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Abstract 

Tapered steel tubes with regular convex polygonal section are widely used in the construction 

sector, mostly as monopoles, to support lighting and telecommunication equipment, as well as 

overhead power lines. Such tubes are thin-walled and therefore susceptible to cross-section 

deformation. As a result, their structural analysis generally requires refined shell finite element 

models. This paper presents an alternative, namely a new Generalized Beam Theory (GBT) 

formulation for such tubes, able to carry out, very efficiently, first order and buckling (linear 

stability) analyses. The formulation is based on a “prismatic parent element” that is mapped to the 

true tapered configuration and thus can employ the cross-section deformation modes of the 

prismatic case. Even though the resulting equations are significantly involved due to taper effects, 

it is possible to enforce the standard GBT kinematic assumptions exactly, an aspect that is essential 

for the overall performance of the formulation. A relatively wide range of numerical examples is 

presented, to show that the finite element implementation of the proposed GBT can predict the 

linear and buckling behavior of tapered tubes with remarkable accuracy and computational savings 

with respect to shell finite element models, even for high taper angles.  

 

 

1. Introduction 

Regular (equiangular and equilateral) convex polygonal section (RCPS) tubes, commonly used in 

the construction industry as monopoles, exhibit very peculiar structural features owing to the cross-

section rotational symmetry, of order equal to the number of sides, 𝑛. In particular, duplicate cross-

section geometric/stiffness properties for global, distortional and local deformation modes are 

obtained. These mode pairs constitute a 2D space and any rotation in that space leads to the exact 

same geometric/stiffness property, a generalization of the fact that all central axes are principal 

bending axes. This feature leads to a peculiar and rich structural behavior, since the tube stiffness 

is invariant upon a rotation of the loads according to the cross-section symmetry, and 

buckling/vibration eigenvalues with a geometric multiplicity equal to 2 are obtained. 

 

Generalized Beam Theory (GBT) is a thin-walled beam theory with an enriched kinematic 

description to allow capturing cross-section deformation. This theory, proposed by Schardt (1989) 

— see the bibliography listed at https://vtb.info/  and https://sites.fct.unl.pt/gbt/ —, is known for 
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its ability to obtain accurate solutions with a very low computational cost, while providing a unique 

insight due to the fact that the solution is expressed in terms of structurally meaningful so-called 

“cross-section deformation modes”. The specialization of GBT to prismatic RCPS tubes, which 

duly accounts for the cross-section rotation symmetry, and its application in linear and eigenvalue 

(buckling and vibration) problems was developed by Gonçalves & Camotim (2013a, 2013b, 

2013c, 2014). Later, an enhanced geometrically non-linear GBT (Martins et al. 2018) was used to 

assess the post-buckling behavior of RCPS tubes (Martins et al. 2019a, 2019b, 2021). 

 

This paper presents the extension of GBT to tapered RCPS tubes, a noteworthy development 

considering that the only GBT formulations available for genuinely tapered elements are for 

conical shells (Nedelcu 2011, Mureşan et al. 2019, Gonçalves & Nedelcu 2024), in which case the 

geometry is still somewhat simple, the strain-displacement relations are available from thin shell 

theory and the GBT deformation modes do not require the cross-section analysis procedure. The 

proposed approach and its finite element implementation are presented in Section 3, following a 

brief review of the kinematic description for the prismatic case in Section 2. A relatively wide 

range of first order and buckling (linear stability) numerical examples is presented and discussed 

in Section 4. For comparison and validation purposes, refined shell finite element results are 

provided. The paper closes in Section 5 with the main conclusions of the work carried out. 

 

The GBT vector-matrix notation introduced previously (Gonçalves & Camotim, 2011) is followed. 

A comma indicates a derivative, but the prime denotes a derivative with respect to 𝑥. Matrices and 

vectors are represented by boldface letters. 

