear force-to-ultimate load of built-up members. The studies cover various member 
lengths; therefore, a nondimensional unit is denoted as lacing the slenderness of lacing members 
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and as B for the slenderness of built-up members. For the lacing members, the expression for 
slenderness is given as: 
 

 2 2/
d y

lacing
d

A f

EI d



  (3) 

 
where Ad is the total area of lacing bar, Id is the minimum second moment of inertia, and d is the 
length of lacing bar.  
 
Similarly, the relative slenderness of built-up members defined as: 
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where Ag is the total area of the section, Ig is the overall second moment of ineritia of the built-up 
member, and L is the length of the member. 
 
A total of 168 numerical simulations of laced built-up columns with steel grade A36 
(Fy = 250 MPa) were conducted, using both single and double lacing systems; also, the slenderness 
of lacing members (lacing) were varied from 0.5 to 2.5. Each column was composed of two hot-
rolled channel sections (C380x50.4). The relationship between the overall slenderness of built-up 
members (λB) and their ultimate resistance (Nu / Afy) is presented in Figure 11. Figure 12 further 
illustrates how λB relates to shear force-to-ultimate load (Vu,2nd / Nu), as influenced by varying 
slenderness values of the lacing members. A detailed analysis of these results reveals that the 
slenderness of lacing members has a notable impact on the resistance to compression of built-up 
members with a single lacing system. For columns with B ranging from 0.6 to 1.5, these members 
are more affected by global instability of lacing members, as characterized by their slenderness 
values.  
 
 
 
                                                                                    
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Influence of slenderness of lacings on ultimate load – (a) Single lacing system – (b) Double lacing 
system. 
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As depicted in Figure 11a, one reports an approximately 10% difference in carrying capacity for 
λlacing = 0.54 and λlacing = 1.08, and as much as a 20% difference between λlacing = 0.54 and 
λlacing = 2.51. In contrast, the global instability of lacing members with a double lacing system has 
a minimal impact on built-up members. It is important to remind that the shear forces within the 
lacing system are transferred along the axial direction of each lacing member. Lacing members in 
a single system primarily resists compression, which significantly affects global instability. 
However, lacing members in a double system resists both compression and tension, with one lacing 
member in compression and another in tension. This improves the performance of the compressed 
lacing member by balancing it through the tensioned lacing member. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Influence of slenderness of lacings on shear force in built-up member – (a) Single lacing system – (b) 
Double lacing system. 

Before the built-up member may reach its maximum carrying capacity, buckling in lacing 
members is observed in single lacing systems, especially when lacing > 1.5. As illustrated in Figure 
12a, for B  1.25, the percentage of Vu,2nd / Nu  relative to lacing steadily increases before sharply 
decreasing when lacing > 1.5 or (L/r)lacing > 140 (see red ellipse) which the shear capacity of built-
up members tends to be altered by early buckling in braces. For double lacing systems, particularly 
for built-up members with B < 1.5, no buckling of lacing members is reported, demonstrating the 
advantage provided by the presence of two lacing bars. For an example, this is clearly observed 
for B  1.25 (see green ellipse in Figure 12b), where the percentage of Vu,2nd / Nu consistently 
increases. However, similarly to the single lacing system, the first instance of buckling in double 
lacing members appears for B = 1.75 when lacing = 1.88 or (L/r)lacing = 175 (see red ellipse in 
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especially for diagonals under tension. This loss of redundancy causes the compressed diagonal to 
begin buckling. 
 
