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Abstract 

The present paper investigates the influence of geometric imperfections on the local buckling 

response of hot-rolled steel channel sections under compression. There are very little 

recommendations and guidelines on the design requirements of local geometric imperfections in 

the context of finite elements modeling. As cross-sectional behavior can have a significant 

influence on the compressive strength of a member, it is of great importance to assign the right 

shape and amplitude of local geometric imperfections. Accordingly, this paper aims to provide a 

consistent and reliable method to numerically model local geometric imperfections in hot-rolled 

steel channel sections subjected to axial compression. Shell finite element models including 

geometric imperfections, residual stresses, and fillet radius in cross-sections corners, were 

developed and validated against stub column test with parallel flanges channel sections. Based on 

the validated finite element models, numerical parametric studies were performed to assess the 

effects of various imperfections’ shapes, periods and amplitudes on several cross-sections with 

different width-to-thickness ratios. Safe and reliable recommendations were then provided to 

better account for local geometric imperfections in finite elements modeling of channel sections 

under compression.  

 

1. Introduction 

The manufacturing processes and transportation conditions of steel members can introduce initial 

imperfections, causing deviations from their expected ideal shape. These imperfections’ nature 

and their influence depend on the member geometry (open or closed sections, double or mono-

symmetric) and the loading conditions. Consequently, they can lead to premature yielding or 

buckling, reducing the ultimate capacity of hot-rolled steel members under compression and 

leading to a precipitate failure. The exact shape and amplitude of initial imperfections are generally 

unknown and assuming the worst-case scenario by combining the most unfavorable shape with 

fabrication tolerances can be overly conservative and result in expensive constructional costs.  
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With advanced finite element software, implementing geometric imperfections in finite element 

models has become a significant challenge. A common method (Dawson and Walker 1972) is to 

assume the shape of geometric imperfections distribution as equivalent to the lowest buckling 

mode obtained from a linear buckling analysis. This mode is then scaled with an amplification 

factor that is either the maximum value measured experimentally or an equivalent value used in 

parametric studies. A general expression of the amplitude of the local imperfections, 
0 , as 

derived in Eq. 1, is based on Dawson and Walker’s (Dawson and Walker 1972) previous 

formulation. This expression involves the thickness of the plate, t , the material’s 0.2% proof 

stress, 
0 2. , and the plate’s critical buckling stress 

cr . 

 

 ( )0 0 2. crt =     (1) 

 

Dawson and Walker (Dawson and Walker 1972) conducted linear regression analyses to determine 

the most suitable value for the amplitude, finding a best fit with 0 2.= , corresponding to a 

coefficient of determination 2 0 025R .= . Later, Gardner (Gardner 2004) achieved a better fit with 

0 023.=  and a closer-to-unity 2 0 22R .= , thus providing a more accurate prediction. Schafer and 

Peköz (Schafer and Peköz 1998) studied geometric imperfections in cold-formed steel members 

and proposed expressions for local geometric imperfections’ amplitudes using simple rules of 

thumb applied to width-to-thickness ratios ( w t ) less than 200 and thickness less than 3mm. 

However, after acknowledging that these conditions do not always represent the full range of 

possibilities, they also conducted a probabilistic study that treated the maximum imperfection 

magnitude as a random variable. To analyze the periodicity in the measured imperfections, they 

generated an imperfection spectrum using the Fourier transform. While this generalized 

imperfection pattern was consistent with the experimental observations, this approach is 

impractical for design due to the large number of analyses required.  

 

Greiner (Greiner et al. 2009) suggested a predictive shape for initial local geometric imperfections 

by modifying the nodal coordinates to follow a sine shape. This method was later adopted by Nseir 

(Nseir et al. 2016) for hollow sections, and Gerard (Gerard et al. 2019) for I-sections. They 

investigated the influence of sine shapes’ periods and amplitudes on local imperfections and 

compared the cross-sectional resistances obtained to those with models considering eigenmode 

shapes as initial imperfection shapes. The period and amplitudes depended on the web and flanges 

thickness that are respectively, 2 2w fa h t r= − −  and 2f wa b t r= − − for an I-section, where h  is the 

height of the profile, b  the width of the profile, ft the thickness of the flange, 
wt  the thickness of 

the web and r  the fillet radius (Gerard et al. 2019).  

