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Abstract 

This paper accompanies the 2025 Beedle Lecture and outlines work conducted over the past 30+ 

years that the author had the privilege to work on along with a group of outstanding graduate 

students, post-doctoral researchers, and colleagues.  The studies focus on a variety of problems 

related to buckling and bracing of members and structural systems.  The topic of this paper is 

primarily directed specifically on lateral-torsional buckling investigations along with torsional 

beam bracing.  The understanding of the fundamental buckling and bracing behavior have 

improved dramatically since the early 1990’s and this paper summarizes some of the advances.  

The studies on lateral torsional buckling are focused on the effects of moment gradient, solutions 

for non-prismatic members, as well as system-buckling of girder systems.  The torsional beam 

bracing studies included several factors that impact both the stiffness and strength requirements 

for the bracing.  An overview of several of these studies is provided along with a discussion of 

provisions that have been incorporated into design specifications for buildings and bridges in the 

United States.       

 

1. Introduction 

The limit state of lateral torsional buckling (LTB) often controls the design of I-shaped girders.  

The buckling strength is improved with the use of bracing to reduce the unbraced length of the 

girders.  While there are a number of stages for which LTB may control, the construction stage is 

often critical, particularly for girders that are designed to act composite with a concrete slab/deck 

during in-service conditions.  During construction, freshly-placed concrete is fluid and provides 

no significant contribution towards the buckling resistance of the girders.  Therefore, the steel 

girder is generally designed to support the entire construction load during the concrete placement.  

Another complexity that exists during construction is the variable presence of the bracing, since 

not all of the bracing is usually fully installed during girder erection.       

 

Effective beam bracing can be achieved by preventing either lateral movement of the compression 

flange (lateral bracing) or twist of the girder cross-section (torsional bracing).  The primary bracing 

that is discussed in this paper is torsional bracing that often exists in the form of cross-frames or 

diaphragms that frame into the girders at isolated points along the length.   

 

This paper outlines a number of studies that have been conducted over the past 30+ years that are 

focused on LTB of steel beams and girders as well as the torsional-bracing behavior to improve 

the buckling strength.  The paper begins with pertinent background information on both LTB and 

bracing, followed by an overview of some of the research related to LTB and torsional bracing 

that have impacted US design specifications in the past few decades.   
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2. Background 

2.1 Lateral Torsional Buckling 

Lateral torsional buckling (LTB) is a limit state for beams and girders that generally involves a 

lateral translation of the compression flange and a twist of the girder cross section.  Timoshenko 

(1961) derived the classic equation for elastic LTB of a doubly-symmetric section subjected to 

uniform moment loading that is given by the following expression: 

 

𝑀𝑜 =
𝜋

𝐿𝑏
√𝐸𝐼𝑦𝐺𝐽 + (

𝜋𝐸𝐼𝑦ℎ𝑜
2𝐿𝑏

)

2

                                                     (1) 

where, E is the modulus of elasticity, 𝐼𝑦 is the minor-axis moment of inertia of the girder about the 

plane of the web, 𝐿𝑏 is the unbraced length, 𝐺 is the shear modulus of elasticity, 𝐽 is the torsional 

constant, and ℎ𝑜 is the distance between flange centroids.  In addition to uniform moment along 

the unbraced length, Eq. (1) was derived also assuming that the member was free to warp at the 

ends.  The equation is often given with the 2nd term in the radical expressed as a function of the 

warping constant for a doubly symmetric I-shaped member, 𝐶𝑤 = 𝐼𝑦ℎ𝑜
2 4⁄ . 

 

Although Timoshenko’s solution was derived for uniform moment loading, in practice most beams 

are subjected to moment gradient that leads to a variable flange compressive stress along the 

length.  The benefits of variable moment are usually accounted for with a moment gradient factor 

(Cb) applied to the uniform moment expression.  There are a variety of moment gradient factors 

that are available for specific loading distributions and support conditions.  For a doubly-

symmetric beam buckling between discrete brace points, the AISC Specification (2022) 

recommends the following expression: 

𝐶𝑏 = [
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝐴 + 4𝑀𝑏 + 3𝑀𝐶
]                                         (2) 

  

where, Mmax is the absolute value of the maximum moment in the unbraced segment, MA, MB, MC 

are the respective absolute values of the quarter-point, midpoint, and three-quarter-point moment 

in the unbraced segment.  Equation (2) is just one expression that can be used to estimate the 

moment gradient factor.  There are a number of other expressions available in the literature (SSRC, 

2010) that are applicable for a variety of conditions.  Many Cb equations are developed for loads 

applied at midheight of the section.  Load position effects occur when the load is applied at 

locations above or below midheight.  Considering gravity loading, relative to midheight loading, 

loads applied higher on the cross-section are detrimental, while loads applied lower on the section 

are beneficial.  Recommendations are available in the literature (SSRC 2010) that modify the 

moment gradient factors to account for load position.      

 

While Eq. (1) provides a solution for doubly-symmetric sections, the buckling behavior of singly-

symmetric I-shaped sections is more complex and the exact elastic solution (Galambos 1968, 

SSRC 2010) recognizes the increased complexity.  While the exact solution is useful for research 

applications, in design most specifications (AISC 2022, AASHTO (2024) make use a simplified 

LTB solution that is within approximately 10% of the exact solution for most singly-symmetric I-

sections unless one of the flanges becomes very small and the section approaches a T-shaped 

section.   
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2.2 Stability Bracing 

The pioneering work of Winter (1960) demonstrated the dual criteria for effective stability bracing 

that includes both stiffness and strength requirements.  Winter’s work focused heavily on lateral 

bracing of columns that was extended to flexural members.  Winter developed a simple model that 

allowed the determination of the “ideal stiffness” requirements to be established for lateral bracing 

in columns and beams.  The ideal stiffness can be generally defined as the minimum stiffness 

necessary to cause a perfectly straight member to buckle between the brace points.  Winter also 

demonstrated the impact of imperfections on the brace forces and further established that a stiffness 

higher than the ideal stiffness was necessary to control brace forces and deformation in the 

member.  For most problems, doubling the ideal stiffness requirements results in a maximum 

deformation at the design load that is equal to the magnitude of the initial imperfection and the 

brace force is therefore essentially equal to the brace stiffness multiplied by the magnitude of the 

initial imperfection.    