3. Proposed design equations 
The previous sections conducted a series of sub-studies on chord arrangement, type of lacing 
system, and lacing slenderness for specific cross-sections. In this section, results of extensive 
parametric studies are reported using the validated numerical models to analyze how variations in 
section dimensions, section/member/lacing slenderness affect the overall resistance of laced built-
up members. Approximately 1 600 computational models of laced built-up members were 
considered to determine the ultimate loads of columns and their corresponding shear force-to-
ultimate load ratios (Vu / Nu). The numerical studies comprised the following parameters and 
criteria: 

 The material properties of the lacing members and tie-plates were assumed to be similar to 
those of the main components of the built-up members, using steel grade A36 with a yield 
strength of fy = 250 MPa; 

 The built-up columns consisted of two hot-rolled channels and C-shape sections arranged 
either tip-to-tip or back-to-back. The height-to-width (h / b) ratio of each channel and C-
shape section was varied from 2.3 to 9. These hot-rolled sections include both non-slender 
and slender elements, with the web plate slenderness ratio h / tw ranging from 6 to 65.8 and 
the flange plate slenderness b / tf ranging from 4.9 to 20; 

 Both main chords are widely spaced and connected by flat lacing bars arranged in X-
configuration (double lacing), V-configuration or diagonal (single lacing) at intermediate 
spans, and by tie-plates at both ends. As discussed in the previous section, the slenderness 
of the lacing bars must be limited to prevent failure before the built-up members. Therefore, 
five relative slenderness ratios of the lacing bars (λlacing) were considered for each cross-
section and varied from 0.5 to 1.88, associated with eight slenderness ratios of the built-up 
members (λB). Results have been used to propose equations to predict second-order shear 
force in laced built-up members in the following next sections. 

 
3.1 Design proposal for double (X) lacing system 
As previously mentioned, the investigation aims to provide a reliable, accurate and efficient design 
proposal for various ranges of built-up sections in compression, analyzing how variations in 
section dimensions and member/lacing slenderness affect the shear force in laced built-up 
members. The proposed equations are based on the assumption that the main components of built-
up members are designed to reach their ultimate load before that of the lacing system. Therefore, 
the proposed equations are presented in the form Vu / Nu, where Vu is the shear force and Nu is the 
ultimate load, as a function of relative slenderness of built-up members, B. For section dimensions 
of the main components, a key parameter is denoted as:  
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   (5) 

 
V  which lies as an indication of the influence of the webs compare to flanges slenderness for the 

C-shape sections on the shear force acting along laced built-up sections. In Eq. 5, h is the height 
of the web of C-section, b is the width of the flange, and tw and tf are the thicknesses of web and 



 15 

flange, respectively. A larger V  suggests that the web is significantly slenderer than the flange, 
i.e., web is much slenderer compared to flange. In such cases, the web responds more to section 
stability. In contrast, a lower value of V  indicates that web and flange have similar slenderness or 
that the flange governs the section response. As presented in Figure 13a, an increase in V  results 
in increasing ratio of Vu / Nu, meaning that shear force governs by the web slenderness. However, 
for built-up sections which the shear force is in a direction parallel to the flange of C-shape 
sections, the response to shear will primarily depends on the flange slenderness. Therefore, V  is 
expected to be lower. The proposed equations for the design shear force of members are 
summarized in Table 5, where V  characterizes how the plate slenderness of the main component 
of built-up members influences the shear force acting in built-up members. The parameters n, αe 
and β are a curve fitting parameter, an equivalent factor that considers the influence of lacing 
slenderness – calibrated from numerical results – and a lacing arrangement factor, respectively. 
 
 
 
                                                                                         
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: (a) Key parameter for section dimensions ( ) – (b) Proposal for laced built-up sections with double (X) 
lacing system. 