 

Design codes provide different recommendations for the numerical modeling of local geometric 

imperfections. The American Specification for Structural Steel Building, AISC 360 (2022), 

recommends using the permissible construction tolerances outlined in the Code of Standard 

Practice, AISC 303 (2022), as the amplitude of geometric imperfections. However, it does not 

provide guidance on the shapes of these imperfections or the appropriate method for incorporating 

them into finite element analyses. The Canadian standard for the Design and construction of steel 

structures, CSA S16 (2024), suggests modeling local geometric imperfections as a sine or a cosine 

function, depending on the boundary conditions, with amplitudes equal to the permissible 
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tolerances specified in CSA G40.20/G40.21 (R2023) or the applicable ASTM standard, A6/A6M 

(R2023). The European standards for plated structural elements, EN 1993-1-5 (2006), suggests 

using the shape of the lowest eigenmode with an amplitude equal to the minimum value between 

200a /  and 200b /  (a and b refer to the height and width of the plate, as shown in Fig. 1) or 80% 

of geometric fabrication tolerances. EN 1993-1-5 also addresses the combination of initial 

imperfections, including geometric imperfections and residual stresses. Among the imperfections, 

one is selected as the leading imperfection with its full amplitude, while the other accompanying 

imperfections’ amplitudes are reduced by 30%. However, the identification of the leading 

imperfection is not further discussed.  

 

Figure 1: Equivalent local geometric imperfections according to EN 1993-1-5 (2006) 

 

This paper investigates the influence of local geometric imperfections on hot-rolled channel 

sections, examining the shape and amplitude of initial imperfections to provide recommendations 

for finite element modeling. Section 2 describes the numerical modeling process of non-linear 

finite element models and presents a comparison of experimental test results with numerical results 

assuming different imperfection shapes. Section 3 discusses the influence of various imperfection 

shapes and amplitudes on the compressive resistance of several slender cross-sections. Section 4 

provides recommendations for the definition of local geometric imperfections in finite element 

models.  

 

2. Numerical modelling  

2.1. Development of finite element models 

Suitable finite element models have been developed through the software package ABAQUS 2023 

and later validated against experimental results. Linear buckling analyses (LBA) and geometric 

and material nonlinear with imperfection analyses (GMNIA) with displacement control, were 

carried out to model the behavior of channel sections. The quadrilateral shell element with reduced 

integration, S4R, was selected to model the finite element models as it has been shown in the 

literature to be suitable for similar studies (Nseir 2016, Yun 2016, Gérard 2019). After performing 

mesh sensitivity studies, a mesh size corresponding to 1/10th of the flange width with an aspect 

ratio of 1 (width/length = 1), exhibited sufficient accuracy while maintaining computational 
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efficiency and was therefore adopted for all models. To account for the non-negligible extra 

torsional stiffness due to the fillet radius area in hot-rolled sections and subtract the overlapping 

area as shown in Fig. 2 (Li et al. 2022), additional hollow beam sections were added at the centroid 

level of the fillet radius area and implemented with the three-dimensional beam element, B31. 

Moreover, the fillet radius in hot-rolled sections helps to prevent local buckling within the web-

to-flange transition zones. Consequently, extra stiff spring elements were introduced into the 

model as depicted in Fig. 2 (Li et al. 2022). 
 

 

Figure 2: Fillet radius area of hot-rolled sections – (a) real geometry – (b) modeled geometry 

 

Experimental boundary conditions were used for model validation, while fork-type support 

conditions were considered for the parametric studies (see Fig. 3). Reference points (RPs) were 

defined at the geometric centroids of both end cross-sections, and rigid body constraints were 

created between the RPs and the end sections, allowing all degrees of freedom of the end nodes of 

the model to be governed by the RPs. The boundary and loading conditions were assigned to the 

RPs to ensure an even application to the end sections. Torsional rotations and out-of-plane 

displacements about both principal axes at the members’ end section (i.e., 0x y zu u= = = ) were 

prevented at both end sections. Additionally, axial translation was set free on the loaded end and 

prevented on the other end, as illustrated in Fig. 3. A non-zero longitudinal distance between the 

reference point and the end-sections was considered to replicate experimental support conditions, 

while this distance was set to zero during parametric studies.  