 

Taylor and Ojalvo (1966) produced solutions for torsional bracing of beams considering 

continuously-braced members.  Perhaps the most influential work related to bracing of beams was 

conducted by Yura (2001) that built off of the previous work and considered many of the 

fundamental factors that impact bracing systems.  The work from Yura considered many factors 

such as moment gradient, load position, and the impact of cross-sectional distortion on the 

effectiveness of bracing.  For torsional-braced beams, a reasonable estimate of the ideal stiffness 

of a bracing system can be represented with the following expression: 

 

𝛽𝑇𝑖 =
1.2𝐿

𝑛𝐸𝐼𝑦𝑒𝑓𝑓
(
𝑀𝑟

𝐶𝑏
)
2

 (3) 

 

where, L is the span of the beam, n is the number of intermediate brace points, Iyeff is the effective 

minor-axis moment of inertia, and Mr is the design moment within the unbraced length. For singly-

symmetric sections, Iyeff = Iyc + (t/c) Iyt, where Iyc and Iyt are the moment of inertia of the respective 

compression and tension flanges about an axis through the web, while c and t are respective 

distances from the centroid of the section to the extreme fibers of compression and tension flanges.      

For doubly-symmetric sections, the effective moment of inertia is equal to the minor-axis moment 

of inertia of the section.   

 

Beam torsional bracing is a function of multiple stiffness components with the most dominant 

components being i) the stiffness of the brace (b), ii) the in-plane stiffness of the girder (g), and 

the effect of cross-sectional distortion (sec).  Similar to many stability bracing systems, the total 

stiffness of the bracing system (T) is governed by the expression for springs in series:  

  
1

𝛽𝑇
=
1

𝛽𝑏
+

1

𝛽𝑠𝑒𝑐
+
1

𝛽𝑔
 (4) 

 

Eq. (4) for springs in series mathematically dictates that the total brace stiffness 

of the system (T) will be less than the smallest stiffness component. 
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3. Studies on Beam Stability 

3.1 Moment Gradient, Load Position, Buckling of Non-Prismatic Beams, and System Buckling 

Mode  

There have been a number of previous investigations on the LTB behavior of doubly- ,singly- and 

un-symmetric flexural members.  The critical stages often occur during erection and construction 

when both bracing and loading conditions are often the most unpredictable.  In the completed 

structure, all of the bracing is present and additional restraint often develops from sources such as 

the cured concrete deck or even components that are not necessarily relied upon for stability.  

Restraints also often develop from phenomenon that is not directly relied upon in design since it 

may be hard to fully quantify.  For example, beams often experience “tipping restraint” when loads 

are applied through structural members or non-composite slab systems; however, such restraint is 

difficult to quantify.  However, these restraints may be recognized to help and might allow 

detrimental effects such as top-flange loading to be neglected during design.  The following 

subsections provide brief overviews of studies that have been conducted related to LTB over the 

past several years. 

   

3.1.1 LTB of Girders During Lifting  

As noted earlier, erection and construction stages are often critical for stability due to the limited 

presence of bracing.  One particular stage where bracing may be non-existent is during lifting of 

girders when the girder segments only source of support are the lifting points from the girders as 

shown in Figure 1.  Girder segments were instrumented in the storage yard of WW AFCO in San 

Angelo, Texas to monitor the behavior during lifting (Stith et al. 2010).  Additional studies were 

conducted by instrumenting and monitoring girders in the field during erection and deck 

construction.   Parametric FEA studies were conducted to evaluate the buckling behavior of the 

girders as a function of the lifting location.  The resistance of 

the girder against buckling comes from the weight of the 

girder which is positioned below the beam lifting clamps on 

the flange.  However, there is no location where twist of the 

girder is fully retrained.  Defining “a” as the distance from 

the end of the girder to the lifting point, if the girders are 

picked up with the lift points closer to the ends of the 

segment, the region between the pick points dominate the 

buckled shape.  As the distance to the lifting point (larger a) 

is increased, the buckling mode changes and is dominated by 

the overhanging segment.  The researchers originally focused 

on developing recommendations based upon buckling of the 

overhang versus buckling of the region between the lift 

points; however, this approach was relatively complicated.  

Instead, because the girders are not fully restrained from twist 

at any location along the length, the study recommended 

using the full length of the girder as the unbraced length 

(Farris, 2008, Schue 2008).  Practical lengths of the girder 

segments can range from 20 ft. to spliced girders with lengths 

over 200 ft. depending on whether the girders are from 

building or bridge applications.  As a result, the study 

considered both prismatic and non-prismatic sections.  For 

(a) Girder lifting

(b) Buckled shape with varying lift point

Figure 1 Girder Stability During 

Lifting 
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prismatic sections, the ideal location of lifting is generally at the quarter points of the girders; 

however, most of the lifts are conducted with a single crane and a spreader beam as shown in 

Figure 1.  Since the erector does not usually have a spreader beam of optimal length to put lifting 

points at the quarter points, the lifting points vary relative to the segment length.  The 

recommended Cb factor was therefore put in terms of the lift points relative to the total segment 

length as follows (Farris 2008): 

 

𝐶𝑏 = 2.0    𝑓𝑜𝑟   
𝑎

𝐿
≤ 0.225 

𝐶𝑏 = 6.0    𝑓𝑜𝑟   0.225 <
𝑎

𝐿
< 0.30                                                 (5) 

𝐶𝑏 = 4.0    𝑓𝑜𝑟   
𝑎

𝐿
≥ 0.3 

 

Where, L is the total length of the girder segment being lifted and a is the average distance from 

the end of the girder segment to the lift point (see Figure 1).  There is obviously a practical limit 

to a/L values larger than 0.3, with “upper limits” of about 0.35 before girder yielding will control 

due to the very large overhang.  For a prismatic segment, the overhang lengths (a) will be the same 

on both ends of the girder; however, for a nonprismatic section with unsymmetric distributions of 

the girder self-weight, the lift points will be different from the two ends of the section and the 

distances are then simply averaged.  As noted above, the unbraced length to be evaluated with the 

uniform moment solution (such as Eq. 1) is taken as the total length of the segment.  For non-

prismatic sections, the uniform moment LTB solution should make use of the smallest section 

properties along the segment.  The Cb expressions have been calibrated based upon these 

assumptions and provide good estimates of the girder buckling behavior.   

