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Abstract

This paper investigates the practical applications of the Modal Finite Strip Method (mFSM) to the
buckling mode decomposition of built-up thin-walled members. Building upon the Authors'
previous work, which introduced the underpinning decomposition technique, this study presents a
comprehensive investigation into several of the diverse range of applications enabled by the
proposed method. The effectiveness and versatility of the decomposition method are demonstrated
through numerical studies of a built-up column composed of two lipped channels of unequal size
and a built-up beam composed of two back-to-back lipped channels of equal size. The paper studies
the ability of the technique to accurately assess the buckling behaviour of various types of built-
up members, including the impact of discrete fasteners. Overall, this research highlights the
practical value and wide-ranging applicability of the developed buckling mode decomposition
method, providing a valuable tool for the structural analysis and design of built-up members.

1. Introduction

Cold-formed steel (CFS) sections are widely utilised in structural applications due to their high
strength-to-weight ratio and ease of integration with other construction materials, making them a
versatile choice in modern construction. These sections are commonly used in roofing, wall
framing, and low-rise building structures. By connecting multiple individual sections to form a
built-up cross-section, CFS members can be extended to mid-rise construction, offering enhanced
load-bearing capacity and structural efficiency. Despite their advantages, CFS members are highly
susceptible to buckling instabilities, including local and distortional buckling, as well as
interactions with global buckling modes, such as flexural and flexural-torsional buckling.
Therefore, accurately assessing their structural capacity requires a comprehensive analysis of their
buckling behaviour, including the identification of critical buckling modes and corresponding
loads.

The challenge of buckling analysis increases with geometric complexity, as intricate cross-sections
make it difficult to determine minimum buckling loads for critical modes, particularly when using
conventional signature curve analysis based on the finite strip method (FSM). For built-up
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members, the problem is further complicated by the presence of discrete fasteners, which can
significantly modify the local, distortional, and global buckling response. To effectively analyse
and interpret the complex instability behaviour of thin-walled built-up structures, decomposition
and superposition techniques are required. These methods involve decomposing the buckled shape
into fundamental "basic" modes, which govern the overall failure load and stability behaviour. By
identifying and separating these dominant deformation modes, a more precise understanding of
buckling interactions in built-up members can be achieved.

Significant progress has been made in the development of numerical methods for the buckling
analysis of thin-walled structures, enabling the identification and decomposition of dominant
buckling modes. Several established techniques, including Generalized Beam Theory (GBT)
(Dinis, Camotim, and Silvestre 2006; Gongalves, Ritto-Corréa, and Camotim 2010), the
Constrained Finite Strip Method (cFSM) (Adany and Schafer 2008; Rendall, Hancock, and
Rasmussen 2017), and the Constrained Finite Element Method (cFEM) (Adany 2018; Adany,
Visy, and Nagy 2018), have been instrumental in advancing our understanding of the buckling
behaviour of thin-walled members. More recent decomposition methods have been developed for
thin-walled structures. The Equivalent Nodal Force (ENF) technique by Becque et al. (Becque, L1,
and Davison 2019) decomposes instability patterns based on force equilibrium rather than strain
constraints. Hybrid GBT-shell formulations (Habtemariam et al. 2022) enhance accuracy and
efficiency in modal analysis. The force/displacement-based fFSM (Jin et al. 2021) extends
decomposition to closed and curved sections, addressing limitations of the traditional cFSM. More
recently, the Modal Finite Strip Method (mFSM) (Khezri and Rasmussen 2019b, 2019a) has been
introduced, offering a strain energy-based decomposition approach that provides a flexible and
physically meaningful classification of buckling modes.