 

Figure 3: Fork-type support conditions used in parametric studies 
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The quad-linear material model suggested by Yun (Yun 2017) was adopted in this study. The 

nominal values of stresses, 
nom , and strains, 

nom , were converted into true stresses, 
true , and 

plastic strains, p , according to Eq. 2. 

 

 
( )

( )

1

1

true nom nom

p nom trueln E

= +

= + −

  

  
 (2) 

 

No reliable residual stress measurements on hot-rolled channel sections are known by the author 

to this date. The residual stress pattern considered in the present paper was mathematically derived 

by Beyer (Beyer 2017), based on a pattern that was already proposed and used in many previous 

studies (Lindner and Glitsch 2004, Snijder et al. 2008) to ensure that all the equilibrium equations 

are verified. 

 

To account for local geometric imperfections, two approaches are discussed in this paper:  

 

(i) Approach 1: introducing imperfections through the modification of nodal coordinates to 

follow a sine shape in both directions of the cross-section’s plates for different sets of 

halfwave lengths and amplitudes as defined by Table 1.  

 

(ii) Approach 2: introducing imperfections through the first eigenmode shape obtained from a 

linear buckling analysis, with varying amplitudes.  

 
Table 1 Characteristics of the various sets of local geometric imperfections considered in this study 

n° Case Halfwave 

length 

Amplitude 

web 

Amplitude 

flange 

Half-wave 

number 

1 5 200avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  5 

2 3 200avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  3 

3 2 200avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  2 

4 3 200f f ppHWL a / L a / Amp. a /= = =  fa  200wa /  200fa /  3 

5 3 200w w ppHWL a / L a / Amp. a /= = =  wa  200wa /  200fa /  3 

6 3 200pp avg ppHWL a / L a / Amp. a /= = =  ppa  200wa /  200fa /  Variable 

7 3 100avg avg ppHWL a / L a / Amp. a /= = =  avga  100wa /  100fa /  3 

8 3 400avg avg ppHWL a / L a / Amp. a /= = =  avga  400wa /  400fa /  3 

9 3 200avg avg avgHWL a / L a / Amp. a /= = =  avga  200avga /  200avga /  3 

10 3 200avg avg fHWL a / L a / Amp. a /= = =  avga  200fa /  200fa /  3 

11 3 200avg avg wHWL a / L a / Amp. a /= = =  avga  200wa /  200wa /  3 

 

In both cases, the full amplitudes of geometric imperfections were considered and the reduction of 

30% prescribed by EN 1993-1-5 was disregarded although residual stresses were considered. Fig. 

4 illustrates the different sets of imperfections considered in the first approach. In this case, 

halfwave lengths and amplitudes are defined by the buckling length of the cross-sections’ plates. 

For hot-rolled channel sections, buckling lengths of flanges and web are respectively 
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( )2f wa b t r=  − −  and 2 2w fa h t r= − − , where b  refers to the width of the profile, h  to the height 

of the profile, 
wt  to the thickness of the web, ft  to the thickness of the flange and r  to the fillet 

radius. Therefore, a case denoted as “ 3 200pp avg ppHWL a / L a / Amp. a /= = = ” refers to a member 

with an initial local imperfection pattern comprising 3 half-waves, each with a length equal to the 

corresponding plate’s characteristic buckling length and an amplitude equal to 1/200th of the 

average between the web buckling length, 
wa  and the flanges buckling lengths, fa  defined by Eq. 

3. 