 

3.1.2 LTB Non-prismatic Girders  

Efficient use of steel in longer span girders often necessitate the use of stepped flanges along the 

girder length as a function of the moment demands in the girders.  It is very common to have a 

flange transition creating a non-prismatic section within the unbraced length that complicates the 

evaluation of the LTB response.  For longer-span applications, many girders do not have all of the 

bracing installed early in the erection stage and multiple flange transitions often occur along the 

unbraced length, which further complicates assessing the LTB behavior.  Reichenbach et al. (2020) 

conducted parametric FEA studies on singly-symmetric non-prismatic girders to develop simple 

provisions for evaluating the LTB behavior of the girders.  In addition to studying non-prismatic 

sections, the study refined previous work (Helwig et al. 1997) related to load position and moment 

gradient effects for singly-symmetric sections.  The discussions below apply to gravity loading on 

composite singly-symmetric girders that generally have a smaller top flange compared to the 

bottom flange.  The top flange is smaller since the neutral axis of the composite girder will 

generally lie at or near the top flange of the section once the concrete slab/deck cures.  However, 

during construction, the entire load is generally supported by the steel girder and LTB often 

controls the design.  Around interior supports the sections are often doubly-symmetric sections 

since the concrete deck is in tension and provides little contribution.   Reichenbach et al. (2020) 

recommended the following moment gradient factor for singly-symmetric sections: 
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𝐶𝑏 = [
12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥 + 3𝑀𝐴 + 4𝑀𝐵 + 3𝑀𝐶
] 𝑅𝑚 ≤ 3.0 (6) 

 

  

𝑅𝑚 =

{
 
 

 
 0.5 + 2(𝜌𝑡𝑜𝑝,𝑏𝑎𝑠𝑒)

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1.0, 𝑖𝑓 {

𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑏𝑒𝑛𝑑𝑖𝑛𝑔

−1 2⁄ <
𝑀𝑠𝑚𝑎𝑙𝑙

𝑀𝑙𝑎𝑟𝑔𝑒
⁄ < 0; 𝑎𝑛𝑑 𝑥𝑖𝑛𝑓 <

3𝐿𝑏
8⁄

 (7) 

 

Where, Rm is a modifier on the moment gradient factor for singly-symmetric sections, top,base is a 

factor referring to the properties of the smaller (base) flange along the unbraced length and is equal 

to Iy top/Iy which is a ratio of the minor-axis moment of inertia of the top flange over the moment 

of inertia of the entire section about the minor-axis through the web, Msmall smaller moment at the 

end of the unbraced length and Mlarge is the moment at the other end of the unbraced length.  The 

variable xinf is for cases with reverse curvature bending and is the distance to the inflection point 

measured from the end of the unbraced length with the smaller end moment. All other terms are 

as described previously in the paper.  For a prismatic singly-symmetric section, top,base is equal to 

Iy top/Iy. Equation 6 is identical to the expression proposed in Helwig et al. (1997) that has been in 

the AISC Chapter F Commentary for several years.  Reichenbach et al. (2020) found the 

modification to the limits on Rm given in (7) provide better estimates when an inflection point is 

positioned very close to the end of the unbraced length with the smaller moment (ie, a very small 

length of the top flange is in compression).  Eqs. (6) and (7) are included in Appendix D to the 10th 

ed. of AASHTO (2024).   

 

Reichenbach et al. (2020) also develop recommendations on the evaluation of the LTB behavior 

for sections with multiple transitions in the width or thickness of flanges and webs along the length 

of the member.  They recommended effective plate properties of the top and bottom flanges that 

are reflected in the following expressions: 

 𝑏𝑒𝑓𝑓 = 𝑏𝑠𝑚𝑎𝑙𝑙[1 − (1 − 𝑥𝑠𝑚𝑎𝑙𝑙)
2] + 𝑏2(1 − 𝑥𝑠𝑚𝑎𝑙𝑙)

2 (8) 

  

 𝑡𝑒𝑓𝑓 = 𝑡𝑠𝑚𝑎𝑙𝑙[1 − (1 − 𝑥𝑠𝑚𝑎𝑙𝑙)
2] + 𝑡2(1 − 𝑥𝑠𝑚𝑎𝑙𝑙)

2       (9) 

   

where, beff and teff are the respective effective width and thickness of the flange under consideration 

with transitions along the unbraced length, bsmall and tsmall is the respective width and thickness of 

the segment with the smallest flange, b2 and t2 are the width and thickness of the 2nd smallest flange 

size along the unbraced length, and xsmall is the decimal fraction of the length of the smallest flange 

section relative to the overall unbraced length.  Each flange is treated separately and values of the 

effective widths and thickness are determined.  An effective thickness can also be arrived at with 

Eq. (9) for variations in web thickness.  For web-tapered members, a similar expression is proposed 

that differs slightly from Eqs. 8 and 9.  Once the effective plate sizes are determined using Eqs. 

(8) and (9) the non-prismatic section is treated as an effective prismatic section to calculate the 
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section properties for use in the 

uniform moment buckling 

solution.  Eqs. (8) and (9) are 

included in Appendix D6.6.3 of 

the AASHTO (2024) Bridge 

Design Specifications (BDS).   

Reichenbach et al. (2020) 

provide a comparison of the 

finite element solutions for 

non-prismatic sections with up 

to three flange transitions along 

the unbraced length with a wide 

variety of flange sizes.  The 

coefficient Ceff = Mcr,FEA/Mcr,th was evaluated, which is the ratio of the finite element eigenvalue 

buckling critical load to the calculated value using the exact analytical LTB expression with the 

effective section properties.  Ratios less than 1 indicate the prediction is unconservative, while 

ratios greater than 1 indicate a conservative prediction.  The results are summarized in Figure 2 

for 6420 cases.  The average accuracy is within 9% conservative of the FEA solutions.   

 

 3.1.3 Effect of Shear on LTB  

 Uniform moment buckling expressions such as Timoshenko’s expression given in Eq. (1) are 

frequently used to evaluate the elastic buckling capacity of girders with compact and non-compact 

webs.  For beams with slender webs, many design specifications make use of recommendations 

from Winter (1943) to account for web distortion by neglecting the St. Venant stiffness.  This is 

the solution utilized in the AISC (2022) and AASHTO (2024) specifications leading to the 

following expression in terms of buckling stress: 

𝐹𝑐𝑟 =
𝐶𝑏𝜋

2𝐸

(
𝐿𝑏
𝑟𝑡
)
2                                                                            (10)  

 

     𝑟𝑡 =
𝑏𝑓𝑐

√12(1+
1

6
𝑎𝑤)

                                                                         (11) 

 

𝑎𝑤 =
ℎ𝑐𝑡𝑤
𝑏𝑓𝑐𝑡𝑓𝑐

                                                                            (12) 

Where, bfc and tfc are the respective width and thickness of the compression flange, while hc and tw 

are the respective depth of the web in compression and web thickness. Yura recognized large 

discrepancies between classic LTB solutions such as Timoshenko’s equation (with Cb factors) for 

beams subjected to significant moment gradient.  The discrepancies were amplified with increasing 

web slenderness.  Parametric FEA studies were carried out and reported in Liang et al. (2022, 

2024) on both doubly- and singly-symmetric girders.  The problem was identified to be related to 

the impact of shear that leads to distortional issues with the cross-section.  The following solution 

was recommended: 

𝑀𝑐𝑟 = 𝐶𝑚𝑣𝐶𝑏𝑀𝑜                                                                 (13) 
 