The results of the parametric studies are presented in Figure 13b for tip-to-tip and back-to-back 
laced built-up sections with double (X) lacing systems. Figure 13b plots the recommended Vu / Nu 
curve for various range of the slenderness parameter of lacing members (lacing) alongside all 
numerical results presented in the Vu / Nu – B format. From the observed trends, increasing lacing 
values result in the curve shifting upward, indicating that built-up members with more slender 
lacing members exhibit a higher Vu / Nu value. As expected, the increase in Vu / Nu results from the 
slightly dropped ultimate carrying capacity of the built-up column due to the early buckling in 
lacing members.  Note, however, that the slenderness of lacing members was limited to max. 1.8 
to prevent the lacing systems from buckling before the built-up member does, as explained in 
Section 2.3. Additionally, for very short members with B ≤ 0.25, the ultimate load (Nu) has been 
observed to exceed the plastic resistance (Npl = A . fy) due to strain hardening, resulting in a lower 
Vu / Nu ratio (see green ellipse). This effect is more pronounced in members with fewer than 3 
modules (3 numbers of lacings). Thus, the minimum shear force-to-ultimate resistance ratio is 
constrained to 1% ( ,min 0.01u uV N ).  
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Table 5: Definition of parameters considered in the proposed equation for double (X) lacing system. 
For 0.25B   For 0.25 2.5B   

0.01u

u

V

N
  

  1/

,min

1.5 cos
n

Bu
u

u e

V
V

N


 

     

41.8 3.4 0.0017e lacing V      

  V  n  lacing  

1.0    2
/ / /w fh t b t  0.7 / 50B  1.8  

  
3.2 Design proposal for single (diagonal) lacing system 
To maintain continuity, the proposed equation for single lacing system is derived from the equation 
for the double lacing system. The results of the numerical studies are presented in Figure 14 for 
tip-to-tip and back-to-back laced built-up sections with single (diagonal) lacing systems. A 
comparison between Figure 13b and Figure 14a reveals that the shear force-to-ultimate load ratio 
(Vu / Nu) for built-up sections with double lacing system is greater than built-up sections with 
single lacing system. The difference shall be attributed to the greater shear stiffness of built-up 
members with a double lacing system. To further quantify this overall disparity, the shear force in 
the double lacing system is related to the shear force in the single lacing system, denoted as the 
[V / N]u,double / [V / N]u,single ratio.  
 
                                                                                  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: (a) Proposal for laced built-up sections with single lacing system – (b) Parameter for lacing 
arrangement (). 

Figure 13b illustrates this ratio as a function of B for tip-to-tip and back-to-back built-up sections. 
Generally, the variation in shear force between double and single lacing systems range from 1.4 to 
1.5 for built-up members with B > 0.75; however, for members with B  0.5, the ratio scatters 
below 1.4 due to the presence of fewer than 3 modules in the built-up member. To ensure a 
conservative design approach, the minimum variation between shear force in double and single 
lacing systems is denoted as min, approximately equal to1.4 (see Figure 14b). This value is 
approximately equal to min 2  or can be expressed in terms of the variation in shear stiffness as 

min , ,/v double v singleS S  where Sv,double and Sv,single represent the shear stiffness of the built-up 
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members with double and single lacing, respectively. Therefore, a design equation for members 
with single lacing systems can be adjusted by choosing  appropriately. The modified parameters 
used in the proposed equations for single (diagonal) lacing system are summarized in Table 6. 
Similar to members with a double lacing system, the minimum shear force-to-ultimate resistance 
is limit to 1%, particularly for members with B < 0.5, and the slenderness of lacing members is 
restricted to lacing ≤ 1.5.  
 
The first proposed equations for built-up members with both double and single lacing systems are 
summarized in Table 5 and Table 6, respectively. Note that the Vu / Nu function in both proposals 
relies on the same equation, making it an adaptive function capable of capturing the shear force 
level in different lacing configuration and various chord section dimensions. In the formulation,  
accounts for variations in lacing arrangement, while V  take into account the influence of the 
section dimensions of the main components. Additionally, the equation is applicable to various 
slenderness levels of lacing members, enabling it to account for bending effects within the lacing 
system. However, the equations are moderately more intricate than those in the current practical 
rules due to the inclusion of the various parameters and the bending curvature factor (n). 
Consequently, a simplified format is proposed in the next section by combining uninfluential 
parameters into the bending curvature. 
 