While these methods have been successfully applied to single-section thin-walled members, few
methods have been extended to built-up members. The presence of discrete fasteners in built-up
configurations introduces additional complexities, fundamentally altering the interaction between
buckling modes. As a result, conventional modal decomposition techniques, including GBT,
cFSM, and cFEM, do not inherently account for the influence of fasteners, and require
modifications to be applicable to built-up sections. The generalised beam theory was recently
extended (Basaglia, Camotim, and Gongalves 2024) to analyse the buckling behaviour of cold-
formed steel (CFS) built-up members with discrete fasteners by introducing constraint equations
to enforce displacement and rotation compatibility at fastener locations. The authors of the present
paper developed a comprehensive mFSM decomposition framework for built-up sections (Khezri
and Rasmussen 2023), incorporating the effects of discrete fasteners on the local, distortional, and
global buckling modes. The proposed methodology builds on the authors’ previous work on the
Compound Strip Method (CSM) (Abbasi et al. 2018; Khezri, Abbasi, and Rasmussen 2017b;
Abbasi, Khezri, and Rasmussen 2017), which was introduced for the finite strip analysis of built-
up sections. By integrating mFSM with CSM, a complete decomposition technique is developed
that allows for the accurate identification of fundamental buckling modes in built-up sections,
including the influence of discrete fasteners on the overall buckling response. This novel
framework provides an efficient and scalable approach for analysing the buckling behaviour of
complex built-up cold-formed steel members.



The structure of this paper is as follows: Section 2 provides a brief review of the semi-analytical
finite strip method (FSM) and its application to the buckling analysis of thin-walled prismatic
members. Section 3 introduces the compound strip method (CSM) and its role in modelling
discrete fasteners in built-up sections. Section 4 presents the proposed modal decomposition
method (mFSM), detailing the necessary modifications for its application to built-up sections.
Finally, Section 5 includes two numerical examples to validate the accuracy and effectiveness of
mFSM in capturing the modal behaviour of built-up thin-walled columns and beams.

2. Finite strip buckling analysis

2.1 The semi-analytical finite strip method

The finite strip method (FSM) discretises a thin-walled member into ns strips along its transverse
direction, defined by n nodal lines, as illustrated in Figure 1. Longitudinal displacements are
represented using analytical functions, such as beam eigenfunctions (Cheung and Cheung 1971)
or trigonometric functions (Bradford and Azhari 1995), while polynomial shape functions are
employed in the transverse direction. The displacement field at an arbitrary point (x,y) on the mid-
surface of a strip (as shown in Figure 1) is expressed as:
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where P represents the number of terms in the longitudinal direction, S» denotes the a-th term of
the harmonic function series, and u« is the corresponding coefficient. The vectors d*m« and d*pa
define the degrees of freedom (DOFs) associated with membrane and bending displacements,
respectively.

Figure 1: Strip discretization and DOFs, local and global coordinates systems, and nomenclature.

2.2 Internal elastic strain energy and strip stiffness matrices
The flat strip shown in Figure 1 is assumed to maintain its flatness in the presence of applied
stresses until it reaches the point of buckling. The strip total strain energy is defined as follows:
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which can be decomposed into membrane and bending strain energy components:
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where K*nop and Kksep represent the membrane and flexural stiffness matrices of the strip,
respectively, and are defined as:
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In Eq. (4), D and Dy represent the membrane and bending property matrices, respectively, while
B*na and B*»« denote the membrane and bending strain compliance matrices (Cheung and Cheung
1971). Using Eq. (4), the strip stiffness matrix corresponding to the half-waves a and f is obtained
by assembling the membrane and bending components:
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Thus, the total strain energy of the strip can be expressed as:
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2.3 Potential energy of external loads and strip stability matrices
The reduction in potential energy due to in-plane stresses 6% resulting from the buckling
deformation of a flat strip is given by:

"= ehedr, (7)

where ev. represents the nonlinear component of the membrane strain vector, defined as (Plank
and Wittrick 1974):
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Considering only strips subjected to longitudinal in-plane stresses, Eq. (7) can be rewritten as:
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By substituting the general displacement functions from Eq. (1) and performing the appropriate
differentiation, one obtains:
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where g'nqp and g°sqp represent the strip membrane and bending stability matrices, respectively,
corresponding to the a-th and f-th terms. Similar to the stiffness matrix, the strip stability matrix
for the a-th and fS-th terms is defined as:
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Using the strip stability matrix, the potential energy of the externally applied loads can be
expressed as:
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2.4 Global stiffness and stability matrices

