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Abstract 

The paper presents the first Generalized Beam Theory (GBT) formulation for second-order 

(geometrically nonlinear) analysis of isotropic thin truncated conical shells with circular cross-

section. The GBT cross-section kinematics adopted can describe accurately the global and 

distortional/local deformation of conical shells, while allowing for the standard GBT assumptions, 

a particularly relevant feature for the overall performance of the formulation.  A suitable 

geometrically non-linear GBT-based beam finite element is proposed and, even though the 

resulting expressions are quite involved due to the complex kinematics of conical shells, they are 

presented in a straightforward vector-matrix notation.  To illustrate the capabilities of the proposed 

formulation and its finite element implementation, several numerical examples are presented and 

discussed. For comparison and validation purposes, refined shell finite element model results are 

presented. It is shown that the proposed finite element leads to extremely accurate results for first-

order and buckling (linear stability) analyses, and is quite accurate for second-order analyses up to 

fairly large displacements, while providing an insightful modal solution, triggering a relatively 

small number of deformation modes and requiring only a few finite elements. 

 

1. Introduction 

Thin-walled conical shells are quite efficient from a structural point of view, which makes them 

widely utilized across various engineering fields, as pressure vessels, storage tanks and silos, 

rocket components, towers, chimneys and poles for supporting lighting and telecommunications 

equipment, among others. Their geometrically non-linear behavior is quite complex, namely due 

to their imperfection sensitivity, and therefore an accurate structural analysis requires 

computationally demanding refined shell finite element models. Although Generalized Beam 

Theory (GBT) — a thin-walled beam theory capable of capturing cross-section in-plane and out-

of-plane deformation (Schardt, 1989) — has been recognized as an efficient alternative to shell 

and finite strip models, its development for conical shells is still in its early stages. 

 

This paper presents the first geometrically nonlinear GBT formulation for truncated conical shells 

with circular cross-section. While previous formulations for the linear stability case (calculation 

of bifurcation loads and buckling modes discarding pre-buckling deflections) neglect certain 
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membrane strain components (Nedelcu, 2011; Mureşan et al., 2019), very recently a new approach 

for the first-order case was proposed that considers all the (linear) membrane strains and satisfies 

exactly the standard GBT membrane strain assumptions (Gonçalves & Nedelcu, 2024), leading to 

a more comprehensive and accurate characterization of the shell kinematics. This enhanced 

formulation necessarily introduces a more complex definition of the boundary conditions and 

relations between deformation mode amplitude functions. However, it also facilitates a consistent 

(geometrically exact) definition of the so-called “Vlasov warping” deformation modes, which are 

crucial for achieving high accuracy and computational efficiency. In this paper this first-order 

approach is extended to the geometric nonlinear setting, including bifurcation (linear stability) and 

second-order path-following analyses. 

 

The outline of the paper is as follows. Section 2 presents the fundamental relations pertaining to 

conical shells, namely the strain-displacement and stress-strain relations, as well as the equilibrium 

equations. Section 3 develops the previous equations according to the GBT concept and provides 

all required equations for implementing a suitable geometrically non-linear displacement-based 

finite element. Several numerical examples are presented in Section 4, to show the capabilities of 

the proposed GBT-based finite element. The paper closes in Section 5, which contains the 

concluding remarks. 

 

For the notation, subscript commas represent derivatives (e.g., 𝑓,𝑦 = 𝜕𝑓/𝜕𝑦) while the prime 

symbol represents derivatives with respect to the meridional coordinate x (e.g., 𝑓′ = 𝜕𝑓/𝜕𝑥). 

Superscripts (∙)𝑀,𝐿 and (∙)𝐵,𝐿 refer to the linear membrane and bending components, while (∙)𝑀,𝑁𝐿 
is used for nonlinear membrane components. 

 

2. Fundamental relations 

Consider the truncated conical shell with circular cross-section illustrated in Fig. 1. In the 

coordinate system (x, θ, z), where x represents the meridional direction and z is the through-

thickness coordinate, with z = 0 corresponding to the mid-surface, the shell volume is defined by 

the following ranges: 𝑥 ∈ [0, 𝐿], 𝜃 ∈ [0, 2𝜋], and 𝑧 ∈  [− 𝑡/2, 𝑡/2], where L is the meridional 

length, and t is the shell thickness. The radius of the cross-section is described as  𝑟(𝑥) = 𝑟0 +
𝑥 sin 𝛼, where 𝑟0 is the initial radius, and 𝛼 is the semi-vertex angle. 

 

Using the mid-surface displacement components (u, v, w) shown in the figure, the linear and 

nonlinear parts of the Green-Lagrange membrane and bending strains, for very thin conical shells, 

are as follows (see e.g. Leissa, 1973 and Goldfeld, 2007)  
 

 𝐸𝑥𝑥
𝑀,𝐿 = 𝑢′,     𝐸𝜃𝜃

𝑀,𝐿 =
𝑣,𝜃+𝑤𝑐+𝑢𝑠

𝑟
,      2𝐸𝑥𝜃

𝑀,𝐿 =
𝑢,𝜃−𝑣𝑠

𝑟
+ 𝑣′,  (1) 

 𝐸𝑥𝑥
𝐵,𝐿 = −𝑧𝑤′′,   𝐸𝜃𝜃

𝐵,𝐿 = −𝑧 (
𝑤,𝜃𝜃−𝑣,𝜃𝑐

𝑟2
+
𝑤′𝑠

𝑟
),   2𝐸𝑥𝜃

𝐵,𝐿 = −2𝑧 (
𝑤,𝜃
′ −𝑣′𝑐

𝑟
+
𝑣𝑠𝑐−𝑤,𝜃𝑠

𝑟2
),   (2)