Table 6: Refined parameters considered in the proposed equation for single (diagonal) lacing system. 
For 0.5B   For 0.5 2.5B   
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3.3 Simplified design equations 
In Section 3.1 and 3.2, equations for estimating the design shear force in laced built-up members 
were proposed. To facilitate manual calculations or integration into spreadsheet programs, 
simplified design equations have been developed; in this context, by elimination of V  and 

multiplication of the lacing arrangement factor  with ae, equations for Vu / Nu in Table 5 and 
Table 6 reduce to: 
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(6)

 
Where 41.8 3.4 lacing    for double (X) lacing system 

59 44.8 lacing    for single (diagonal) lacing system 

 
The only remaining parameter that shall further be modified is the factor n. Based on different 
standardized cross-section shapes catalogues such as the American, Canadian, European steel C-
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shapes, V  was found to vary from 2.6 to 853.8. Yet, V  is more practically reported to range from 
153.8 to 1080 in existing truss bridges. Associated n values range from n = 1.36 to 1.39. In this 
respect, the most appropriate choice of n is set as n = 1.38; this choice can be shown to minimize 
the difference between the first proposed equations in Section 3.1 and 3.2 and the simplified 
equation Eq. (6). The set of simplified equations for shear force in laced built-up members are 
presented in Table 7, which proposes two functions for calculating the factor  for different lacing 
arrangements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: (a) Direct comparison and percent difference between the first proposed equation and the simplified 
equation with n = 1.38 – (b) Comparison of lacing arrangements with simplified equations. 

 
Figure 15a shows a comparison between the first equation proposed in section 3.1 and 3.2 with the 
simplified equation with n = 1.38. To illustrate the maximum variation, the results in Figure 15a 
are plotted using V  = 1080, and lacing = 1.5 and 1.8 for single and double lacing system, 
respectively. This represents the worst-case scenario, with all other cases exhibit better agreement. 
As indicated, the difference between these equations never diverged by more than approximately 
5% for single lacing and 6% for double lacing. A negative value means that the simplified equation 
is less conservative than the first proposed equation, while a positive value shows that it is more 
conservative. Additionally, the comparison between lacing arrangements based on numerical 
results from the parametric studies is plotted in Figure 15b, along with their typical simplified 
curves for lacing = 1.5 and lacing = 1.8 for single and double lacing systems, respectively. The 
figure examines the behavior of single lacing systems and double lacing systems in terms of 
Vu,2nd / Nu as a function of the slenderness parameter B. It observed that single lacing systems 
exhibit a lower shear force-to-ultimate load ratio across all slenderness parameters. Oppositely, 
the double lacing system illustrates significantly greater values and a steeper increase with B, 
indicating a stronger shear capacity. The typical simplified curve for a single lacing system is 
plotted for lacing = 1.5, closely following the trend of finite element results of a single lacing 
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system, while the simplified curve for a double lacing system for lacing = 1.8 also aligns well with 
the finite element results.  
 

Table 7: Summary of simplified equations for shear force in laced built-up members. 
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3.4 Performance of proposal and current design approaches against numerical results 
The prediction of shear forces from the proposed equations is compared with three current design 
specifications: Eurocode (EC 3) and the American Standards (AASHTO) for laced built-up 
columns. Figure 16 (double lacing systems) and Figure 17 (single lacing systems) depict the 
performance of these current design approaches alongside the proposed equations for built-up 
columns with single (diagonal) and double (X) lacing systems. The ratio Vu,FE / Vu,Ref. represents 
the shear force predicted by the various design rules compared to the FE results obtained from the 
previously-described parametric studies. A ratio Vu,FE / Vu,Ref. greater than unity indicates that the 
design rules are on the unsafe side, whereas a ratio less than unity indicates that the design rules 
are on the safe side.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Design rules vs. numerical results for double lacing systems. 