The strip stiffness and stability matrices, derived in Egs. (6) and (12), are formulated in the local
coordinate system assigned to each strip. To construct the global stiffness (K) and stability (G)
matrices for a member composed of multiple strips (Figure 1), these local matrices must be
transformed into the global coordinate system and assembled according to the connectivity of the
strips. Similarly, the local strip displacement vectors ds must be transformed and assembled into
the global displacement vector d.

2.5 Buckling equation
The total potential energy (IT) consists of the internal elastic strain energy (U) and the reduction in
potential energy due to the work of external actions (V):

n=uv-r. (13)

Expressed in terms of the assembled global stiffness (K) and stability (G) matrices, the internal
strain energy and the potential energy due to the work of external loads are given by:
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Substituting Eq. (14) into Eq. (13) yields the total potential energy expression for the thin-walled

member:
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where A is the load factor that scales the reference stability matrix (Gu) to the actual stability matrix

(G) under applied external loads. Minimising the total potential energy in Eq. (15) with respect to
d leads to the buckling eigenvalue equation:
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where A is the diagonal matrix containing the eigenvalues, and ® is the corresponding eigenmode
matrix.

3. Compound strip method for the analysis of built-up sections

A framework for analysing built-up sections with discrete fasteners was introduced by the authors
(Abbasi et al. 2018; Khezri, Abbasi, and Rasmussen 2017a), see Figure 2(a). Fasteners are
modelled as 3D beam elements with six DOFs per node (Figure 2(b)), providing a flexible
numerical tool for parametric studies and structural design.
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Figure 2. (a) Schematic view of a built-up section with discrete fasteners, (b) local coordinates and degrees of
freedom of an arbitrarily oriented connection element.

The force-displacement relationship for a fastener in its local coordinate system is given by:
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K. represents the stiffness matrix of the connection element. The stiffness matrix subcomponents
are formulated using in-plane stiffness constants, with detailed derivations available in (Abbasi et



al. 2018) for Euler-Bernoulli and Timoshenko beam models. The compound finite strip model
incorporates the connection element stiffness while maintaining displacement and rotational
compatibility. The system consists of two parallel strips linked by an arbitrarily oriented
connection element (see Figure 3).

Figure 3. Three-dimensional model for connection element and adjoining constituent strips.

The total strain energy of the considered system is expressed as:
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where Ils; and Ils; are the strain energies of the connected strips, NC is the number of connection
elements, and Ilck represents the strain energy of the k-th connection element:

M, =18,K.3, (20)

The displacement field of the connection element is transformed into global nodal displacements
using matrices R and RaL, obtained via single-axis rotations (Chen, Gutkowski, and Puckett 1991;
Wiseman and Puckett 1991). The components of RaL depend on the orientation angles (yi, y;) of
the connected strips (Figure 3), as detailed in (Abbasi et al. 2018). Interpolation matrices y™, and
", (u=1,j) relate the displacement field of the connection element to that of the strips. The
process is summarised as:
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The stiffness contributions of the connection elements are incorporated into the system matrix
while maintaining displacement and rotational compatibility (Abbasi et al. 2018). To facilitate
modal decomposition for built-up sections, a separate matrix (Keus) is introduced to store the
stiffness contributions of the connection elements. For a built-up member composed of N single
sections, the system stiffness matrix TK is given by:
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where nt is the total number of DOFs.

4. Modal finite strip method (mFSM)

4.1 Theory and background

Modal decomposition methods express arbitrary displacement fields as linear combinations of
structurally meaningful "pure" modes, forming an orthogonal basis. The deformation spaces are
categorized into global (G), distortional (D), local (L), shear (S), and transverse extension (TE)
modes, following the classification framework of (Adany and Schafer 2014a, 2014b). These
classification criteria are summarized in Table 1.