Figure 2: LTB Comparisons of FEA versus Predicted Solutions with 

Eff. Properties for Non-prismatic Sections with Uniform Moment. 
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𝐶𝑚𝑣 =
𝑉𝑐𝑟

𝑉𝑐𝑟 + 𝛼𝑉𝑠𝑡
                                                                  (14) 

 

Where, Cmv is a reduction factor accounting for the effects of shear on the LTB resistance, Mo is 

the uniform moment buckling capacity from expressions such as Eq. (1), Cb is the moment gradient 

factor for the specific loading and boundary conditions (there are lots of Cb expressions available), 

Vcr is the elastic shear buckling resistance, Vst is the shear magnitude that corresponds to a rigid 

web assumption and can be calculated from the following equation for  a maximum design moment 

of Mmax and an average shear along the unbraced length (Vavg): 

𝑉𝑠𝑡 = 𝑉𝑎𝑣𝑔
𝐶𝑏𝑀𝑜

𝑀𝑚𝑎𝑥
                                                                 (15) 

The value of  in Eq. 14 is related to the area of the web (Aw) and the average area of the flanges 

(Af) as given in the following expression:  

𝛼 = 0.11𝐶𝑏√𝐴𝑤 𝐴𝑓⁄                                                           (16) 

Whereas Winter’s solution recommended neglecting the St. Venant term for beams with slender 

webs, the proposed method makes use of both the St. Venant and Warping terms in the LTB 

expression (Mo) regardless of the web slenderness.  Comparisons between FEA solutions and the 

predicted solutions with the proposed solution (Eq. 13) and Winter’s approach of neglecting the 

St. Venant terms are provided in Figure 3.  The proposed solution provides good estimates of the 

effects of shear for a wide range of loading conditions.  The results shown are for unstiffened webs; 

however, the behavior of stiffened webs was also considered with good agreement.  The effects of 

web stiffeners are accounted for in the Liang et al. (2022, 2024) solution in the plate buckling 

coefficient in the elastic shear buckling capacity (Vcr).   Winter’s solution provided a simple 

approach for several decades to a relatively complicated problem. However, Figure 3 shows that 

Winter’s solution can be significantly conservative or unconservative.  Winter’s solution tends to 

be conservative when the St. Venant stiffness was neglected for members with low shear relative 

to the shear buckling capacity and is unconservative for webs with large shear relative to the shear 

buckling capacity.  Many of the cases 

that were unconservative had 

noncompact and even compact webs – 

but the high shear impacts the accuracy 

of the solution.  In design, there are three 

options when the effects of shear are 

significant: 1) the web thickness can be 

increased resulting in an increase in the 

shear buckling capacity, 2) web 

stiffeners can be added resulting in an 

improved shear buckling coefficient and 

therefore an increased shear buckling 

capacity, or 3) bracing can be added to 

reduce the unbraced length and therefore 

improve the uniform moment buckling 

capacity, Mo.  A numerical example is 

provided in Liang et al. (2022) 

demonstrating all three of these options.     
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3.1.4 Half-Round Bearing Stiffeners  

Torsional bracing in the form of cross-frames or plate diaphragms are commonly used in steel 

bridges and sometime in steel buildings.  In bridges with skewed supports, the AASHTO BDS 

(2022) require intermediate braces be oriented perpendicular to the girder lines for bridges with 

support skews larger than 20 degrees.  For skew angles less than 20 degrees, the braces can be 

oriented parallel to the skew.  However, at support regions, the braces are often parallel to the skew 

angle even for relatively large support skews.  To facilitate the connections, many fabricators make 

use of bent plates such as that shown in Figure 4a which shows a plan view of the support region 

of a bridge with skewed supports.  Pictures 

of the bent plate detail on a heavily skewed 

bridge are also shown later in Figure 14.  

The detail commonly makes use of a 

bearing stiffener directly over the support 

bearing as well as stiffeners that serve as 

cross-frame connection plates.  A bent 

plate is commonly used for the connection 

between the connection plate stiffener and 

cross frame.  The centerline of the brace 

passes directly over the support; however, 

the bent plate introduces significant 

flexibility into the connection.  An 

alternative detail that provides 

perpendicular connections to the cross-

frame connection plate consist of the half-

round stiffener as shown in Figure 4b.  The 

half-round can be made by either splitting 

a round pipe or bending a plate the proper 

radius.  The half-round stiffener provides 

an excellent bearing stiffener due to the 

large buckling resistance as a column. 

 

A major benefit to the half-round stiffener is that it can be welded to the web and both flanges 

creating a closed tube, which dramatically improves the warping stiffness at the stiffener.  Ojalvo 

and Chambers (1977) provide a good discussion of the use of warping-restraining devices such as 

the half-round stiffener.  A detailed investigation was conducted on the behavior of the bent plate 

versus the half-round stiffener with regards to girder stability as well as the fatigue performance 

of the welded connection and are documented in Quadrato et al (2010, 2014).  The benefits of the 

warping restraint were demonstrated with both experiments and FEA parametric studies.  The 

advantage of the use of plate stiffeners versus half-round stiffeners is shown in the experimental 

results for buckling tests on a W30x90 section.  Figure 5 shows a comparison of the applied load 

versus the lateral deflection of the compression flange for girders with half-round bearing stiffeners 

versus plate stiffeners.  The improved warping stiffness from the girder with the pipe stiffener 

increased the buckling resistance by approximately 50%.  Quadrato et al. (2014) provides 

expressions for determining the effective length factor, Kw, that can be applied to the warping term 

in the buckling solution.   

Web

Web

a) Commonly-used detail with bent plate

b) Half-round bearing stiffener

Figure 4 Bent plate and half-round stiffener details for  

cross-frame connections 
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The AASHTO BDS (2022) now includes half-round stiffeners as an option for bearing stiffeners.  

While steel bridges tend to have longer spans, the structural advantages of the half-round stiffeners 

are likely to be in bridges with spans less than approximately 80 ft., which fit into geometries of 

the Short-Span Steel Bridge Alliance.  

Experiments are currently being conducted at 

the University of West Virginia to assess the 

behavior for short span bridges.  For the 

structural advantage with respect to buckling to 

be recognized, the half-round stiffener needs to 

be part of the critical unbraced segment of the 

girder.  For a simply-supported girder, this 

would mean a maximum of a single 

intermediate brace.  Brace spacing in 

conventional girders are often in the range of 

20-30 ft.  Due to the improved warping 

resistance, it is likely simple spans can be 

constructed with zero intermediate braces for 

spans up to approximately 40-50 ft. and up to 

70-80 ft. with a single intermediate brace.    