Figure 16a and Figure 17a illustrate the evolution of the Vu,FE / Vu,Ref. ratio with member 
slenderness (B and L/r), while the associated frequencies are plotted in Figure 16b and Figure 
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17b. Additionally, the statistical data, including mean value, Coefficient of Variation (C.o.V.), 
maximum ratio, and minimum ratio, are reported in Table 8. The table also shows the percentage 
of overestimation on the unsafe side for values exceeding 5%, 10%, and 30%. For laced built-up 
members with double lacing systems, observations can be made from Figure 17 and Table 8. 
Overall, the results indicate that the proposed equations provide relatively accurate predictions 
compared to all three design codes, with a mean Vu,FE / Vu,Proposal. value of 0.90 and a C.o.V. of 
0.12. The maximum discrepancy compared to the numerical results remains 8% on the unsafe side. 
Eurocode 3 provides less accurate results compared to the proposed equations, with a mean value 
of FE results to Eurocode 3 of 0.82 with the C.o.V. of 0.30. The results obtained from the standard 
are 8% more conservative than those of the proposed design equations. However, EC 3 exhibits 
quite worse results with respect to safety, reaching approximately 29% on the unsafe side, 
particularly for members with λB < 0.75. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Design rules vs. numerical results for single lacing systems. 
 
It is revealed that for members with L/r  120, the results from AASHTO Provisions are overly 
conservative, with a mean value of Vu,FE / Vu,AASHTO ratio 0.72 and a C.o.V. of 0.48. A large value 
of C.o.V. indicates significant variability in results predicted by the AASHTO Provisions and 
needs to be refined of the provisions to improve the level of consistency, while the mean ratio of 
0.72 reflects large scatter and lack of precision, particularly for members with L/r < 30 or B < 0.5. 
Additionally, AASHTO Provisions also show unsafe predictions for members with L/r ranges 
between 90 and 120, with errors reaching up to 55% on the unconservative side, suggesting that 
its design recommendations might not be applicable for member slenderness within these ranges. 
Furthermore, the results turn out to be more severe for members with L/r ranges from 120 to 200 
which the mean value of Vu,FE / Vu,AASHTO ratio reaches to 1.49 with a C.o.V. of 0.29 and 2.28 with 
a C.o.V. of 0.23 for built-up members with single and double lacing system, respectively (Table 8). 
The results indicate very unsatisfactory in terms of safety and cannot be reliable for members 
where the L/r value stands within this range. It could be observed that the shear force for laced 
built-up members, as suggested by the American Standards, is inconsistency. This reveals that 
potential improvement is required to enhance economic efficiency by exploring more flexible 
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options for various lacing arrangements, while also addressing safety concerns. Overall, the results 
for laced built-up members with double lacing systems demonstrate Eurocode 3 provides more 
accurate predictions than the American Standards, where most results are on the safe side. 
Additionally, the prediction obtained from Eurocode 3 turns out to be overly conservative for 
members where B > 1.75, around 70% safer than the results obtained from FE models and being 
more than 20% more conservative than the proposed equation. However, the code also exhibits 
unsafe predictions for members where B < 0.5; more than 25% are on the unsafe side, indicating 
that their equations are less applicable for all ranges of B and lacing slenderness. In contrast, the 
proposed equation shows better accuracy, consistent across various lacing slenderness and member 
lengths. 
 

Table 8: Statistical results of Vu,FE / Vu,Ref ratios for all members. 
Lacing 

arrangements 
References Mean C.o.V. Max. Min. >1.05 

(%) 
>1.1 
(%) 

>1.3 
(%) 

Double lacings 

EC 3 
AASHTO (L/r ≤ 120) 
AASHTO (L/r > 120) 
Proposal (simplified) 

0.82 
0.72 
2.28 
0.90 

0.30 
0.48 
0.23 
0.12 

1.29 
1.55 
3.53 
1.08 

0.30 
0.14 
1.03 
0.51 

15.6 
7.9 

27.4 
2.4 

10.3 
6.9 

27.4 
0.0 

0.0 
3.4 

27.1 
0.0 

Single lacings 

EC 3 
AASHTO (L/r ≤ 120) 
AASHTO (L/r > 120) 
Proposal (simplified) 