 

2. The GBT kinematic description for prismatic RCPS tubes  

First, the GBT kinematic description for prismatic RCPS tubes is briefly reviewed. The notation 

is as shown in Fig. 1(a). Using Kirchhoff’s thin plate assumption, the displacement vector for each 

wall, along the local axes (𝑥, 𝑦, 𝑧) is written as 

 

 𝑼 = [

𝑈𝑥
𝑈𝑦
𝑈𝑧

] = [

𝑢(𝑥, 𝑦) − 𝑧𝑤′(𝑥, 𝑦)

𝑣(𝑥, 𝑦) − 𝑧𝑤,𝑦(𝑥, 𝑦)

𝑤(𝑥, 𝑦)

],            {

𝑢 = ∑ 𝑢𝑘(𝑦)𝜙𝑘
′ (𝑥)𝐷

𝑘=1 = 𝒖
T
(𝑦)𝝓′(𝑥),

𝑣 = ∑ 𝑣𝑘(𝑦)𝜙𝑘(𝑥)
𝐷
𝑘=1 = 𝒗

T
(𝑦)𝝓(𝑥),

𝑤 = ∑ 𝑤𝑘(𝑦)𝜙𝑘(𝑥)
𝐷
𝑘=1 = 𝒘

T
(𝑦)𝝓(𝑥),

 (1) 

 

where (𝑢, 𝑣, 𝑤) are the mid-surface displacement components along the local axes, which are 

expressed in terms of 𝑘 = 1,… , 𝐷  deformation modes, with displacement components 

(𝑢𝑘(𝑦), 𝑣𝑘(𝑦), 𝑤𝑘(𝑦) ) and amplitude functions 𝜙𝑘(𝑥) . Furthermore, the boldface letters are 

column vectors that collect the matching letter 𝑘  components. The deformation modes are 

calculated through the so-called “cross-section analysis”, which for arbitrary flat-walled cross-

sections can be performed using the GBTUL software (Bebiano et al. 2015, 2018). For RCPS, due 

to the cross-section rotation symmetry, the procedure can be significantly optimized (Gonçalves 

& Camotim 2013a). The cross-section analysis starts with a cross-section discretization into 𝑛 

natural nodes (fold-lines) and 𝑚 intermediate nodes in each wall, whose displacement DOFs (not 

rotations) are used to generate an initial basis, of dimension 3𝑛(𝑚 + 1). The final basis, i.e. the 

deformation mode set, is obtained after a proper orthogonalization procedure. Fig. 1(b) shows an 

example obtained with GBTUL. Besides the bending modes 2-3, the distortional modes 5-6 also 
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Figure 1: (a) Geometry, axes and displacement components for a prismatic tube. (b) GBT discretization and 

deformation modes. (c) Geometry, axes and displacement components for a tapered tube. (d) Additional warping 

modes. 
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constitute a pair (same cross-section geometric/stiffness properties). Some local modes also 

constitute pairs, but the GBTUL procedure does not allow their clear separation. It is worth 

remarking that the conventional mode subset generally suffices to obtain accurate solutions. 

 

3. GBT formulation for tapered RCPS tubes  

 

3.1 Kinematic description and strains 

For tapered RPCS tubes, see Fig. 1(c), the variable apothem is given by 𝑎(𝑥) = 𝑎0 + 𝑥 sin 𝜃, 

where 𝜃  is the taper angle, and a “parent” cross-section is used, with the mid-line natural 

coordinate 𝜉 = 2𝑦/𝑏 ∈ [−1,1]  and corresponding apothem 𝑎𝜉 = cot(𝜋/𝑛) . In this approach, 

using the chain rule, for 𝑓 = 𝑓(𝜉), the derivatives read 

 

 

{
 
 
 

 
 