Table 1: Mechanical criteria for mode classes (Adany and Schafer 2014a, 2014b)

G D L S TE
Ga Gs Gr Lp Ls St Stt Spt Sct SBw  Stw  Spt Scw  Ssw TEp TEs
&=0 Y Y Y Y N
Yo=0 Y Y Y N N
Trans. Eq. Y Y N Y Y Y N Y Y Y Y Y N
=0 N N Y Y Y Y Y N N N N N Y
=0 Y N N Y Y N N Y Y Y Y Y N Y
=0 Y Y N N N N Y N N N Y Y Y Y Y N Y
K= 0 Y N N N N N N N N N Y Y Y Y Y N Y

This study adopts the modal identification and classification framework previously developed for
the constrained Finite Strip Method (cFSM) and the mFSM (Khezri and Rasmussen 2019b, 2019a,
2018). In cFSM, constraint matrices (Ra) are introduced to map the general deformation space (d)
onto constrained modal spaces (dw), as:

d=R d,, (23)

where the columns of Ra define the base vectors for each of the deformation modes. This mapping
extends to eigenmodes (@), leading to:

O=R D,,. (24)
which results in the constrained eigenvalue problem:
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where K and Gu are the global stiffness and stability matrices, while Kis and Gu represent their
constrained counterparts.

Unlike cFSM, mFSM constructs modal base vectors by solving a generalised eigenvalue problem,
determining the strain energy ratio for each mode (Khezri and Rasmussen 2019b, 2019a, 2018):
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where Hu represents the modal base vectors, and Kus is the modal stiffness matrix, formulated
based on the kinematic constraints of mode M. Additional constraints, such as transverse
equilibrium and mode orthogonality, are enforced by modifying Ha. To obtain the strain energy
ratios required in Eq. (26), the following generalised eigenvalue problem must be solved:

(H,x,H,)-T, (H,KH,))O, =0. (27)

The eigenmode matrix @u is obtained from this eigenvalue problem, and the constraint matrix Ry
is extracted by selecting eigenvectors that satisfy the required modal conditions.

4.2 Extension to Built-Up Sections

For a built-up member consisting of N single sections, the mFSM framework developed for
individual sections (Khezri and Rasmussen 2019a, 2019b, 2018) has been extended to built-up
members in (Khezri and Rasmussen 2023). This extension involves assembling the built-up
members stiffness submatrices associated with each strain component as block-diagonal matrices.
For example, the stiffness sub-matrix corresponding to the axial strain &x is given by:

K, ]=| i i (28)

where Klg represents the contribution of the i-th single section. The same formulation applies to

other strain components (ng K,...K, K K K, K ), each with a corresponding stiffness
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matrix structured in a similar block-diagonal form. These stiffness submatrices for the built-up

sections are used to determine the appropriate Ki matrices for the mode (M) in question. The key
modifications for built-up members involve:

(1) Aggregating the stiffness contributions from all sections while excluding fastener stiffness
terms in the modal stiffness matrix Kwm

(2) Replacing the single-section stiffness matrix K with the system stiffness matrix TK, which
includes fastener stiffness contributions via Eq. (22).

Thus, the ratio of the elastic strain energy developed under mode M deformations to that of general
displacements for a built-up member can be derived as:

— HTM I(MHM — HTM KMHM .
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where TK is the system stiffness matrix incorporating the fastener stiffness matrix Keus, ensuring
compatibility with the fastener-influenced buckling behaviour. The procedure for extracting pure



modes follows the approach described in (Khezri and Rasmussen 2019a, 2019b, 2018) and its
extension to built-up members in (Khezri and Rasmussen 2023). The initial Hy matrix for the
global axial mode (Ga) is chosen as the range of the eigenmodes matrix ®, computed via singular
value decomposition (SVD) (Strang 1993). This ensures that the decomposition is performed in a
space that is compatible with the deformation modes of the built-up member. Finally, to maintain
consistency with Generalized Beam Theory (GBT) assumptions, Poisson’s effects are ignored by
setting v = 0, thus eliminating strain interaction terms (Adany et al. 2009).

