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Abstract
The Mindlin shell finite element is implemented with classical linear shape functions, and also
considering higher order shape functions, different numerical integration rules, and mesh densi-
ties. The shell elements are coded in MATLAB and in the Julia language, and examples con-
sidering membrane and bending deformations, as well as elastic buckling, are documented and
compared to commercial finite element software. These studies highlight that it is challenging to
write a generally applicable and accurate shell element because of well known shear locking and
zero energy modes. The studies provide an opportunity to explore an open-source finite element
software package in the Julia language, and also to lay out future plans for developing and vali-
dating an open-source shell finite element library. Computational runtimes for MATLAB and the
Julia language implementations are also reported and discussed.

1. Introduction
Shell finite element analysis (FEA) has been used for academic research on thin-walled struc-
tures for decades to study elastic buckling and collapse behavior. In recent years, shell FEA has
become more widely used by companies in the building construction industry, for example, steel-
focused companies that are developing new products and systems, for example steel deck, joists,
and purlins. Shell FEA is very useful for exploring structural behavior and providing rich results
(full field stress, strains, forces) in ways that carry a heavy burden (time, cost) if implemented in a
physical test.

For all of us, both academic and industry professionals, we are empowered by shell FEA software,
but also constrained. Commercial finite element packages like Abaqus (2022) and ANSYS de-
serve credit because they can handle most of what we throw at them, and they have powerful user
interfaces for pre and post processing results. They are costly to operate however, especially for
large problems where multiple cores (and thus multiple license tokens) and required.

Another constraint for commercial shell FEA users is that the details of the shell finite element for-
mulation, and the actual computer code, are not available for us to look at in commercial programs,
and so we must resort to theory manuals and our own parameter studies to study element behavior
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and make decisions about element type and mesh density. Most of the time the bread-and-butter
elements like the Abaqus S4R behave well, however there are cases where we could run analyses
faster and more accurately if we had a ’better’ shell finite element formulation and implementation.
These kinds of advancements are not really available to us in commercial FEA software.

An alternative to commercial finite element software is academic software, often developed in
research groups and sometimes released as open-source software. A popular example of FEA
open-source software used widely in thin-walled structures is elastic buckling finite strip analysis in
CUFSM (Schafer et al. 2025). For 3D frame structural analysis there is Frame3DD (Gavin 2023),
and for earthquake engineering analysis and simulation there is OpenSees (McKenna 2011). What
these software packages have in common is passionate academic leadership supported by industry
and government collaborations.

The work documented in this paper is part of an effort to gather support and momentum for open-
source shell FEA software in our professional community. The long-term plan is to develop an
FE implementation that offers options for various element types, such as trilateral and quadri-
lateral with various number of nodal points, based on Kirchhoff and Mindlin plate theory, and
applicable to a range of materials. As a starting point, this paper presents a set of baseline shell
membrane and bending solutions solved using different implementations of a common four-node
shell element formulation, with results compared to classical solutions and the commercial finite
element software Abaqus. Additionally, we explore a general open-source FEA framework called
Ferrite.jl, written in the Julia scientific and engineering computing language (Bezanson et
al. 2012). as a potential home for validated shell element formulations. The shell element studies
consider the ’textbook’ four-node Mindlin shell element formulation introduced in the following
section.

2. Element mechanics
Now, a four-node quadrilateral Mindlin element will be shown in some detail. The material is
assumed to be isotropic and linearly elastic.

The involved displacement functions are u(x, y, z), v(x, y, z) and w(x, y, z), interpreted as trans-
lations along x, y and z, see Fig. 1.

Figure 1: Elementary rectangle of a surface
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The element mechanics is the superposition of membrane and bending stress/displacement fields,
and w is supposed to be constant along the thickness, hence: w(x, y, z) = w(x, y). Regarding
u and v, they are linearly varying across the thickness, and thus, can be expressed as the sum of
membrane strains (at z = 0) and bending strains (at z ̸= 0).

ϵx = ϵx,m +
dψx

dx
z (1)

ϵx = ϵy,m +
dψy

dx
z (2)

γxy = γxy,m + (
∂ψx

dx
+
∂ψy

dy
)z (3)

where ψx and ψy are cross-section rotations along x and y directions, respectively (i.e., about y
and x axis, respectively).