 𝑓

′ = 𝐽𝑥𝑓,𝜉 ,       𝐽𝑥 = −
𝜉 sin𝜃

𝑎
,

𝑓′′ = 𝐽𝑥𝑥𝑓,𝜉 + 𝐽𝑥
2𝑓,𝜉𝜉 , 𝐽𝑥𝑥 =

2𝜉 sin2 𝜃

𝑎2
,

𝑓,𝑦 = 𝐽𝑦𝑓,𝜉 , 𝐽𝑦 =
2

𝑏
,

𝑓,𝑦𝑦 = 𝐽𝑦𝑦𝑓,𝜉 + 𝐽𝑦
2𝑓,𝜉𝜉 , 𝐽𝑦𝑦 = 0,

𝑓,𝑦
′ = 𝐽𝑥𝑦𝑓,𝜉 + 𝐽𝑥𝐽𝑦𝑓,𝜉𝜉 ,   𝐽𝑥𝑦 = −

𝑎𝜉 sin𝜃

𝑎2
.

 (2) 

 

The deformation modes of the prismatic case can be used provided that the displacements are 

defined along axes (𝑋, 𝑦, 𝑎). The mid-surface displacements are in the tapered case given by 

 

 {

𝑈𝑋 = ∑ (𝑢𝑘(𝜉)𝜑𝑘(𝑥) + 𝑢̃𝑘(𝜉)𝜙𝑘(𝑥))
𝐷
𝑘=1 = 𝒖

T
𝝋+ 𝒖̃T𝝓,

𝑈𝑦 = ∑ 𝑣𝑘(𝜉)𝜙𝑘(𝑥)
𝐷
𝑘=1 = 𝒗

T
𝝓,

𝑈𝑎 = ∑ 𝑤𝑘(𝜉)𝜙𝑘(𝑥)
𝐷
𝑘=1 = 𝒘

T
𝝓,

 (3) 

 

which is similar to Eq. 1, although a new warping component 𝑢̃𝑘 and amplitude function 𝜑𝑘 were 

introduced, to allow enforcing Vlasov’s assumption (null membrane shear strains). It is shown in 

Gonçalves (2024) that these new terms are not independent, being given by 

 

 𝜑𝑘 =
𝜙𝑘
′

𝐽𝑦 cos𝜃
,      𝑢̃𝑘 = − tan𝜃 (𝑤𝑘 +

𝑢𝑘(0)

𝑎𝜉
). (4) 

 

Since 𝜑𝑘 depends on 𝐽𝑦, which varies along the length, the warping-only deformation modes are 

moved from vector 𝒖  to 𝒖̃ , since the latter is multiplied by functions 𝜙𝑘  in Eq. (3). These 

additional or corrective warping deformation modes are shown in Fig. 1(d). 

 

For convenience, the following vectors and matrices are defined 
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 𝒇 =

[
 
 
 
 
 
𝝋
𝝓

𝝋′

𝝓′

𝝋′′

𝝓′′]
 
 
 
 
 

= 𝓐𝚽, 𝚽 =

[
 
 
 
𝝓

𝝓′

𝝓′′

𝝓′′′]
 
 
 
,   𝓐 =

[
 
 
 
 
 
 
 𝟎

𝟏

𝐽𝑦 cos𝜃
𝟎 𝟎

𝟏 𝟎 𝟎 𝟎

𝟎
tan𝜃 𝟏

𝑎𝜉

𝟏

𝐽𝑦 cos𝜃
𝟎

𝟎 𝟏 𝟎 𝟎

𝟎 𝟎
𝟐 tan𝜃 𝟏

𝑎𝜉

𝟏

𝐽𝑦 cos𝜃

𝟎 𝟎 𝟏 𝟎 ]
 
 
 
 
 
 
 

 . (5) 

 

This allows writing the mid-surface displacements as 

 

 𝑼̅ = [

𝑈𝑋
𝑈𝑦
𝑈𝑎

] = 𝚵𝑼̅𝒇,   𝚵𝑼̅ = [
𝒖
T

𝒖̃T 𝟎 ⋯ 𝟎

𝟎 𝒗
T

𝟎 ⋯ 𝟎

𝟎 𝒘
T

𝟎 ⋯ 𝟎

]. (6) 