 

 ( ) 2avg f wa a a= +  (3) 

 

 
Figure 4: Sine-shape imperfections of cases 1) specified in Table 1 on the upper left; cases 2), 4), 5), 7), 8), 9), 10) 

and 11) on the upper right; case 3) on the lower left; case 6) on the lower right 

 

2.2. Comparison of numerical models with experimental data 

Through an extensive literature review, 26 stub column test data (Li 2023) were gathered to 

compare different initial geometric imperfection shapes with the measured imperfections during 

the experimental tests. These tests consisted of hot-rolled channel sections including C80x40x5, 

C100x50x5 and C100x50x6, from grade EN 1.4301 austenitic stainless-steel sheets subjected to 

simple and combined loads. Table 2 reports the key parameters and results of these tests, and a 

typical test setup is illustrated by Fig. 5.  

 

Among the cases described in Table 1, only cases 2, 4, 5, and 6 are considered in this comparative 

study to assess the effect of the sine shapes periods. Two additional cases, based on the second 

approach, are also included in the study with the local geometric imperfections amplitude equal to 

the 1/200th of the average buckling, 200avgAmp. a /= , and the measured amplitudes, 
0w . Figs. 6 

and 7 show examples of the different initial geometric imperfection shapes considered for 
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specimen C1-S1, introduced through sine shape functions and first eigenmode shapes, 

respectively. 

 
Table 2: Test data and corresponding sine shapes periods and amplitudes. 

Specimen 

ID 

Load 

type 

b h t r h/b w0 af aw aavg af/200 aw/200 

(mm) (mm) (mm) (mm) (-) (mm) (mm) (mm) (mm) (mm) (mm) 