5. Numerical examples

5.1 General

In this section, we investigate the applicability of the proposed modal Finite Strip Method (mFSM)
for analysing the buckling behaviour of built-up sections through two numerical examples. The
study begins by evaluating the buckling response of the individual constituent sections to establish
a baseline understanding of their structural behaviour. Subsequently, the Compound Strip Method
(CSM) is employed to analyse the buckling characteristics of the built-up section formed by
combining these individual components. Following this, the mFSM is applied to perform a modal
decomposition of the buckling deformations for both the single and built-up sections, providing a
deeper insight into their stability characteristics. To ensure the reliability of the results, finite
element (FE) solutions obtained using ABAQUS are included for validation where applicable.

5.2 Example 1: Built-up column with back-to-back C-sections of different profiles

This example investigates the buckling behaviour of a built-up column composed of back-to-back
C-sections with different size profiles. The section profiles used in this study are shown in Figure
4(a). The sections have different dimensions but are selected to exhibit similar local and
distortional buckling loads. The finite strip (FS) discretisation utilised for the analysis is presented
in Figure 4(b). A 30 mm fastener spacing is selected to ensure that a sufficient number of built-up
sections can be analyzed, particularly for shorter columns. The first row of fasteners is placed 5
mm from each end, resulting in column lengths of 40 mm, 70 mm, 100 mm, 130 mm, and so on.
If a larger spacing, such as 50 mm, were used, the column lengths would instead be 60 mm, 110
mm, 160 mm, reducing the total number of columns analysed. To validate the results, a finite
element (FE) analysis is performed in ABAQUS, incorporating the same section profiles and
fastener spacing. This allows for a comprehensive comparison between FS and FE predictions of
buckling behaviour.

54 mm t 124 mm S E
D —— 2.4 mm e o o o oo L
16 mm || : /v 4
100 mm 150 mm M4.8 Fasteners
I i § o L] L] Ef [ ]
1.6 mm I 52 : PO, E
80 mm (a) S1 (b)

Figure 4: (a) Cross-sectional dimensions of the two different C-sections used in the built-up column configuration.
(b) Finite Strip (FS) discretization of the back-to-back built-up column, showing the fastener locations
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Signature Curves and Modal Decomposition of Individual Sections

The first step in the analysis is obtaining the signature curves of the individual sections (S1 and
S2) under pin-ended boundary conditions. The buckling behaviour is analysed over a length range
of 30 mm to 7,000 mm, considering only a single longitudinal term (m = 1). The resulting signature
curves are presented in Figure 5. To further investigate the buckling characteristics, the modal
Finite Strip Method (mFSM) is employed to decompose the signature curves into pure local,
distortional, and global buckling modes. The decomposed results for S1 and S2 are also shown in
Figure 5. As observed, both sections exhibit similar local and distortional buckling minima values,
but these critical loads occur at different lengths. The corresponding buckling mode shapes at the
local and distortional minima are illustrated in Figure 5, along with the global flexural-torsional
buckling mode at 1585 mm.
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Figure 5. Signature curves of sections S1 and S2, showing buckling behaviour with pure local, distortional, and
global mode decomposition.

Comparison with Finite Element Analysis (FEA)

To validate the FSM results, the S1 and S2 sections are also analysed by Finite Element Analysis
(FEA) using ABAQUS. The models utilise S4R shell elements, and a sufficiently fine mesh is
employed to ensure convergence. It is well-known that FEA and FSM with a single longitudinal
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term (m = 1) may yield different results. Difference arise because, in FE models, a large number
of elements are used in the longitudinal direction (member length), inherently leading to results
that deviate from those obtained using the FSM with a single term. To improve the consistency
between FSM and FEA, the number of longitudinal terms in FSM (mmax) is increased to accurately
capture longitudinal flexibility.