  

The strains require expressing the mid-surface displacements in local axes (𝑥, 𝑦, 𝑧), leading to 

 

 𝑢 = 𝑈𝑋 cos 𝜃 + 𝑈𝑎 sin 𝜃 ,       𝑣 = 𝑈𝑦,        𝑤 = −𝑈𝑋 sin 𝜃 + 𝑈𝑎 cos 𝜃. (7) 

 

Then, using Kirchhoff’s thin plate assumption, the linear strains are given by 

 

 𝜺 = [

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
] = (𝚵𝜺

𝑀 + 𝑧𝚵𝜺
𝐵)𝒇,   𝚵𝜺

𝑀 = [

𝐽𝑥 cos 𝜃 𝒖̅,𝜉
T 𝐽𝑥𝝕,𝜉

T cos 𝜃 𝒖̅T 𝝕T 𝟎 𝟎

𝟎 𝐽𝑦𝒗̅,𝜉
T 𝟎 𝟎 𝟎 𝟎

𝐽𝑦 cos𝜃 𝒖̅,𝜉
T 𝐽𝑦𝝕,𝜉

T + 𝐽𝑥𝒗̅,𝜉
T 𝟎 𝒗̅T 𝟎 𝟎

], (8) 

 𝚵𝜺
𝐵 = [

(𝐽𝑥𝑥𝒖̅,𝜉
T + 𝐽𝑥

2𝒖̅,𝜉𝜉
T ) sin 𝜃 (𝐽𝑥𝑥𝝎,𝜉

T + 𝐽𝑥
2𝝎,𝜉𝜉

T ) 2𝐽𝑥 sin 𝜃 𝒖̅,𝜉
T 2𝐽𝑥𝝎,𝜉

T sin 𝜃 𝒖̅T 𝝎T

𝐽𝑦
2𝒖̅,𝜉𝜉

T sin 𝜃 𝐽𝑦
2𝝎,𝜉𝜉

T 𝟎 𝟎 𝟎 𝟎

2(𝐽𝑥𝑦𝒖̅,𝜉
T + 𝐽𝑦𝐽𝑥𝒖̅,𝜉𝜉

T ) sin 𝜃 2(𝐽𝑥𝑦𝝎,𝜉
T + 𝐽𝑦𝐽𝑥𝝎,𝜉𝜉

T ) 2𝐽𝑦 sin 𝜃 𝒖̅,𝜉
T 2𝐽𝑦𝝎,𝜉

T 𝟎 𝟎

], (9) 

 

with 𝜛𝑘 = cos 𝜃 𝑢̃𝑘 + sin 𝜃 𝑤̅𝑘 and 𝜔𝑘 = sin 𝜃 𝑢̃𝑘 − cos 𝜃 𝑤̅𝑘. 

 

Since a linearized stability analysis is sought, rather than a full geometrically non-linear analysis, 

only the linearization (∆) of the virtual variation (𝛿) of the Green-Lagrange strains is required. Due 

to the thin-walled nature of the beam, only the non-linear membrane terms are retained, reading 

 

 ∆𝛿𝐸𝑖𝑗
𝑁𝐿𝑀 = 𝛿𝒇T𝚵

𝐷2𝐸𝑖𝑗

𝑁𝐿𝑀 ∆𝒇,    𝚵
𝐷2𝐸𝑖𝑗

𝑁𝐿𝑀 = 𝑎𝑖𝑗𝑨 + 𝑏𝑖𝑗𝑩 + 𝑐𝑖𝑗𝑪, (10) 