C1-S1 N 39.75 80.46 4.79 4.74 2.02 0.03 60.44 61.40 60.92 0.30 0.31 

C1-S2 N 39.8 80.39 4.72 4.75 2.02 0.05 60.66 61.45 61.06 0.30 0.31 

C2-S1 N 49.75 98.91 4.8 4.84 1.99 0.04 80.22 79.63 79.93 0.40 0.40 

C2-S2 N 49.69 98.93 4.72 4.76 1.99 0.04 80.42 79.97 80.20 0.40 0.40 

C3-S1 N 49.15 100.11 5.62 5.61 2.04 0.06 75.84 77.65 76.75 0.38 0.39 

C3-S2 N 49.18 100.16 5.72 5.74 2.04 0.05 75.44 77.24 76.34 0.38 0.39 

C1 N + My 49.65 98.93 4.82 4.91 1.99 0.03 79.84 79.47 79.66 0.40 0.40 

C2 N + My 49.62 98.99 4.79 4.85 1.99 0.04 79.96 79.71 79.84 0.40 0.40 

C3 N + My 49.62 98.99 4.79 4.87 1.99 0.04 79.92 79.67 79.80 0.40 0.40 

C4 N + My 49.75 98.95 4.77 4.9 1.99 0.04 80.16 79.61 79.89 0.40 0.40 

C5 N + My 49.61 98.97 4.73 4.63 1.99 0.04 80.5 80.25 80.38 0.40 0.40 

RC1 N + My 49.74 99.05 4.86 4.77 1.99 0.03 80.22 79.79 80.01 0.40 0.40 

RC2 N + My 50.27 99.01 4.79 4.94 1.97 0.04 81.08 79.55 80.32 0.41 0.40 

RC3 N + My 49.59 98.97 4.75 4.85 2.00 0.03 79.98 79.77 79.88 0.40 0.40 

RC4 N + My 49.79 98.91 4.71 4.66 1.99 0.04 80.84 80.17 80.51 0.40 0.40 

RC5 N + My 49.65 98.91 4.76 4.64 1.99 0.03 80.5 80.11 80.31 0.40 0.40 

A1 N + Mx 40.52 80.56 5.06 4.95 1.99 0.05 61.02 60.54 60.78 0.31 0.30 

A2 N + Mx 40.13 80.79 5.07 4.88 2.01 0.04 60.36 60.89 60.63 0.30 0.30 

A3 N + Mx 40.45 80.6 5.01 4.96 1.99 0.03 60.96 60.66 60.81 0.30 0.30 

A4 N + Mx 40.14 80.47 4.93 4.91 2.00 0.04 60.6 60.79 60.70 0.30 0.30 

A5 N + Mx 39.97 80.41 4.83 4.82 2.01 0.05 60.64 61.11 60.88 0.30 0.31 

B1 N + Mx 49.54 98.75 4.85 4.87 1.99 0.03 79.64 79.31 79.48 0.40 0.40 

B2 N + Mx 49.76 98.98 5.02 4.95 1.99 0.04 79.58 79.04 79.31 0.40 0.40 

B3 N + Mx 49.77 98.98 5.07 5.01 1.99 0.05 79.38 78.82 79.10 0.40 0.39 

B4 N + Mx 49.63 98.99 5.07 4.98 1.99 0.03 79.16 78.89 79.03 0.40 0.39 

B5 N + Mx 49.6 98.92 4.99 4.89 1.99 0.03 79.44 79.16 79.30 0.40 0.40 
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Figure 5: Typical experimental testing setup for specimens under combined loads (Li 2023) 

 

 

Case 2 (af) 

 

Case 4 (aw) 

 

Case 5 (aavg) 

 

Case 6 (app) 

 

Figure 6: Initial imperfections introduced through sine shapes for specimen C1-S1 

 

 

(Amp. = aavg/200) 

 

(Amp. = w0) 

 

Figure 7: Initial imperfections introduced through eigenmode shapes for specimen C1-S1 

 

Figs. 8 to 10 present a comparison between experimental cross-sectional resistances and their 

numerical counterparts. The ratios of the ultimate load obtained from FE analyses, 
FEAP , to the 

experimental load, 
EXPP , highlight the divergences between numerical and experimental 
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resistances due to the imperfection pattern considered. It indicates the accuracy and safety levels 

of the models as well as the reliability and consistency of the sets of imperfections. 

 

Figure 8: Ultimate capacity of channel sections under pure compression with different imperfection shapes 

 

Figure 9: Ultimate capacity of channel sections under minor-axis combined loading with different imperfection 

shapes  
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Figure 10: Ultimate capacity of channel sections under major-axis combined loading with different imperfection 

shapes 

 

These figures lead to the following conclusions: 

 

(i). When sine shapes are used to model geometric imperfections, the period of the sine shape 

appears to have a negligible influence on the cross-sectional capacity in case of pure 

compression (See Fig. 8) and minor-axis combined loading (See Fig. 9). While the chosen 

amplitude, 200ppa /  leads to accurate results with the combined load cases, especially the 

minor-axis combined loading, it leads to over-conservative results in case of pure 

compression.  

 

(ii). When the first eigenmode shape is used with an amplitude of 200avga / , the ultimate 

capacities are very close to the ultimate capacities obtained with the sine shapes for members 

under pure compression (See Fig. 8) and major axis combined loadings (See Fig. 10). With 

both approaches, the amplitudes are quite similar according to Table 2. Hence, this highlights 

the fact that the shape of the local geometric imperfections might not be a significant 

parameter compared to the amplitude considered. For both loading cases, when the measured 

amplitudes, w0, are combined with the first eigenmode shapes, the ultimate capacities are 

higher than any other case – as expected – because the values of w0 are lower than the 

amplitudes defined by the buckling length (See Table 2). 

 

(iii). While the second approach showed greater consistency in the case of pure compression and 

major axis combined loading, it appears much less reliable in the case of minor axis 

combined loading, regardless of the amplitude under consideration as shown in Fig. 9. 

 

Overall, most results of the ratios 
FEA EXPP / P  are in a satisfactory range and the lowest values can 

be result either from (i) the divergence in lengths between tests and FE analyses or (ii) the residual 
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stress and geometric imperfections patterns considered in the FE models. Nevertheless, this study 

is of great relevance regarding the topic of the current paper as it highlights the reliability of several 

sets of imperfections. A deeper study on the influence of the period and amplitude of each set of 

imperfections; with different width-to-height and width-to-thickness ratios, is performed in the 

following section. 