The membrane displacement functions are u(x, y) and v(x, y) interpreted at z = 0. The linear
membrane strains are obtained by the derivatives of u(x, y) and v(x, y):

ϵx,m
L =

∂u

∂x
(4)

ϵy,m
L =

∂v

∂y
(5)

γxy,m
L =

∂u

∂y
+
∂v

∂x
(6)

The stresses:

σxσy
τxy

 =

 E
1−ν2

E
1−ν2

0
νE

1−ν2
E

1−ν2
0

0 0 G

ϵxϵy
ϵz

 (7)

where E and G are the Young’s and shear modulus, respectively, and ν is the Poisson’s ratio.

The linear strains from the plate bending are calculated by following Mindlin plate theory. Ac-
cordingly, in addition to ϵx, ϵy, and γxy there are transverse shear strains as follows:

γxz = ψx +
dw

dx
(8)

γyz = ψy −
dw

dy
(9)
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which are assumed to be constant across the thickness. From the transverse shear strains, shear
stresses are obtained as:

[
τxz
τyz

]
=

[
5
6
G 0
0 5

6
G

] [
γxz
γyz

]
(10)

where the 5/6 factor is to take into consideration the difference between the model and real through-
thickness shear strain/stress distributions (constant in the model, but approx. quadratic in reality).

Nonlinear strains are calculated from membrane strains only, approximated by the Green-Lagrange
tensor. Nonlinear strains are calculated at z=0 only, i.e., assuming constant nonlinear strains across
the thickness. From u(x, y), v(x, y), and w(x, y), they are expressed as follows:

ϵx,m
NL =

1

2

[(
du

dx

)2

+

(
dv

dx

)2

+

(
dw

dx

)2
]

(11)

ϵy,m
NL =

1

2

[(
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dy

)2

+

(
dv

dy

)2

+

(
dw

dy

)2
]

(12)

ϵy,m
NL =

[
du

dx

du

dy
+
dv

dx

dv

dy
+
dw

dx

dw

dy

]
(13)

3. MATLAB implementation
A four-noded rectangular (flat) shell element is developed in MATLAB. Two basic versions are
developed, different in the assumed shape functions. In both versions the shape functions are
identical for all the 5 displacement functions.

3.1. Four shape functions
The simplest set of shape functions is 4 linear shape functions. Expressed in a local coordinate
system (see Fig. 2):

N1 =
1

4
(xy − x− y + 1) (14)

N2 =
1

4
(xy − x− y + 1) (15)

N3 =
1

4
(xy + x+ y + 1) (16)

N4 =
1

4
(−xy − x+ y + 1) (17)

Using these 4 shape functions, all the 5 displacement functions is expressed by 4 nodal displace-
ments, hence, the resulted element has altogether 5×4=20 degrees of freedom (DOF). The nodal
displacement are the u, v, and w translations and ψx and ψy rotations at each corner points.
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Following the usual steps of finite element derivations, the ke and kg elastic and geometric stiffness
matrices for the element can be expressed; they are 20×20.

3.2. Six shape functions
Since the finite element resulted from the 4 shape functions has various numerical issues, a possible
improvement is to add two quadratic extra shape functions, (see Fig. 2):

N5 = 1− x2 (18)

N6 = 1− y2 (19)

Figure 2: Local coordinates, shape functions

Using these 6 shape functions, all the 5 displacement functions is expressed by 4 nodal displace-
ments, hence, the resulted element has altogether 5×6=30 degrees of freedom (DOF). The DOF are
partially the same as above (i.e, u,v,w translations and ψx and ψy rotations at the corner points), but
now there are two additional DOFs: physically these are the amplitudes of the quadratic functions
at the middle of the element.

Following the usual steps of finite element derivations, the ke and kg elastic and geometric stiffness
matrices for the element can be expressed; they are 30×30. However, it is impractical to have
nodal DOFs at the middle of the elements, therefore, it is convenient to apply static condensation
to eliminate the extra DOFs. In this way, the 30×30 stiffness matrix is transformed into 20×20,
keeping only the nodal DOFs at the element’s corner points.

3.3. Integration
To calculate the stiffness matrix, the final step is an integration. To obtain a specific element of the
stiffness matrix, somewhat simplified and symbolically, the following operation is to be completed:

k =

∫∫
f(x, y) dx dy (20)

(Note, theoretically there is integration along the thickness, too, but it always straightforward to
complete if the material is elastic, that is why the real challenge is the integral over the surface.)
If the element is flat and rectangular, the above integral can be performed analytically, and the
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stiffness matrix entries can be expressed in closed format. However, in more general cases the
integration cannot be completed analytically, hence, numerical integration must be applied.

k =

nG∑
i=1

Wif(xi, yi) (21)

whereWi are the weights, and nG is the number of integration points. It is common to use the Gauss
quadrature, this is what is applied in our implementation, too. If the element is quadri-lateral, 1,
2×2 or 3×3 integration points are to be applied, depending on the degree of the f(x, y) function.
For the actual finite element, 2×2 leads to exact result. However, it is a well-known practical trick
to use fewer integration points than theoretically required; accordingly, we will consider two cases:
nG=1 and nG=4.