 

where matrices 𝑨-𝑪 are symmetric and composed of 6 × 6 blocks (∙)(𝑖,𝑗) of dimension 𝐷 × 𝐷. The non-

null blocks of the upper triangle of these matrices read  
 

 {

𝑨(1,1) = 𝒖̅,𝜉𝒖̅,𝜉
T , 𝑨(1,2) = 𝒖̅,𝜉𝒖̃,𝜉

T , 𝑨(2,2) = 𝒖̃,𝜉𝒖̃,𝜉
T + 𝒗̅,𝜉𝒗̅,𝜉

T + 𝒘̅,𝜉𝒘̅,𝜉
T ,

𝑩(1,3) = 𝒖̅,𝜉𝒖̅
T, 𝑩(2,3) = 𝒖̃,𝜉𝒖̅

T, 𝑩(2,4) = 𝒖̃,𝜉𝒖̃
T + 𝒗̅,𝜉𝒗̅

T + 𝒘̅,𝜉𝒘̅
T, 𝑩(1,4) =

𝑪(3,3) = 𝒖̅𝒖̅T, 𝑪(3,4) = 𝒖̅𝒖̃T, 𝑪(4,4) = 𝒖̃𝒖̃T + 𝒗̅𝒗̅T + 𝒘̅𝒘̅T,

𝒖̅,𝜉𝒖̃
T, (11) 
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and the coefficients 𝑎𝑖𝑗-𝑐𝑖𝑗 are provided in Table 1. It should be noted that the equations for the prismatic 

case are recovered exactly with the present ones with 𝐽𝑥 = 𝜃 = 𝑢̃,𝑘 = 0 (Gonçalves & Camotim 2012). 

 
Table 1: Coefficients 𝑎𝑖𝑗-𝑐𝑖𝑗  

Component 𝐸𝑥𝑥  𝐸𝑦𝑦 2𝐸𝑥𝑦  

𝑎𝑖𝑗  𝐽𝑥
2 𝐽𝑥

2 2𝐽𝑥𝐽𝑦 

𝑏𝑖𝑗  𝐽𝑥 0  𝐽𝑦 

𝑐𝑖𝑗  1 0  0 

 

3.2 Stress and equilibrium 

A plane stress state is assumed, with the second Piola-Kirchhoff stresses 𝑺𝑇 = [𝑆𝑥𝑥  𝑆𝑦𝑦  𝑆𝑥𝑦] 

decomposed into membrane and bending terms, 𝑺 = 𝑺𝑀 + 𝑺𝐵. A St. Venant-Kirchhoff material is 

assumed, defined by Young’s modulus 𝐸, Poisson’s ratio 𝜈 and the shear modulus 𝐺. The stresses 

are obtained from the strains using 𝑺𝑀 = 𝑪𝑀𝑬𝑀 and 𝑺𝐵 = 𝑪𝐵𝑬𝐵, with 

 

 𝑪𝐵 = 𝑪𝑀 = [

𝐸

1−ν2
ν𝐸

1−ν2
0

ν𝐸

1−ν2
𝐸

1−ν2
0

0 0 𝐺

]   or   𝑪𝑀 = [
𝐸 0 0
0 0 0
0 0 𝐺

], (12) 

 

where the latter case applies if 𝐸𝑦𝑦
𝑀 = 0 is assumed, to prevent overly stiff solutions. 

 

The equilibrium equations are obtained using virtual work. For the linear case, one writes 

 

 ∫ 𝛿𝒇𝑇[−∫ (𝚵𝜺
𝑀)T𝑪𝑀𝚵𝜺

𝑀 𝑡

𝐽𝑦
d𝜉

𝑆𝜉⏟            
𝓜𝑀

− ∫
𝑡3

12𝐽𝑦
(𝚵𝜺
𝐵)T𝑪𝐵𝚵𝜺

𝐵d𝜉
𝑆𝜉⏟            

𝓜𝐵

+ 𝜆∫ 𝚵𝑼̅
T𝒒̅

1

𝐽𝑦
d𝜉

𝑆𝜉⏟        
𝓕

] d𝑥
𝐿

= 0, (13) 