 

3. Parametric studies  

A comprehensive study delved into axially loaded hot-rolled channel sections, examining various 

dimensions and plate slenderness. The numerical models used linear constraints previously 

introduced in this paper and included sections with different width-to-thickness ratios. The 

geometry of the ten cross-sections investigated are summarized in Table 3. Three of these cross-

sections are sourced from the AISC15 catalog, while the remaining seven are specifically designed 

to achieve high cross-sectional slenderness according to AISC 360, CSA S16, and Eurocode 3 Part 

1-1. Two steel grades were considered for each cross-section: CSA G40.21 260W ( 260yF MPa= ) 

and CSA G40.21 400W ( 400yF MPa= ).  

 
Table 3 Geometry of the studied hot-rolled channel sections 

Number Designation Source b h tf tw r aw af h/b 

   (mm) (mm) (mm) (mm) (mm) (mm) (mm) (-) 

1 MC10X8.4 AISC15 38.10 254.00 7.11 4.32 11.38 217.02 39.22 6.67 

2 MC12X10.6 AISC15 38.10 304.80 7.85 4.83 10.59 267.92 39.32 8.00 

3 MC10X6.5 AISC15 29.72 254.00 5.13 3.86 8.81 226.11 31.55 8.55 

4 INV_C5x2 Invented 38.00 127.00 5.99 0.99 8.00 99.01 48.01 3.34 

5 INV_C20x140 Invented 305.00 508.00 15.01 13.00 19.99 438.00 540.00 1.67 

6 INV_C9x23 Invented 140.00 229.01 5.99 5.00 13.00 191.01 242.01 1.64 

7 INV_C8x18 Invented 127.00 203.00 5.99 3.99 13.00 165.00 216.00 1.60 

8 INV_C14x47.1 Invented 178.00 356.01 10.01 8.00 15.01 305.97 305.97 2.00 

9 INV_C20x60 Invented 203.00 508.00 10.01 5.99 19.99 448.01 346.00 2.50 

10 INV_C7x13 Invented 114.00 178.00 5.00 0.99 10.01 147.98 197.97 1.56 

 

3.1. Influence of geometric imperfections’ period 

This study focuses on understanding how the period of the sinusoidal distribution influences cross-

sectional behavior. Six distinct local imperfection patterns are analyzed with varying halfwave 

lengths. To isolate the effect of the number and length of the halfwaves, the amplitude is kept 

constant across all cases and equal to the 200th of the buckling length per plate ( 200ppa / : 200fa /  

for flanges and 200wa /  for webs). The six types of periods considered herein are summarized in 

Table 4. Figs. 11 and 12 illustrate histogram plots of the numerical results obtained with both steel 

grades where the vertical axes correspond to the local buckling reduction factor, 
L  defined by 

Eq. 4. 

 

L ult yP P=  (4) 
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Table 4 Characteristics of the various set of sine shapes periods considered  

n° Case Halfwave 

length 

Amplitude 

web 

Amplitude 

flange 

Half-wave 

number 

1 5 200avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  5 

2 3 200avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  3 

3 2 200avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  2 

4 3 200f f ppHWL a / L a / Amp. a /= = =  fa  200wa /  200fa /  3 

5 3 200w w ppHWL a / L a / Amp. a /= = =  wa  200wa /  200fa /  3 

6 3 200pp avg ppHWL a / L a / Amp. a /= = =  ppa  200wa /  200fa /  Variable 

Figure 11: Influence of the period of the sinusoidal imperfection on hot-rolled channel sections under pure 

compression for Fy = 260 MPa 

Figure 12: Influence of the period of the sinusoidal imperfection on hot-rolled channel sections under pure 

compression for Fy = 400 MPa 
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Upon analyzing Figs. 11 and 12, several insights emerge: 

 

(i). Among cases where the length of the member is equal to 2, 3, and 5 times the average 

halfwave length, the case with the shortest length ( 2 200avg avg ppHWL a / L a / Amp. a /= = = ) 

results in higher resistances. This is likely because short members can benefit from support 

conditions that enhance their overall behavior, thereby increasing resistance. Conversely, the 

most detrimental effect is achieved with the longest member length, 5 avgL a= , highlighting a 

higher likelihood to be subjected to member buckling due to the increased length.  