 

3.1.5 System Buckling Mode of Narrow Girder Units 

Section 3.2 of this paper is focused on beam torsional bracing.  Cross-frames and diaphragms are 

often provided to restrain twist of the cross-section.  Although the 10th of the AASHTO BDS 

(2024) include torsional bracing requirements, historically, typical member sizes are often utilized 

in cross-frames to restrain the girders.  Most bridge owners have specific details and cross-frame 

sizes for use in the applicable jurisdiction and the details result in a relatively stiff brace that is 

suitable for most bridge geometries – particularly for bridges comprised of at least 4 girders across 

the width.  However, multiple failures or problems of narrow girder units during construction 

provided insight into a buckling mode that was not addressed in design specifications.  Figure 6a 

shows a twin girder system that is relatively common in bridge widenings or pedestrian bridges.  

The girder system may have closely-spaced 

cross-frames such as those indicated and the 

anticipated buckling mode of the 

compression flange along the length is one 

involving buckling between the cross-frame 

locations.  However, an alternate mode that 

was recognized following a failure and other 

problematic bridge is the system mode 

depicted in Figure 6b in which the girder 

system buckles in a half-sine curve mode.  

The system mode is not sensitive to the 

spacing between the cross-frames and 

additional insight to the mode is provide in 

Section 3.2. 

 

Pipe Stiffener 
Increases 
Strength by 50%

Min – Ave – Max 

Figure 5: Improved Buckling Resistance with 

Half-Round Stiffeners versus Plate Stiffeners.   

A

A

y

x x

y

s

System cross section A-A

a) Girder Buckling Between Cross-Frames

b) System Buckling Mode of Narrow Girder Unit

Figure 6: System Buckling Mode of Narrow Girder 

Units 
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Yura et al. (2008) provided the elastic solution for the system mode that reflects both the St. Venant 

and warping terms similar to Eq. 1.  However, the St. Venant term has a relatively low contribution 

and the following simplified expression provides good estimates of the critical buckling capacity: 

 

𝑀𝑔𝑠 =
𝜋2𝑆𝐸

𝐿𝑔
2 √𝐼𝑦𝐼𝑥                                                                            (17)    

 

where, Mgs is the total system buckling resistance of the twin girder (ie. the buckling resistance per 

girder is half of Mgs), Lg is the span length of the girders, S is the center to center spacing of the 

adjacent girders, and Ix and Iy are the respective major and minor axis moments of inertia of a 

girder in the system.  When Eq. 17 was being considered for incorporation into the 2015 interim 

AASHTO BDS, experiences (Sanchez and White 2012) with 2nd order amplification of a 3-girder 

mildly-curved bridge during construction raised concerns about using the full capacity from Eq. 

17 for design.  As a result, in the 2015 interim AASHTO BDS a limit of 50% of the capacity 

predicted by Eq. 17 was included.  If the girder moments during construction exceeded this 50% 

limit, additional bracing or other changes were necessary.  Subsequent work in Han and Helwig 

(2020) recommended raising the 50% limit to 70%, which is currently in AASHTO (2024).  Han 

and Helwig also recommended applying a moment gradient factor, Cbs, specifically for the system 

buckling mode and recommended a value of 1.10 for simply-supported or partially-erected 

continuous girders and 2.0 for fully-erected continuous girder systems.  Although Eq. 17 was 

originally derived for systems with doubly-symmetric girders, for singly-symmetric girders, Iy can 

be replaced with Iy eff as outlined in the discussion of Eq. 3.  AASHTO (2024) also allows an 

effective section to be evaluated for non-prismatic girders using the method outlined by 

Reichenbach et al. (2020) in Section 3.1.2 of the present paper.    

 

Equation 17 was specifically derived for twin girder systems; however, recommendations were 

made to approximate the behavior for systems with more than 2 girders.  While studying the in-

plane stiffness for torsional bracing applications, Fish et al. (2021, 2025) focused on the system 

buckling mode in the derivation.  While the original focus was directed at torsional bracing 

systems, the actual stiffness of a system with any number of girders across the width (ng) was 

determined leading to the following recommended modification to Eq. (17):  

   

𝑀𝑔𝑠 = 𝐶𝑏𝑠
𝜋2𝑆𝐸

𝐿𝑔
2 √𝐼𝑦𝐼𝑥𝛼𝑥                                                               (18)    

 

  𝛼𝑥 =
(𝑛𝑔

2−1)

12
                                                                         (19) 

 

For girder systems with inadequate capacity, the system buckling capacity can be improved using 

a few panels of a top lateral truss near the ends of the span, which is included in AASHTO (2024).  

As an alternative to top flange lateral bracing, allowing a small length of concrete slab/deck to be 

placed near the ends of the section and allowed to cure a few days will also provide significant 

increases in the system buckling behavior since a condition near warping fixed will result.   

 

3.2 Studies on Torsional Beam Bracing 

While Section 3.1 was directed at solutions for evaluating the member or system buckling capacity, 

this section is directed at the means of improving stability with effective bracing.  The studies 
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outlined in this section build off of the basic fundaments that were discussed in Section 2.2.  The 

focus is primarily directed at beam-torsional bracing and the improvements on the understanding 

of the basic behavior of these systems, and some of the changes that have resulted in design 

specifications as a result of this work.   

 

3.2.1 Required Beam Torsional Brace Stiffness 

The fundamentals of bracing were discussed earlier in Section 2.2.  The pioneering work from 

Winter (1960) demonstrated that a stiffness higher than the ideal stiffness is necessary in order to 

control deformations and brace forces.  The general philosophy on the many of the studies that 

have focused on various bracing systems is to provide a stiffness that limits the amount of 

deformation at the brace points to a value equal to the initial imperfection.  Limiting the 

deformation to a value equal to the initial imperfection results in stability brace forces of  x o or 

 x o depending on whether the lateral or torsional bracing systems are employed, respectively. 

For lateral bracing systems, the critical shape initial imperfection generally consists of a pure 

sweep, while torsional systems usually have a critical shape imperfection that consists of a lateral 

sweep of the compression flange while the tension flange remains straight (Wang and Helwig 

2005).  For lateral bracing systems (Winter 1960, Yura 2001) have demonstrated that providing a 

stiffness equal to twice the ideal stiffness results in good control of deformations such that the 

deformation is equal to the initial imperfection.   

 

Studies on torsional bracing systems for 

beams (Liu et al. 2020, Reichenbach et al. 

2022) showed that a stiffness higher than 

twice the ideal stiffness was often 

necessary to limit the deformation to a 

value equal to the initial imperfection.  Liu 

et al. 2020 considered the effects of load 

position, section geometry, and number of 

intermediate braces.  Curves of the applied 

moment versus the twist as a function of 

the provided brace stiffness consistently 

took the form as shown in Figure 7.  The 

moments are normalized by the critical 

moment corresponding to buckling 

between the brace points while the twist at 

the brace point was normalized by the 

magnitude of the initial imperfection.  