The results obtained using FSM with mmax terms and FEA are compared in Figure 6(a).
Additionally, the buckling behaviours of the individual sections (S1 and S2) and the built-up
column are analysed using both methods. As expected, the built-up section exhibits significant
enhancement in buckling loads, especially for the global mode, but also for the local mode due to
the closely spaced fasteners.

Buckling Mode Decomposition of the Built-Up Column

The mFSM is also applied to decompose the all-modes buckling curve obtained using multiple
longitudinal terms (mmax). Typically, modal decomposition is performed on signature curves with
m = 1; however, this example demonstrates the capabilities of mFSM in buckling mode
decomposition beyond single-term analysis. The decomposed local, distortional, and global mode
curves for the built-up column are presented in Figure 6(b). The results show that:

e Local buckling dominates over a wide range of lengths (40 mm to 2000 mm), closely
matching the all-modes curve.

e For lengths exceeding 2000 mm, global buckling becomes progressively dominant, as
evidenced by the global mode curve aligning with the all-modes curve at lengths greater
than 2000 mm.

e The distortional buckling curve remains consistently above the minimum of the local and
global curves, indicating that distortional buckling is not the governing mode in this case.

1100 ° 1100 \
1000 4 O A e S1FSM-mmex 1000 —Built-up All modes FSM \
900 o S2-Abaqus -=---S2-FSM-mmax 900  ----Built-up Local mFSM \\
\
= 500 ——Built-up FSM o Built-up Abaqus gop | Built-up Distortional mFSM
E 1N — —Built-up Global mFSM
2 700 s 70
5 600 S 600
=X ~
w5 500 y 500
400 Ui 400

' =
0 10 100 1000

10 100 1000 Member length (mm)
Member length (mm) (b)

(a)
Figure 6. (a) Comparison of buckling loads obtained using FSM with mmax and FEA for S1, S2, and the built-up
column (b) Modal decomposition of the built-up column's buckling behaviour using the FSM with mmax

Comparison of Buckling Loads

Table 2 presents the buckling stresses at selected member lengths (100, 250, 1030, and 3730 mm)
for both the constituent sections (S1 and S2) and the built-up column, along with the ratios between
them and the corresponding FEA buckling stresses obtained using Abaqus.
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The buckling stress ratios indicate a notable enhancement in buckling capacity due to the
composite action between the sections, facilitated by the fasteners. The improvement is
particularly pronounced in the global buckling region, where the built-up column exhibits an
approximately 50% increase in buckling capacity compared to section S1.

Table 2. Comparison of buckling stresses (MPa) from FSM and FEM for sections S1, S2, and the built-up column

Member Section S1 Section S2 Built-up Load ratio (FSM)
1(?;%;;1 FSM mmax ~ Abaqus FSM mmax ~ Abaqus FSM mmax ~ Abaqus Syy,bu/Syy,st Syy,bu/Syy,s2
100 247.43 243.36 250.55 247.82 291.90 279.39 1.20 1.17
250 238.77 236.27 238.38 236.64 274.64 266.63 1.16 1.15
1030 238.67 237.07 238.28 237.15 273.32 275.26 1.15 1.15
3730 93.653 95.506 50.773 51.552 141.67 145.60 1.48 2.79

The buckling analysis results for the built-up member using the compound strip method with a
single longitudinal term (m = 1) are presented in Figure 7. The mFSM decomposition results are
also included, showing the pure local, distortional, and global buckling mode curves for the built-
up section. The all-modes curve for the built-up (BU) section is consistently higher than the
buckling curves of the individual sections (S1 and S2) across all length ranges, confirming the
enhanced buckling resistance of the built-up configuration.