 

where 𝑡 is the tube thickness, 𝑆𝜉 is the mid-line of the parent cross-section, 𝒒̅ are surface loads 

acting along the (𝑋, 𝑦, 𝑎) axes and 𝜆 is the load parameter. A linear stability analysis requires a 

linear step to evaluate the pre-buckling membrane stresses 𝑺𝑀 , and a second step for the 

calculation of the non-trivial solutions of the buckling eigenvalue problem 

 

 ∫ 𝛿𝒇𝑇[𝓜𝑀 +𝓜𝐵 + 𝜆𝓖(𝑺)]Δ𝒇 d𝑥
𝐿

= 0, (14) 

 

with the geometric matrix 

 

 𝓖(𝑺) =
𝑡

𝐽𝑦
∫ (𝑆𝑥𝑥

𝑀 𝚵𝐷2𝐸𝑥𝑥
𝑁𝐿𝑀 + 𝑆𝑦𝑦

𝑀 𝚵𝐷2𝐸𝑦𝑦
𝑁𝐿𝑀 + 𝑆𝑥𝑦

𝑀 𝚵𝐷22𝐸𝑥𝑦
𝑁𝐿𝑀 ) d𝜉

𝑆𝜉
. (15) 

 

3.3 The displacement-based finite element 

A standard GBT displacement-based element is obtained introducing the interpolation 𝝓 = 𝑵𝒅𝑒, 

where matrix 𝑵 collects the interpolation functions — Hermite cubic functions — and vector 𝒅𝑒 

collects their nodal values. This leads to 
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 𝚽 = 𝓝𝒅𝑒 ,    𝓝 = [

𝑵
𝑵′

𝑵′′

𝑵′′′

]. (16) 

 

The element linear and geometric stiffness matrices, and the external load vector, read 

 

 𝑲𝑒 = ∫ (𝓐𝓝)T(𝓜𝑀 +𝓜𝐵)𝓐𝓝 d𝑥
𝐿𝑒

, (17) 

 𝑮𝑒 = ∫ (𝓐𝓝)T𝓖𝓐𝓝 d𝑥
𝐿𝑒

, (18) 

 𝑭𝑒 = 𝜆∫ (𝓐𝓝)T𝓕 d𝑥
𝐿𝑒

, (19) 

 

The integrations are carried out with 3 Gauss points along 𝑥 and 3(𝑚 + 1) Gauss points along 𝜉 

in each wall. The finite element analysis was implemented in MATLAB (The MathWorks, 2024).  

 

4. Numerical examples 

In the examples presented next, consistent units are used, with 𝐸 = 210000 and 𝜈 = 0.3. The 

initial apothem is fixed at 𝑎0 = 2, while the remaining parameters are varied. For comparison and 

validation purposes, solutions obtained with refined meshes of MITC4 shell elements in ADINA 

(Bathe, 2019) are reported. The percentage differences provided are calculated with respect to the 

shell solution. The GBT results correspond to uniform and converged meshes, in the sense that 

several analyses are sequentially carried out, doubling the number of elements at each step or the 

number of intermediate nodes, whichever is most appropriate, and considering the mesh converged 

when the next step changes the result by less than 0.1%. The GBT and shell discretizations are 

provided in each figure. The number of DOFs equals 2𝐷(𝑁𝐹𝐸 + 1) for the GBT models and 

approximately 5𝑁𝐹𝐸 for the shell models. 

 

4.1 First-order analysis 

A set of linear problems is first presented. In all these problems the 𝑋 = 0 end section is fixed. It 

is recalled that the deformation modes for 𝑛 = 6 are shown in Fig. 1. In the GBT solution, “RB” 

stands for the rigid-body modes, “D” for the distortional modes and “LP” for the local-plate modes. 

 

Figs. 2-5 display the results for the linear problems, namely the GBT and shell deformed 

configurations, and the GBT mode amplitude diagrams. Fig. 2 concerns a thick tube undergoing 

global deformation (axial-bending-torsion), while the remaining results mostly concern 

distortional deformation, except the last case in Fig. 5, which involves local-plate deformation. 