Following the conventional brace strength 

formulations, the target twist for M/Mcr = 

1 was a value of /o of 2.  The curves 

show that providing twice the ideal stiffness did not control the twist adequately.  The studies by 

Liu showed that providing 3 x the ideal stiffness had much better control of the girder twist such 

that the strength requirements of  x o could be utilized in design.  Therefore, in the AISC (2022) 

specification, the required torsional brace stiffness is a multiple of 3 times the ideal stiffness that 

was given in Eq. (3), leading to the following stiffness requirement:   
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Figure 7: M/Mcr versus /o as a function of brace 

stiffness for torsional beam bracing.   
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𝛽𝑇𝑖 =
3.6𝐿

𝑛𝐸𝐼𝑦𝑒𝑓𝑓
(
𝑀𝑟

𝐶𝑏
)
2

 (20) 

 

As torsional bracing provisions were being developed for the AASHTO (2022) specification, the 

value given in Eq. 20 was utilized for cases with a torsional brace depth less than 80% of the girder 

depth.  However, when the brace depth is larger than 80% of the girder depth, a value of twice the 

ideal stiffness was specified, leading to a constant of 2.4 instead of 3.6 as shown in Eq. 20.  The 

rational for the lower stiffness was based upon the findings form Han and Helwig (2020) related 

to the system mode of buckling.  In those studies, the likelihood of having the critical shape 

imperfection as specified in Wang and Helwig (2005) was investigated.  As noted above, the 

critical shape was found to possess a lateral sweep of the compression flange with a straight tension 

flange.  The magnitude of the compression flange lateral sweep was taken as a value of Lb/500, 

which is consistent with tolerances on the girder sweep.  Although a beam may start with the 

critical shape imperfection, cross-frames and diaphragms are fabricated to fit into the girder system 

essentially assuming “perfect” girder geometry.  Han and Helwig (2020) simulated cross-frame 

installation into a girder system with the critical shape geometry.  Although the girders started with 

the critical shape geometry, the cross-frames tended to pull the compression flange closer to a 

straight position and pulled the tension flange more laterally, leading to an “imperfection” that was 

more of a pure sweep.  The resulting brace forces in such a system are significantly reduced 

compared to a girder with the critical shape imperfection.  Therefore, using twice the ideal stiffness 

was feasible when cross-frames are relatively deep compared to the girders being braced.  With 

shallower braces (depth less than 80%), tolerances on bolt holes tend to impact the ability of the 

brace to “straighten” the girders.  Therefore, the AASHTO bracing provisions recognize that in 

systems with more shallow braces such as through-girders where the torsional braces are the floor 

beams in the bridge, the required stiffness is as shown in Eq. (20); however, twice the ideal stiffness 

is required for systems with deeper braces.     

      

3.2.2 Torsional Beam Bracing - In-Plane Girder Stiffness and Brace Stiffness 

The stiffness behavior of bracing systems was discussed in Section 2.2.  The three different 

stiffness components that impact torsional beam bracing were listed and the influence of the 

expression for springs in series given in Eq. 4 were outlined.  The impact of the in-plane girder 

stiffness, g, was first recognized in the work documented in Helwig et al. (1993).  To recognize 

the impact of the in-plane girders stiffness, a clear understanding of how torsional braces interact 

with the girder systems needs to be clear.  Torsional braces generally refer to the restraint to beams 

provided by cross-frames or diaphragms 

such as those shown in Figure 8.  Figure 8a 

shows that shears develop at the ends of the 

brace as a function of the girder spacing and 

restraining moments (torques on the 

girder).  Equal and opposite shear develop 

on the girders leading to a rigid body 

rotation as depicted in Figure 8b.  The 

magnitude of the rigid body rotation is a 

function of the in-plane stiffness of the 

girders and impact the overall stiffness of 

the torsional bracing system.  Helwig et al. 

Mbr

Mbr

S



a) Shears on Brace b) Girder Rigid 
Body Rotation 

Figure 8: Brace shears lead to rigid body rotation of the 

girders that are a function of the in-plane stiffness.   



 14 

(1993) considered the behavior of a midspan brace in a twin girder system and derived the 

following expression:  

𝛽𝑔 =
12𝑆2𝐸𝐼𝑥

𝐿3
                                                                 (21) 

 

Where, S is the girder spacing, Ix is the girder in-plane moment of inertia, and L is the girder span.  

Yura (2005) extended the in-plane stiffness derivation to a system with ng girders across the width 

and replaced the “12” in equation 21 with the following expression: 

𝑁𝑔 =
24(𝑛𝑔−1)

2

𝑛𝑔
                                                                  (22)  

 

The expression from Yura yields 12 for twin girders but recognizes the reduced shear magnitudes 

and improved system stiffness for wider girder systems.  For example, for a system with 5 girders 

across the width, Eq. 22 produces a constant of 77.   

 

Although Eqs. 21 and 22 work well for twin girders with a midspan brace, the expressions can 

produce unconservative estimates for systems with more than one brace.  In the development of 

Eqs. 21 and 22, it was thought that the critical case for the in-plane stiffness was a single brace at 

midspan since many bracing systems tend to undergo a succession in changes of mode shapes as 

the stiffness is increased until the girders finally buckle between the brace points.  As a result, prior 

to the girders buckling between the brace points, if the girders were to buckle in one less “wave” 

in the buckled shape, some of the shears would be directed upwards and some downwards.  

However, most torsional bracing systems often stay in a half-sine curve buckled shape up until 

they finally buckle between the brace points when enough stiffness is reached in the bracing 

system.  As a result – prior to buckling between the bracing points, all of the shears from the braces 

are in the same direction (up or down) and adding additional bracing lines makes the in-plane 

stiffness more critical.    

 

Fish et al. (2021, 2025) focused on the use of the system buckling mode as discussed in Section 

3.1.5 to develop an expression for the in-plane buckling behavior.  Such an approach is warranted 

since the system mode of buckling is closely linked to the in-plane stiffness.  As noted earlier, the 

capacity in the system mode of buckling is relatively unaffected by the spacing between the braces.  

Phrased another way, when the system mode of buckling controls the girder capacity – decreasing 

the spacing or increasing the cross-frame stiffness will not improve the behavior.  From a bracing 

perspective, because torsional bracing systems are controlled by the expression for springs in series 

given in Eq. 4, when in the in-plane stiffness component g is less than the required torsional 

stiffness (ie. Eq. 20), increasing the stiffness of the brace will not result in adequate bracing – even 

if an infinitely stiff brace is used.  Instead, the system will buckle in the half-sine “system” mode.   