—— All Modes - S1 —— All Modes - S2 ——All Modes - BU

--e--Local - mFSM BU «--+-Dist. - mFSM BU —e—Global - mFSM BU

10 100 1000 10000
Member length (mm)

Figure 7. Comparison of buckling curves for the built-up section with those of its constituent sections (S1 and S2)

It is noted that the enhancement in the local region is due to close spacing of fasteners (S = 30),
and for larger values of spacing the change in local buckling capacity will be negligible. The
greatest improvements occur in the distortional and global buckling regions, particularly at longer
column lengths, where the built-up column exhibits a significant increase in buckling capacity. For
the built-up member, in the local buckling region (40 mm — 200 mm), the local buckling curve
closely follows the all-modes curve, indicating that local buckling governs at shorter column
lengths. The distortional buckling minimum obtained using mFSM is higher than the local
buckling capacity, further confirming that local buckling is the dominant sectional mode for this
built-up section.
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The first three pure local, distortional, and global buckling mode shapes, obtained using mFSM
for a built-up column of length 250 mm, are shown in Figure 8, Figure 9, and Figure 10,
respectively. These results provide further insight into the mechanisms governing the buckling
response of the built-up member.
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Figure 8. Pure local mode shapes of built-up column at length Z= 250 mm (a) 1% (b) 2", and (c) 3¢ modes
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Figure 9. Pure distortional mode shapes of built-up column at length L= 250 mm (a) 1% (b) 2", and (c) 3" modes
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Figure 10. Pure global mode shapes of built-up column at length L= 250 mm (a) 1* (b) 2", and (c) 3™ modes
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5.2 Example 2: Built-up beam with back-to-back identical C-sections

In this example, two identical lipped C-sections are connected back-to-back using M4.8 fasteners
with a longitudinal spacing of 50 mm. The cross-section geometry and dimensions are shown in
Figure 11(a), while the finite strip (FS) discretization and fastener locations are illustrated in Figure
11(b). The fastener spacing of 50 mm is chosen to be shorter than the local buckling half-
wavelength to allow the fasteners to influence both local and distortional buckling modes. This
spacing is smaller than typical fastener spacings used in practice, ensuring a more pronounced
interaction between the connected sections. The first row of fasteners is positioned 5 mm from the
member ends, resulting in a minimum built-up member length of 60 mm.
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Figure 11: Built-up I-section beam: (a) geometry and dimensions, (b) finite strip discretization and fastener locations

Buckling Analysis of the Constituent Sections Under Pure Bending

The buckling behaviour of a single C-section is first examined under pure bending, where the
applied reference bending moment is determined to generate compressive and tensile stresses of
magnitude 1 MPa at the extreme fibres (on the flanges). The finite strip (FS) analysis using a single
longitudinal term (m = 1) shows that the section is prone to both local and distortional buckling,
with two distinct buckling minima:

e Local buckling at L =70 mm
e Distortional buckling at L =445 mm

The buckling mode shapes corresponding to these lengths are illustrated in Figure 12, showing the
characteristic deformation patterns associated with local and distortional buckling.

The modal Finite Strip Method (mFSM) results for buckling mode decomposition are also
presented in Figure 12, depicting the pure local, distortional, and global buckling mode curves.
The results confirm that:

(1) The local and distortional buckling mode minima align closely with the minima obtained
from the all-modes analysis, validating the decomposition process.

(2) For member lengths exceeding 2500 mm, the global buckling curve coincides with the
all-modes curve, indicating that global buckling is the dominant failure mode for longer
members.
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Figure 12. Signature curves of constituent section (S) subjected to pure bending, showing buckling behaviour with
pure local, distortional, and global mode decomposition.

(3) L =2500 mm

The buckling response of the built-up beam member is examined using the compound strip
method, with the results presented in Figure 13. For comparison, the all-modes buckling curve for
the single-section member is also included. Additionally, the buckling mode shapes at lengths (1)
L =60 mm, (2) L =410 mm, and (3) L = 2520 mm are provided to illustrate the deformation
characteristics of the built-up section.