Figs. 3-4 show results for long and short tubes, characterized by the slenderness parameter 𝜆 =
𝐿𝑋/2𝑎(𝐿/2) — 𝐿𝑋 is the length along 𝑋, thus 𝐿𝑋 = 𝐿/ cos 𝜃, and 𝑎(𝐿/2) is the average apothem 

—, and subjected to a uniformly distributed load applied perpendicularly to the fold, hence having 

a component along 𝑌 and, for the tapered case, also along 𝑋. In Fig. 5 concentrated loads are 

applied instead. In all cases an excellent GBT-shell match is found even for high taper angles. It 

is quite remarkable that in general just a few deformation modes participate in the solution. 

Nevertheless, for the most complex cases, which involve a high taper angle, it is necessary to use 

more GBT finite elements and include all deformation modes in the analysis. 
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Figure 2: Linear analysis of a long and thick tube subjected to global deformation. 

 

4.2 Buckling analysis 

This section concerns the calculation of bifurcation loads and buckling modes. For the prismatic 

case the adopted length is 𝐿𝑋 = 20 , while the remaining parameters were chosen to allow 

capturing the relevant phenomena — global, distortional and local buckling —, using the formulas 

and graphs provided in Gonçalves & Camotim (2013b, 2013c). For the tapered case the geometry 

was adjusted to allow capturing the same phenomena, while keeping the 𝑎0  value and the 

minimum apothem always above 0.25. 

 

The shell results are obtained for converged meshes: a maximum element length of 0.2 is first 

considered, and then sequentially halved until the change in the critical load is below 0.1 %. The 

end sections have diaphragms that restrain the wall displacements, not the rotations except where 

mentioned, and are simply supported. In the shell models this requires adding rigid links (for 

displacement DOFs and where appropriate rotation DOFs) between the cross-section nodes and 

the centroid. In the GBT models this is achieved through (i) 𝜙𝑘 = 0 for all modes except the shear 

counterparts to bending and, at the end where the load is applied, also except for the axial extension 

and torsion modes, and (ii) 𝜙𝑘
′ = 0  for the distortional modes, otherwise differential warping at 

the end sections would be allowed. 

 

The results are reported in Figs. 6-8, for tubes under axial compression, and Figs. 9-10, for tubes 

under torsion. Each figure concerns a particular buckling type and shows the critical bifurcation 

loads obtained with both models (GBT and shell), the corresponding buckling modes and the GBT 

mode amplitude graphs. It is recalled that, when two modes are obtained, any combination of them 

also constitutes a valid buckling mode. In these situations only one mode amplitude graph is 

provided, as this suffices to grasp the buckling mode nature. It is also recalled that the deformation 

modes for 𝑛 = 6, 𝑚 = 2 are shown in Fig. 1; for other cases the relevant deformation modes are 

displayed in the mode amplitude graphs.  

 

In all cases GBT leads to very accurate results with a relatively small number of finite elements, 

and only a few deformation modes participate in the buckling mode. It is worth remarking that the 

GBT analyses are quite fast, even though the GBT finite element procedure was implemented in 

MATLAB. For instance, in the 𝜃 = −20o case in Fig. 10, the runtime of the shell and GBT models 

(for converged meshes) is 125 and 3.5 seconds, respectively. In the next paragraphs, attention is 

called to specific aspects of these results. 
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Figure 3: Linear analysis of long tubes subjected to a uniformly distributed lateral load. 
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Figure 4: Linear analysis of short tubes subjected to a uniformly distributed lateral load. 
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Figure 5: Linear analysis of short tubes subjected to concentrated loads. 

 

For flexural (global) buckling under compression (Fig. 6), two buckling modes with the same 

critical load are obtained, since all central axes are principal (only one buckling mode is shown). 