 

The derived equation from the system mode of buckling recommended in Fish et al. (2025) consists 

of the following expression: 

𝛽𝑔,2025 =
𝜋4𝐸𝐼𝑥𝑆

2𝛼𝑥
𝐿3(𝑛 + 1)

                                                         (23) 
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Where, x is defined in Eq. 19, 

and n is the number of 

intermediate bracing lines along 

the span length.  A comparison 

between the g predictions 

using the expressions from Eqs. 

21 and 22 versus the values 

predicted from Eq. 23 are 

shown in Figure 9.  The 

expressions have been 

normalized by predictions of 

the ideal stiffness required from 

eigenvalue buckling analyses 

with three-dimensional finite 

element models.  Establishing the ideal stiffness requirements requires multiple models with 

various geometries as outlined in Fish et al. (2025).  The equations from Helwig et al. (1993) and 

Yura (2001) that were based upon a system with a single brace line at midspan work well for that 

specific case (n=1); however, become unconservative for girders with more bracing lines.  

Equation 23 developed by Fish et al. (2025) has good agreement with the eigenvalue buckling 

expressions from 3D finite element models.  Based upon the improved accuracy of Eq. 23, ballots 

will likely be put forth for consideration for the 11th edition of AASHTO.    

 

3.2.3 Studies on the Torsional Brace Stiffness  

With regard the three components for torsional bracing system that were outlined earlier, the 

stiffness that should be best understood is that of the brace itself.  However, over the past 10 years 

studies have shown that the understanding of the brace stiffness is not as clear as believed – 

particularly for cross-frame systems.  Cross-frames are truss-type elements that most often consist 

of X-frames (two active diagonals), K-frames, or Z-frames (single diagonal and two struts).  Yura 

(2001) derived stiffness expressions for all three geometries and are essentially exact for the 

specific assumptions they were derived with the following expressions: 

𝛽𝑏𝑟−𝑍 =
𝐸𝑆2ℎ𝑏

2

2𝐿𝑐
3

𝐴𝑐
+

𝑆3

𝐴ℎ

                                                                                (24) 

 

𝛽𝑏𝑟−𝑋 =
𝐴𝑐𝐸𝑆

2ℎ𝑏
2

𝐿𝑐
3                                                                                 (25) 

 

𝛽𝑏𝑟−𝑍 =
𝐸𝑆2ℎ𝑏

2

8𝐿𝑐
3

𝐴𝑐
+

𝑆3

𝐴ℎ

                                                                                (26) 

 

 

Where, hb is the depth of the cross-frame, S is the girder spacing, Lc is the length of the diagonal 

member, Ac is the area of the diagonal member, and Ah is the area of the horizontal strut members.  

Recent studies have focused on the behavior of fabricated cross-frames as well as the stiffness of 

cross-frame systems.  
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Figure 9: Comparison of In-plane Stiffness Components, g.   



 16 

 

Much of the finite element analysis that was carried out on the systems was conducted by Dr. 

Aidan Bjelland – and was extremely important with regards to confirming the accuracy of the Fish 

(2021) derivations.  One of the difficult aspects of the work on in-plane stiffness documented in 

Fish et al. (2025) was isolating the various stiffness components – and establishing an accurate 

value of the ideal brace stiffness.  To validate the in-plane stiffness expressions, the stiffness of 

the brace needed to be accurately determined.  Because the in-plane stiffness is a function of the 

girder spacing – the in-plane stiffness could effectively made infinite by using a large girder 

spacing.  Because full depth cross-frames were utilized, the effects of cross-section distortion were 

also eliminated leaving only the brace stiffness.  The original derivations from Yura (2001) were 

based upon a twin girder connected by a single cross-frame. 

 

However, when additional girders 

are added, the effective number of 

braces per girder increases as 

depicted in Figure 10.  With a 

single cross-frame between two 

girders, there is effectively 0.5 

braces per girder.  As additional 

girders are added, the effective 

number of braces approach 1 brace 

per girder.  From a stiffness 

perspective, Yura’s equations 

were derived as the stiffness per 

cross-frame – which assumes 0.5 

cross-frames per girder.  Therefore, the effective brace stiffness (br,eff) can be evaluated using the 

following expression:  

𝛽𝑏𝑟,𝑒𝑓𝑓 = 𝐶𝑛𝑐𝛽𝑏𝑟                                                                            (27) 

 

Where, br is the stiffness from Equations (24) – (26) for the appropriate cross-frame geometry 

and Cnc is the stiffness modifier that accounts for the number of braces relative to the number of 

girders, ng.  The expressions derived based upon curve fits with FEA studies are given in the 

following equations for X, K, and Z systems: 

𝐶𝑛𝑐,𝑋,𝐾 = 1 +
𝑛𝑔 − 2

𝑛𝑔 + 1.75
                                                                  (28) 

 

𝐶𝑛𝑐,𝑍 = 1 +
𝑛𝑔 − 2

𝑛𝑔 + 0.75
                                                                  (29) 

Equation 28 was compared with FEA solutions that demonstrate the improved efficiency and 

accuracy of the equation in Figure 11 for an X-system; however similar agreement was achieved 

with K and Z systems.  The graph shows the required brace stiffness to achieve buckling between 

the brace points (ideal stiffness) as a function of the number of girders across the width of the 

system.  Four different girder sections to vary geometrical proportions were used and the 

geometries can be found in Fish et al. (2025).  The vertical axis was normalized by the ideal 

stiffness for twin girder (ie. one brace between the girders).  For the specific case of 2 girders, 

Equation 25 from Yura (2001) for an X-system is essentially exact.  When more than 2 girders are 

2 
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3 

Girders

4 

Girders

“Lots” of 

Girders

𝐶𝑛𝑐 = 1.00

𝐶𝑛𝑐 = 1.21

𝐶𝑛𝑐 = 1.35

𝐶𝑛𝑐 = 2.00

Figure 10: Improved efficiency with added braces demonstrating 

“Cnc term”. 
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used, the required cross-frame 

stiffness to achieve buckling 

between the brace points is 

reduced relative to the case with 

2 girders.  A graph of the inverse 

of Equation (28) matches the 

FEA predictions very 

accurately.  Based upon the 

improved accuracy using the Cnc 

modifiers, a ballot will likely be 

developed for consideration for 

the 11th edition of AASHTO.   