4. Julia implementation
The Ferrite.jl implementation follows closely the four-node shell element mechanics and
MATLAB approach discussed in the previous section, with 4 linear shape functions defined in Eq.
7. A linear shell tutorial in Ferrite.jl is available, and most of its algorithms are
used to produce results for the examples at the end of this paper.

The Ferrite.jl software package has built-in capabilities for many of the FEA tasks that are
needed to solve shell problems. The material properties, mesh density, and shell thickness are
defined up front to calculate the constitutive matrices in Eq. (3) and Eq. (5). Then functions that
relate deformation gradients to strains in Eq. (6) are defined. A grid of cells (elements) is generated
based on a quadrilateral reference shape. The order of the shape functions is then defined, in our
case the order is 1 (linear equations as shown in Eq. 7). Quadrature rules are then defined for the
reference quadrilateral element. For this study, 1 integration point is used to take the integral over
the element volume for both the in-plane membrane stiffness terms and the out-of-plane stiffness
terms. (In the Ferrite.jl tutorial example there is also a through-thickness integration calcu-
lation that is not implemented for the examples in this study.) A CellValues object is used to
define and organize the information about each element which facilitates the process of evaluating
values of shape functions and gradients of shape functions. There is a DofHandler that assigns
degree of freedom numbering for each cell, and then a ConstraintHanlder where boundary
conditions are applied.

The formulation of the stiffness matrix ke proceeds with iterations over every cell. The way that
Ferrite.jl calculates the B matrix, i.e. the gradients of the shape functions at each degree of
freedom, see Visy and Ádány (2017) Eq. 22, is unique compared to traditional FE approaches in
that the derivatives of the strains are calculated numerically with automatic differentiation using the
ForwardDiff.jl software package. The numerical integration to solve for ke proceeds using
the defined quadrature rules carried in CellValues, and the assembly of the global stiffness
matrix and the global external force vector are performed with an assemble! function. The
boundary conditions are applied with the built-in dh! function using static condensation, and the
displacement field is solved using the Julia language’s A/b linear equation solver.
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The element geometric stiffness matrix kg is calculated using automatic differentiation to solve
for the deformation gradients (i.e., du/dx, dv/dx, ...) from the shape functions. The gradients
are substituted into Eq. 11, 12, and 13 and multiplied by the element stresses σx,0, σy,0 and τxy,0
to obtain three corresponding contributions to kg, see Visy and Ádány (2017) Eq. 34. For a
general treatment of elastic buckling problems, the reference stresses σx,0, σy,0 and τxy,0 would be
calculated first with a linear analysis. In the column buckling study later in the following example
study, this was not necessary since the reference stress was assumed constant throughout.

Significant effort has been put in by the developers of Ferrite.jl to make its internal FE op-
erations (stiffness matrix assembly and integration) computationally efficient. For example, the
assembly of the stiffness matrix and force vector is accelerated by preallocated matrix sparsity
patterns that are known a priori based on the element formulation, in this case a quadrilateral ele-
ment with linear shape functions. FE solution performance for the MATLAB and Ferrite.jl
implementations are explored along side of Abaqus in the following examples.

5. Examples
All examples presented here are for a 100 mm x 1000 mm plate with E = 200000 MPa and ν =
0.30. The plate boundary conditions are shown in Fig. 3. The mesh density is varied as follows:
([2, 2], [2, 8], [2, 32], [10, 92], [30, 322], [98, 980], [312, 3120]) where [number of elements in the
100 mm direction, number of elements in the 1000 mm direction]. The total number of degrees of
freedom in each model are then [(2+1) x (2+1) x 5 = 45, 135, 495, 5115, 50065, 485595, 4884365].

The first case represents the possible coarsest discretization, with 2×2=4 elements and 3×3=9 nodes
(hence 9×5=45 DOFs), which is certainly insufficient for practical use. The last case represents
an extremely dense discretization, unnecessary in practice. Therefore, the selected discretizations
cover the full range of possible discretizations, hence provide comprehensive information regard-
ing the element behavior.