For the prismatic case the Euler buckling load is approximately 30 % above the shell and GBT 

bifurcation loads reported, since the tube is relatively short and thus shear deformation plays a 

non-negligible role. This is visible in the GBT mode amplitude graph, in the presence of modes 

20+21, which account for about 25 % of the difference with respect to the Euler load, while the 

remaining 5 % stem from the non-linear strain term due to warping, see Gonçalves et al. (2010). 
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Figure 6: Flexural buckling of tubes under compression. 

 

For the tapered case an asymmetric buckle leaning towards the narrow end is observed, the slender 

part of the tube. The same deformation modes are triggered, but the shear modes influence the 

critical load by only 7 %. 

 

For local buckling under compression, see Fig. 7, the GBT solution features exclusively the local-

plate deformation mode 8. For the prismatic case the critical load is close to the analytical solution 

for infinitely long simply supported plates 𝜎𝑐𝑟 = 4𝜋
2𝐸(𝑡/𝑏)2/12(1 − 𝜈2) , leading to 𝑁𝑐𝑟 =

1972. For the tapered case local buckling occurs at the wider end, since the critical load is inversely 

proportional to 𝑏. This is clearly visible in the buckling modes and mode amplitude graphs. Using 

the solution for simply supported plates leads to errors that increase with the taper angle (7 % for 

𝜃 = −5o , 17 % for 𝜃 = −20o ). For 𝜃 = −45o  it was necessary to increase the number of 

intermediate nodes to 3, otherwise the differences with respect to the shell model reach 10 %.  

 

For distortional buckling under compression, Fig. 8, for 𝑛 = 12 the end diaphragms also restrain 

the wall rotations, to avoid local buckling. Two critical buckling modes are obtained, 

corresponding to the deformation mode pair 7-8, together with its shear pair counterpart 30-31 and 

the local-plate pair 19-20. As the taper angle increases, the influence of the shear and local-plate 

modes increases. Moreover, the number of shell elements required to obtain converged results 

increases significantly, while the GBT solution requires much less elements. Interestingly, in the 

tapered case, the distortional buckles are more pronounced in the narrow zone. 
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Figure 7: Local buckling of tubes under compression. 
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Figure 8: Distortional buckling of tubes under compression. 

 

For distortional buckling under torsion, Fig. 9, very refined shell models are required, while only 

8 GBT elements suffice and very few deformation modes are triggered. A mixed distortional-local 

buckling mode is obtained, essentially involving deformation modes 7 (distortional) and 8 (local), 

with small participations of modes 19 (local) and 24 (the shear counterpart to mode 7). Note also 

that, for the tapered case, the buckles move towards the narrow zone.  
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Figure 9: Distortional buckling of tubes under torsion. 

 

Finally, Fig. 10 shows results for local buckling under torsion, in which case two critical buckling 

modes are always obtained. The GBT solution only involves the local-plate modes. Very refined 

shell meshes are required for the two most tapered cases, while only 8 GBT elements suffice. 

However, in both cases the GBT solution requires all deformation modes (not just the conventional 

ones) and three intermediate nodes, otherwise the critical load falls 11-12 % above the shell value. 

 

5. Conclusions 

This paper presented and validated a GBT extension for tapered RCPS tubes, which makes it 

possible to calculate global-distortional-local bifurcation loads and buckling modes according to 

the linear stability analysis concept. The proposed formulation assumes a genuinely tapered 

member and includes all non-linear membrane terms of the Green-Lagrange strains, without 

further simplifying assumptions. Since the deformation mode families of the prismatic GBT are 

used, the formulation inherits the unique GBT modal decomposition features, which allow an in-

depth characterization of the nature of the buckling modes. Although the formulation is quite 

involved, due to the tapered geometry, all expressions required to implement a displacement-based 

finite element were provided in a simple vector-matrix format. The numerical examples presented 

show that the proposed approach leads to very accurate first-order and buckling results, even for 

tubes having taper angles up to 45º, with a very small computational cost. 
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Figure 10: Local buckling of tubes under torsion. 
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