0.69 
0.46 
1.49 
0.82 

0.18 
0.50 
0.29 
0.15 

0.92 
1.05 
2.56 
1.14 

0.42 
0.14 
0.54 
0.55 

0.0 
0.0 

23.3 
1.1 

0.0 
0.0 

22.5 
0.4 

0.0 
0.0 

15.7 
0.0 

 
The results for built-up members with single lacing system are illustrated in Figure 17 and Table 8. 
In general, results of all design rules scatter on the safe side. The American Standards, specifically 
“AASHTO (L/r  120)” gives the most conservative predictions with greatest dispersion, as 
evidenced by a mean value of 0.46 and a C.o.V. of 0.50. This significant variability highlights the 
need for enhancing the design rule, particularly for members with L/r < 30. The primary 
justification for this caution is that the American Standards assuming a constant ratio of shear 
force-to-ultimate load (i.e., Vu / Nu = 2%) across all member lengths, particularly for L/r ratios less 
than 120, which leads to more conservative predictions for shorter members. It also observed that 
the shear force estimation derived from Eurocode 3 shows greater accuracy and less scattering 
compared to the American Standards, with approximately 20% better accuracy. A detailed analysis 
reveals that the main source of the observed differences lies in the shear stiffness factor (Sv), which 
is considered in Eurocode 3 for various lacing arrangements, whereas this parameter is overlooked 
in the design equations of the American and Australian standards. The proposed equations, on the 
other hand, achieve significantly higher accuracy and greater consistency. It is evident from Figure 
16 and Figure 17 that the proposed equations for single lacing systems exhibit greater variation 
compared to those for double lacing systems. With a C.o.V. of 0.15 and a mean value of 0.82, 
which is more than 10% better than the present design rules, the suggested equations are still much 
more accurate than the other two design rules. Nevertheless, the mean value of Vu, FE / Vu,Ref. is still 
the best among the current design techniques. Therefore, the suggested equations can be viewed 
as an adequate equation in terms of consistency, precision, and safety due to the different 
member/lacing geometries, lacing configurations taken into consideration, and the potential 
buckling within of lacing members. Considering the diverse section dimensions, varying 
slenderness of lacing members, and different chord arrangements, the proposed equations for 
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predicting the acting shear force in laced built-up members, whether with double (X) or single 
(diagonal) lacings, prove to be an excellent alternative. They provide more accurate, consistent, 
and straightforward estimates compared to current design practices. 
 
4. Conclusions 
This paper investigated the buckling behavior of lacing systems in laced built-up members 
composed of two C-shapes under pure axial compression. To determine the second-order shear 
forces acting on laced built-up members resulting from imperfect members under compression, 
various parameters were examined using validated finite element models. Such the FE models 
were validated against 23 test data sets which the members comprised of various chords and lacing 
configurations, obtained from different laboratories. These parameters included different lacing 
arrangements, slenderness of lacing members, chord arrangements, geometric imperfections, and 
member lengths. Based on extensive FE numerical results, new equations were proposed for the 
shear force-to-ultimate load ratio (Vu / Nu) associated with member length to predict the second-
order shear force acting in laced built-up members. The equations are applicable to range 
slenderness levels of lacing members, allowing them to account for instability effect of diagonal 
in the lacing system. These equations were then slightly simplified into a more practical format, 
making them useful for design practice. The performance of the proposed equations was compared 
with two existing design standards and assessed against the reference numerical results. It was 
found that Eurocode 3 tends to provide inconsistent and conservative predictions, while the 
American Standards is often excessively conservative and sometimes unduly scattered on the 
unsafe side, particularly for built-up members with double lacing systems when L/r > 90. In 
comparison, the proposed equations provide greater adaptability for various lacing configuration, 
better accuracy, higher consistency, and enhanced simplicity compared to existing design rules.  
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