 

(ii). When the halfwave length of each plate equals its buckling length (

3 200pp avg ppHWL a / L a / Amp. a /= = = ), the local imperfection patterns for each cross-

section’s plate differ. With the member’s length not being proportional to the halfwave length 

of the plates, the imperfection distribution will feature varying numbers of halfwaves in the 

web and the flanges. As a result, the member will not exhibit full halfwaves over its length. 

 

(iii). For sections 1 to 3 where the width-to-height ratio, h/b, is significantly higher than the other 

sections, the case 3 200f f ppHWL a / L a / Amp. a /= = =  leads to higher resistances than the 

case 3 200w w ppHWL a / L a / Amp. a /= = =  with the highest steel grade, 400yF MPa= . As the 

sensitivity of a plate to local buckling increases with a yield strength, these section’s web 

become slenderer. Moreover, with the buckling length of the flange, fa , being significantly 

lower than that of the web, 
wa , so that the length of the member is smaller than the height 

of the web ( 3 f wL a a=  ), the web is then loaded on its shorter side which increases the 

energy required to trigger buckling. 

 

(iv). Overall, the variation in halfwave length has a negligible effect on the compressive resistance 

because, for cases where the length is three times the halfwave length, no significant 

discrepancies are observed. The most distinguishable discrepancies were due to the number 

of halfwaves. 

 

3.2. Influence of geometric imperfections’ amplitude  

Six cases were investigated to evaluate the influence of the amplitude in a sine-shape local 

imperfection pattern. For each of the cases defined in Table 5, the halfwave length was kept 

constant and set to the average of the plates’ buckling lengths. This ensured consistency of period 

and member’s length across the different studied cases to focus only on the effect of amplitude. 

The same cross-sections were examined, and the results are illustrated in Fig. 13 and Fig. 14. 
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Table 5 Characteristics of the various set of sine shapes amplitudes considered 

n° Case Halfwave 

length 

Amplitude 

web 

Amplitude 

flange 

Half-wave 

number 

1 3 100avg avg ppHWL a / L a / Amp. a /= = =  avga  200wa /  200fa /  3 

2 3 200avg avg ppHWL a / L a / Amp. a /= = =  avga  100wa /  100fa /  3 

3 3 400avg avg ppHWL a / L a / Amp. a /= = =  avga  400wa /  400fa /  3 

4 3 200avg avg avgHWL a / L a / Amp. a /= = =  avga  200avga /  200avga /  3 

5 3 200avg avg fHWL a / L a / Amp. a /= = =  avga  200fa /  200fa /  3 

6 3 200avg avg wHWL a / L a / Amp. a /= = =  avga  200wa /  200wa /  3 

 

Figure 13: Influence of the amplitude of the sinusoidal imperfection on hot-rolled channel sections under pure 

compression for Fy = 260 MPa 
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Figure 14: Influence of the amplitude of the sinusoidal imperfection on hot-rolled channel sections under pure 

compression for Fy = 400 MPa 

 

(i). As expected, among the three first studied cases the highest resistances were observed for 

400ppa / , while the lowest resistances corresponded to 100ppa /  with differences up to 9% 

for the same cross-section. According to section 2, an amplitude of 200ppa /  was proven to 

be too conservative for members under pure compression with discrepancies up to 12% 

compared to experimental results. The present study then proves that using an amplitude of 

400ppa /  rather than 200ppa /  will increase the ultimate capacity to up to 7%. 

 

(ii). Whether the amplitude depends on the individual buckling lengths, ppa  or the average of the 

buckling lengths, avga , the analyses results in the similar ultimate capacities. Moreover, both 

cases also lead to similar results with the case where the amplitude depends on the highest 

buckling length, fa  or wa . 

 

(iii). For sections 1 to 4, and 9 where f wa a , the case 3 200avg avg fHWL a / L a / Amp. a /= = =  

leads to more favorable results than the case 3 200avg avg wHWL a / L a / Amp. a /= = = , and 

inversely when f wa a  for sections 5 to 7, and 10.  