The local buckling capacity of the built-up member is similar to that of the single-section member,
as indicated by the overlap between the buckling curves of the single section and the built-up
section in the short-length range. This behaviour is expected partly because a larger fastener
spacing of 50 mm is used for the built-up beam member and partly because fasteners generally
have limited effect on the local buckling capacity due to its short half-wavelength. A considerable
enhancement in buckling capacity is observed in the distortional and global buckling regions, with
the built-up section showing higher critical loads compared to the single-section member. This
improvement is attributed to the fastener-induced composite action, which increases the overall
stiffness and strength of the system.
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The mFSM decomposition results, also shown in Figure 13, depict the pure local, distortional, and
global buckling mode curves. The results reveal that, (1) the distortional buckling curve is notably
higher than the all-modes curve, indicating that while distortional buckling is the primary mode in
this range, contributions from other modes also influence the overall buckling response, and (2)
the global buckling curve coincides with the all-modes curve for lengths exceeding 2500 mm,
demonstrating that global buckling is the dominant mode at long lengths. To further examine the
buckling behaviour, the pure mode shapes (mFSM) at selected critical lengths are illustrated:

(1) L = 60 mm: Characterised by short-wavelength deformations primarily affecting the
flange and web regions.

(2) L =410 mm: Displays cross-sectional deformations involving flange rotation and web
distortion, which are characteristic of distortional instability.

(3) L = 2560 mm: Exhibits a long-wavelength buckling mode involving overall lateral
displacement and twisting of the entire built-up section.
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Figure 13. Comparison of buckling curves for the built-up section with its constituent sections and pure buckling
mode shapes at (1) L = 60 mm, (2) L =410 mm, and (3) L =2520 mm

The pure local, distortional, and global buckling mode shapes for a built-up beam of length 210
mm, obtained using mFSM, are presented in Figure 14, Figure 15, and Figure 16, respectively. For
the considered beam, only two meaningful distortional buckling mode shapes exist, as illustrated
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in Figure 15. Two distinct global buckling mode shapes are observed for the built-up beam and
these are depicted in Figure 16, highlighting different global instability mechanisms, including

3

lateral-torsional buckling and flexural buckling.
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Figure 14. Pure local mode shapes of built-up section beam at length L = 210 mm (a) 1% (b) 2", and (c) 3 modes
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Figure 15. Pure distortional mode shapes of built-up section beam at length Z =210 mm (a) 1%, and (b) 2" modes

x

g |
(1)

Figure 16. Pure global mode shapes of built-up section beam at length L =210 mm (a) 1% t, and (b) 2" modes
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As shown in Figure 16, the second pure global mode corresponds to a flexural buckling mode
about the major axis of the beam. This buckling mode is not accounted for in existing analytical
solutions, such as those provided by (Trahair 2017) for the buckling of beams subjected to bending.
Further examination of the buckling loads associated with this mode revealed extremely high
buckling stresses, which remained independent of the examined length. These large buckling
stresses indicate that, while such a buckling shape may numerically exist, it is not physically
feasible for the beam to attain this mode in practice.

6. Conclusions

This study presented the Modal Finite Strip Method (mFSM) for the decomposition of buckling
modes of built-up cold-formed steel (CFS) members, demonstrating its effectiveness through two
distinct numerical examples of a built-up section column and a built-up section beam. The method,
which extends previous work on single-section modal decomposition, was successfully applied to
built-up sections by incorporating the effects of discrete fasteners using the Compound Strip
Method (CSM) framework.

The results highlight the significant influence of fastener spacing on the interaction between local,
distortional, and global buckling modes. While the local buckling behaviour remains largely
unchanged, unless a very short fastener spacing is used, the distortional and global buckling
capacities are significantly enhanced due to the composite action provided by fasteners. The
mFSM decomposition revealed the dominant modal contributions at different length scales,
confirming the capability of the mFSM method to accurately separate pure buckling modes and
track their evolution in built-up configurations.

Comparison with finite element analysis (FEA) validated the accuracy of the proposed approach,
demonstrating that mFSM provides reliable predictions with significantly reduced computational
effort compared to full shell-element based modelling. This makes mFSM a practical and efficient
tool for the structural analysis and design of built-up CFS members, enabling engineers to better
understand buckling behaviour and optimize design parameters.
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