 

Another study that recognized 

differences between the analytical brace stiffness equations (Eqs. 24-26) versus as-fabricated 

cross-frames was documented in Battistini et al. (2013, 2016) that summarized the findings from 

an experimental and FEA parametric study.  The full experimental and FEA studies are 

documented in Wang (2013).  The experiments consisted of stiffness and strength tests on cross-

frames with various member configurations. Cross-frames are usually comprised of single-angle 

members or WT sections that often lead to eccentric connections.  The investigation was also 

considering single-diagonal members that made use of concentrically-loaded members.  Table 1 

summarizes the stiffness measurements along with comparisons between the analytical solutions 

(Eqs. 24-26) and FEA predictions.   

 

A comparison between the laboratory experiments and the analytical solution show that cross-

frames with concentric connections agree almost exactly with the predictions from the Yura (2001) 

equations; however, cross-frames with eccentric connections (single-angle members) lead to very 

significant unconservative estimates.  The truss model idealization assumes all of the deformation 

in the cross-frame members are due to axial shortening; however, the eccentric connection leads 

to member bending as well – which softens the cross-frame.  Although the shell element models 

can accurately predict the stiffness of the systems with eccentric connections, such models are 

impractical for design.  Therefore, recommendations were made to utilize the analytical 

expressions (or line element models in computer programs – which agree exactly with Yura’s 

equations) and to apply a reduction factor to account for the reduction in stiffness from the 

eccentric connections.  Since 2015, the AASHTO BDS Chapter 4 has recommended reducing the 

stiffness of the cross-frames by 35 percent by modifying the member area by a factor of 0.65 when 

evaluating the performance of cross-frames in straight and curved girder bridges during 

construction.  Reichenbach et al. (2022) and Park et al. (2023) studied the behavior in cross-frames 

in fatigue (composite girders) and recommended a reduction factor of 25 percent by modifying the 

member area by a factor of 0.75.  These recommendations were balloted and included in the 10th 

Edition of AASHTO (2024) for both the stability bracing provisions and cross-frame fatigue 

provisions.     
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3.2.4 Cross-frame Lean-on Bracing Systems 

A great deal of work has been underway since the late 1990’s that is focused on improving the 

efficiency of cross-frame systems and minimizing truck-induced stresses that adversely impact the 

fatigue resistance of cross-frames.  Because single-angle members have the worst fatigue rating of 

E′, minimizing the truck-induced stress range is very important.  Lean-on bracing concepts were 

developed for steel bridges with recommendations originally summarized and published in Wang 

(2002), Helwig and Wang (2003), and Romage (2008).  The concepts involve selectively 

eliminating full cross-frames in a given bracing line and instead providing top and bottom struts 

to provide a load path to lean several girders 

on a single cross-frame as depicted in 

Figure 12.  Cross-frame lines that frame 

into a support section should be offset from 

the support by 4~5 ft. to avoid large live 

load induced stresses that adversely impact 

fatigue performance.  In addition, the 

support regions are often congested regions 

and moving the bracing line away from the 

support reduces this congestion.  As 

depicted in the plan view of the 4-girder 

system, in a given line, cross-frames should 

be moved as far from the support as 

possible to achieve the best live load 

performance as far as truck induced 

stresses.  The National Steel Bridge 

Type of Cross Frames Test 
Results

Analytic
Solution

Error
%

Line 
Element 
Solution

Error
%

Shell
Element 
Solution

Error
%

Single Angle 
X Frame

872,000 1,579,000 82% 1,572,000 81% 867,000 -1%

Single Angle 
K Frame

760,000 1,189,000 56% 1,180,000 55% 781,000 3%

Unequal Leg
Angle X Frame

1,054,000 1,609,000 53% 1,614,000 53% 1,065,000 1%

Double Angle Z 
(Single Struts)

597,000 907,000 52% 905,000 52% 616,000 3%

Double Angle Z
(Double Struts)

1,182,000 1,152,000 -2.5% 1,152,000 -2.5% 1,164,000 -1.5%

Square Tube 
Z-frame

658,000 649,000 -1% 647,000 -2% 657,000 0%

Ec
ce

n
tr

ic
 C

o
n

n
ec

ti
o

n
s

Table 1: Comparisons between Experiments, Analytical Solutions, and FEA Predictions for Cross-

Frame Stiffness 

~4 ft.

Figure 12: Lean-on Cross-Frame Bracing 

Concepts 
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Alliance recently published a design guide that was developed based upon the previous lean-on 

bracing work (Holt et al. 2022).   

 

Improved and enhanced lean-on bracing 

provisions were also developed in a recent 

study sponsored by the Texas Department 

of Transportation (TxDOT Project 0-7093 

- Bjelland et al. 2025).  The work builds off 

the previous work summarized in Wang 

(2002) and Helwig and Wang (2003) and 

provides significant enhancements on all 

aspects of lean-on bracing applications.  

There have been a number of bridges built 

using lean-on bracing, one of which is 

shown in Figure 13.  In many cases, the 

number of intermediate cross-frames can 

be substantially reduced leading to 

improved efficiency as well as better 

resistance to fatigue problems.  As 

discussed in Section 3.1.4, in bridges with 

heavily skewed supports such as in Figure 

13, improved performance can be achieved 

utilizing the half-round bearing stiffeners 

at the support regions where cross frames 

are parallel to the skew.  Figure 14 shows 

the significant eccentricity and flexibility 

that the commonly-used bent plates cause.  

These details do not have the ability to 

engage the full stiffness of the cross-frame.    

 

4. Summary 

This paper focused on a number of studies conducted over the past 30 years related to girder 

stability and bracing.  The studies targeted a number of common issues that arise in practical design 

problems.  While many design solutions focus on problems with prismatic sections or well-defined 

bracing, during erection and other stages of construction, the bracing varies significantly and in 

some cases, such as lifting girders with a crane – is totally absent.  The longer unbraced lengths of 

the girders often result in non-prismatic sections and solutions were presented to address these 

issues.  In addition to conventional LTB, the limit state of system buckling for narrow girder units 

that was discovered around 2005 was discussed along with simple buckling expressions that were 

developed.  Stability problems such as the system buckling mode are closely tied to some of the 

factors that impact stability bracing – such as the impact of the in-plane stiffness on cross-frame 

or diaphragm behavior.  A number of recent studies have resulted in significant improvements in 

the understanding of torsional bracing systems.  Improved design solutions have been developed 

for many factors for torsional bracing that recognize the stiffness components of both the brace 

and the in-plane girder stiffness.  Many of these past studies have resulted in solutions that have 

been incorporated into the AISC Specifications for Buildings as well as the AASHTO Bridge 

Figure 13: Lean on Cross-Frame Bracing in Heavily 

Skewed Bridge. 

Figure 14: Bent Plate Details Used on Heavily Skewed 

Bridge 
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Design Specifications.  Some of the more recent work has not been considered for inclusion into 

the specifications; however, may be considered in the future.     
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