 

3.3.Geometric imperfections through the 1st buckling mode shape as an initial geometric 

imperfection 

The use of buckling modes obtained from a previous linear buckling analysis is one of the most 

common methods to account for initial geometric imperfections. In this study, only the first 

buckling mode will be used with an amplification factor corresponding to a proportion of either 

the average buckling length or the buckling length of either the flanges or the web, with a member 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

χ L
[-

]

HWL = a_avg/L = 3a_avg/Amp. = a_pp/100 HWL = a_avg/L = 3a_avg/Amp. = a_pp/200

HWL = a_avg/L = 3a_avg/Amp. = a_pp/400 HWL = a_avg/L = 3a_avg/Amp. = a_avg/200

HWL = a_avg/L = 3a_avg/Amp. = a_w/200 HWL = a_avg/L = 3a_avg/Amp. = a_f/200



 16 

length equal to 3 avga . The ratios of the ultimate resistances, Eigen SineP / P , obtained with the 

eigenmode shapes, and the sine shapes are summarized in Table 6. 

 
Table 6: Comparison of ultimate cross-sectional capacities of hot-rolled channel sections modelled with eigenmode 

vs sine shapes as local geometric imperfection patterns 

  
Eigen SineP / P  [-] 

200avga /  200wa /  200fa /  

Mean 1.03 1.03 1.02 

COV 2.4% 2.7% 2.7% 

Min. 1.00 1.00 1.00 

Max. 1.09 1.11 1.09 

%>1.05 50.0% 40.0% 40.0% 

%>1.10 0.0% 10.0% 0.0% 

 

Overall, using the first eigenmode shapes as local geometric imperfection patterns leads to higher 

cross-sectional resistances than the sine shapes. However, the discrepancies are not so big as the 

highest mean value of the ratio Eigen SineP / P  is only equal to 1.03 with a COV of .7%. This means 

that even if the initial shapes differ, the influence of both types of imperfection patterns can be 

considered equivalent. At the same time, the number of analyses is doubled in the case of 

eigenmodes as a prior linear buckling analysis is required. Moreover, the comparison of both 

patterns with respect to an amplitude proportional to ppa  could not be made as it is quite difficult 

to assign amplitudes to the plates individually with this approach. 

 

4. Summary of observations and recommendations for F.E. modeling  

The parametric study investigating various sets of local imperfections on the cross-sectional 

behavior of hot-rolled channel sections has provided valuable insights. Based on the findings and 

observations, the recommended set of local geometric imperfections is: 

3 400avg avg ppHWL a / L a / Amp. a /= = = . In this case, the length of the member is set equal to three 

times the average of the web and flange buckling length, avga , the sine shape has a halfwave length 

of avga  and an amplitude equal to 1/400th of each plate’s buckling length ( 400fa /  for the flange 

and 400wa /  for the web). While the studies indicate that variations in halfwave lengths have a 

minimal effect on cross-sectional resistance, the halfwave must consider both web and flange 

widths. This ensures that all parts of the cross-section have the same number of halfwaves, 

allowing full halfwaves to develop along the length of the member. This approach maintains 

consistency and coherence in local imperfections, enhancing the structural integrity of the section.  

 

Although the approach of using the first eigenmode as an imperfection pattern is widely used and 

as suggested by the results obtained in this study, yields similar results, using sine shapes as 

geometric imperfection patterns offers better control over the definition of the imperfection 

parameters, especially the amplitudes of the sine shapes.  
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5. Conclusions 

Geometric and material imperfections significantly influence the resistance of structural members 

in non-linear analyses. Reliable and consistent results require a generic method for defining these 

imperfections in finite element models. However, this is a shortcoming observed in current design 

standards, so this paper aimed to investigate a reliable and consistent local geometric imperfection 

pattern. Upon validation of the numerical models against experimental data, parametric studies 

were conducted to assess the influence of different sine shape periods and amplitudes, and the first 

eigenmode shapes. Results showed that the hot-rolled channel sections under pure compression 

are more sensitive to the number of halfwaves and amplitudes than the sine shape period. Based 

on the observations, recommendations on imperfection shapes and amplitudes were provided for 

safe, convenient, and consistent finite element modeling of hot-rolled channel sections. 
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