Figure 3: Plate translation is fixed at ends in global Y , at middle node in Z, and at two corner
nodes in X
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5.1. Out-of-plane bending with midspan distributed load
This example is essentially a beam, simply supported at the two ends, subjected to a concentrated
force at the middle. However, the problem is solved as a plate problem, the load acting perpen-
dicularly to the plane of the shell elements. Therefore, the ‘concentrated’ force is applied as a line
load, as shown, the intensity being 1000 N/mm and 1 N/mm for the thick and thin plate, respec-
tively. Moreover, pinned support means that the short (100-mm-long) edges are simply supported.
Due to the loading and supports, only the plate degrees of freedom are activated. The maximum
(Y -directional) displacements at the middle cross-section are summarized in Table 1.

Figure 4: Out-of-plane midspan distributed load w

Since the problem solved is as a plate problem, the displacements along the middle transverse line
are not perfectly constant, that is why both the maximum displacement (which occurs at the edge)
and the average displacement (i.e., average of the nodal displacements along the line of the middle
cross-section) are presented. Due to the simplicity of the problem, the deflection of the plate can
be solved analytically, and in this case the solution is 1.289 mm and 156.252 mm for the thick and
thin plate, respectively. (Note, the analytical solution without considering the shear deformations,
i.e., using classic Euler-Bernoulli beam theory are 1.25 and 156.25 mm, respectively; thus, the
effect of shear deformations is negligible if the plate is thin, while observable - though small - if
the plate is thick.)

The main observations are as follows. (a) If the discretization is fine enough, all the variants seem
to tend to the analytical solution. (b) If the theoretically necessary 2×2 quadrature is used for
the integration, the shear stiffness is overestimated. This is especially problematic for thin plates,
where the solutions are plain wrong unless the discretization is unrealistically dense. (c) As known
from finite element textbooks, if reduced integration (in this case: 1-point quadrature) is used, the
shear locking mostly disappears. (d) The Ferrite.jl and equivalent MATLAB implementation
lead to virtually identical results. (e) The element with 4+2+2 shape function gives practically
precise displacements regardless of the discretization, i.e., even if 2×2 elements are used. (f) The
Abaqus results are quite good, too, with the exception of the 2×2 discretization.
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Table 1: FEA deflections at midspan in Y [mm]: out-of-plane bending with midspan distributed
load

5.2. Out-of-plane bending with uniform pressure
This example is similar to the previous one, the only difference being the load, which is now a
uniformly distributed load over the whole surface. (The beam equivalent of the problem would
be a simply supported beam with a uniformly distributed line load over its full length.) The load
intensities are 1 N/mm2 and 0.001 N/mm2 for the thick and thin case, respectively.

Figure 5: Out-of-plane uniform pressure p

The results are summarized in Table 2. The analytical solutions are 0.80075 and 97.657 mm for
the thick and thin case, respectively. The observations are very similar to those mentioned above,
hence, not repeated here. The only notable difference is that in this case even the 4+2+2 shape
function element leads to imprecise results if 2×2 discretization scheme is employed.
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Table 2: FEA deflections at midspan in Y [mm]: out-of-plane bending with uniform pressure

5.3. In-plane bending with midspan distributed load
This example is a beam, similar to the one presented in Section 5.1, however, now the load is acting
in the plane of the shell elements. Accordingly, now the membrane degrees of freedoms (and only
those) are activated. The load intensities are 1000 N/mm for both thickness values. The analytical
solutions are 1.289 mm and 64.45 mm for the thick and thin cases, respectively.

Figure 6: In-plane midspan distributed load w

The various FEM solutions are summarized in Table 3. Observations are as follows. (a) The plate
thickness has no effect on the tendencies. (b) The 1-point integration does not work at all. (c) The
2×2 quadrature works well, with the exception of the 2×2 element discretization. (d) The 4+2+2
shape function yields the best results, but only slightly superior to the 4 shape function. (e) The
Abaqus results are scattered around the exact solution, depending on the discretization; stabilized
only if the discretization is relatively dense. (f) As the discretization is increased, all the variants
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seem to tend to a displacement value (approx. 66.0 mm) slightly above the analytical solution
(64.45 mm).

Table 3: FEA deflections at midspan in X [mm]: in-plane bending with midspan distributed load

5.4. In-plane bending with uniform pressure
This example is similar to the one in Section 5.2, however, now the load is acting in the plane
of the shell elements. Accordingly, now the membrane degrees of freedoms (and only those) are
activated. The load intensities are 1 N/mm2 for both thickness values. The analytical solutions are
0.80075 mm and 40.0375 mm for the thick and thin cases, respectively. The various FEM solutions
are summarized in Table 4. The observations are very similar to those listed in Section 5.3.

Figure 7: In-plane uniform pressure p
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Table 4: FEA deflections at midspan in X [mm]: in-plane bending with uniform pressure

5.5. Column buckling
All the previous examples involved linear static analysis. In the example presented here linear
buckling analysis is performed. The load is a unit compressive stress, acting in the plane of the shell
elements, at the short edges of the member, defined as an edge load. In both cases the first mode is a
flexural buckling, with one half-wave longitudinally, i.e., the situation is essentially identical to the
classic Euler column buckling problem. The first (i.e. lowest) critical stress calculated analytically
is 1603.78 and 0.65797 N/mm2 for the thick and thin member, respectively. Note, in these values
the effect of shear deformation is included, that is why the values are somewhat lower compared
to the classic Euler-formula prediction.

Figure 8: Uniform stress σ at plate ends

The FEM results are summarized in Table 5. Observations are as follows. (a) 1-point integra-
tion does not work, because zero-energy deformation of the elements is possible, that is why the
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calculated critical load value can be zero. (b) 2×2 integration overpredicts the shear rigidity, con-
sequently the critical values are very high unless the discretization is extremely fine. (c) When
4+2+2 shape functions are employed, the results are quite good, though if the discretization is very
coarse, the solution is approximate. (d) Abaqus results are rather imprecise if the discretization is
too coarse; but if the discretization is reasonable, the results are reasonable.

Table 5: FEA buckling stress at column ends [N/mm2]

6. Discussion
The results herein highlight how shape functions, numerical integration techniques, and mesh den-
sity influence shell FEA solution quality. It becomes clear that a generally reliable shell element
formulation is not that easy to implement. The trends motivate us to continue this work, including
the consideration of popular Mixed Interpolation of Tensorial Components (MITC) formulations,
e.g., Dvorkin and Bath (1984) and Ko et al. (2017).

There is also the question of computational performance. It is difficult to provide apples-to-apples
runtime comparisons of the FEA software considered in this study. Let us consider just the linear
analysis (LA) examples (Sections 5.1 to 5.4, excluding the 5.5 elastic buckling). We know the
MATLAB and Ferrite.jl calculations are working similarly, looping over each element (even
though in the examples presented all the element stiffness matrices are the same), and not calcu-
lating stresses along the way. The linear equation solvers are also probably similar between MAT-
LAB and Ferrite.jl. The solutions are run on roughly similar hardware (Intel I5 processor
with 32GB RAM for MATLAB, Apple M3 Max with 36 GB RAM for Ferrite.jl). Consider-
ing the highest mesh density linear analysis solution (4,884,365 dof), the MATLAB solution time
is 180 seconds and the Ferrite.jl solution time is 125 seconds (101255279 allocations: 85.01
GiB, provided by @btime from BenchmarkTools.jl. The ABAQUS wall time for the same
analysis was roughly 7200 seconds (120 minutes), however again, ABAQUS is writing data to a
database (stresses, displacements), and the solution controls were set so that a step size of typically
14 steps was observed. Another Abaqus benchmark was performed using 1 step and stripping out
most of the database demands, resulting in a wall time of about 600 seconds, with deflection results
that were different by about 5 percent when compared to the analysis with 14 steps.
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This study also gives us motivation and energy to refine these shell element formulations and
organize them in an open-source library. The experience with Ferrite.jl was overall positive,
and a Julia package called ShellFEA.jl has been created to serve as a home for Julia shell
element formulations as they are coded and validated. (The code for the examples in this study
also live there.)

7. Conclusion
A shell finite element formulation study was conducted in MATLAB and the Julia language,
considering membrane and bending examples that were compared to theory and to the commer-
cial finite element software ABAQUS. The ’textbook’ four-node quadrilateral and more advanced
treatments with higher order shape functions, along variations in numerical integration quadrature
points, highlighted the usefulness of reduced integration when considering membrane stiffness,
and the potential pitfalls for buckling problems if not enough quadrature points were used. On-
going and planned work is outlined with a long-term goal of coding and validating open-source
shell FEA elements that will be organized in an open-source software library set up for high-
performance computing.
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