 𝐸𝑥𝑥
𝑀,𝑁𝐿 =

𝑤′
2

2
+
𝑣′
2

2
,  𝐸𝜃𝜃

𝑀,𝑁𝐿 =
1

2
(
𝑣𝑐−𝑤,𝜃

𝑟
)
2

+
1

2
(
𝑣,𝜃+𝑤𝑐

𝑟
)
2

, 2𝐸𝑥𝜃
𝑀,𝑁𝐿 =

𝑤′𝑤,𝜃

𝑟
−
𝑤′𝑣𝑐

𝑟
, (3) 

 

where 𝑐 = cos 𝛼 , 𝑠 = sin 𝛼. Note that the nonlinear bending strains are discarded. The strains can 

be written in a Voigt-like notation as (bold letters denote vectors and matrices) 
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Figure 1: Truncated conical shell global/local axes and displacement components 

 

 𝑬 = [

𝐸𝑥𝑥
𝐸𝜃𝜃
2𝐸𝑥𝜃

] = 𝑬𝑀,𝐿+𝑬𝐵,𝐿 + 𝑬𝑀,𝑁𝐿 = [

𝐸𝑥𝑥
𝑀,𝐿

𝐸𝜃𝜃
𝑀,𝐿

𝐸𝑥𝜃
𝑀,𝐿

] + [

𝐸𝑥𝑥
𝐵,𝐿

𝐸𝜃𝜃
𝐵,𝐿

𝐸𝑥𝜃
𝐵,𝐿

] + [

𝐸𝑥𝑥
𝑀,𝑁𝐿

𝐸𝜃𝜃
𝑀,𝑁𝐿

𝐸𝑥𝜃
𝑀,𝑁𝐿

]. (4) 

 

The stress state will be expressed using second Piola-Kirchoff stresses 𝑺 = 𝑪𝑬, where 𝑪 is the 

constitutive matrix, reading for a Saint Venant-Kirchoff material law 

 

 𝑪 = [

𝐸

1−𝜇2
𝜇𝐸

1−𝜇2
0

𝜇𝐸

1−𝜇2
𝐸

1−𝜇2
0

0 0 𝐺

] = [
𝑄11 𝑄12 0
𝑄12 𝑄11 0
0 0 𝑄33

], (5) 

 

with Young’s modulus E, Poisson’s ratio 𝜇 and shear modulus 𝐺 = 𝐸/2(1 + 𝜇). 
 

The equilibrium equations are obtained using the principle of virtual work. The internal part reads  

 

 𝛿𝑊𝑖𝑛𝑡 = −∫ 𝛿𝑬𝑇𝑺 d𝑉
𝑉

= −∫ 𝛿𝑬𝑇𝑪𝑬 d𝑉
𝑉

 , (6) 

 

and the external part, for mid-surface loads along local axes 𝒒̅𝑇 = [𝑞̅𝑥 𝑞̅𝜃 𝑞̅𝑧], is given by 

 

 𝛿𝑊𝑒𝑥𝑡 = ∫ ∫ 𝛿𝑼̅𝑇𝒒 ̅𝑟 d𝜃 d𝑥
2𝜋

0

𝐿

0
, (7) 

 

with the mid-surface displacement vector 𝑼̅ = [𝑢 𝑣 𝑤]𝑇 . 
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3. The GBT approach for conical shells 

A general formulation without further simplifications can be derived using separate 

approximations for each displacement component, following the standard procedure for conical 

shells (Leissa, 1973), leading to 

 

 𝑢 = ∑ 𝑢̅𝑘(𝜃)𝜓𝑘(𝑥) = 𝒖̅
𝑇𝝍𝐷

𝑘=1 , (8) 

 𝑣 = ∑ 𝑣̅𝑖(𝜃)𝜙𝑖(𝑥) = 𝒗̅
𝑇𝝓𝐷

𝑘=1 , (9) 

 𝑤 = ∑ 𝑤̅𝑗(𝜃)𝜑𝑗(𝑥) = 𝒘̅
𝑇𝝋𝐷

𝑘=1 , (10) 

 

where (𝑢̅𝑘, 𝑣̅𝑘, 𝑤̅𝑘) are known functions — the so-called GBT “cross-section deformation modes” 

— and (𝜓𝑘, 𝜙𝑖 , 𝜑𝑗 ) are unknown mode amplitude functions. This allows writing the strain-

displacement relations in a vector-matrix form as follows 

 

 𝑬𝑀,𝐿 = 𝚵𝐸
𝑀,𝐿𝜱, (11) 

 𝑬𝐵,𝐿 = 𝑧𝚵𝐸
𝐵,𝐿𝜱, (12) 

 𝑬𝑀,𝑁𝐿 = 𝑼1𝜱
𝑇𝚵𝑥𝑥

𝑀,𝑁𝐿𝜱+𝑼2𝜱
𝑇𝚵𝜃𝜃

𝑀,𝑁𝐿𝜱+𝑼3𝜱
𝑇𝚵𝑥𝜃

𝑀,𝑁𝐿𝜱, (13) 

 𝜱𝑇 = [𝝍𝑇 (𝝍′)𝑇 𝝓𝑇 (𝝓′)𝑇 𝝋𝑇 (𝝋′)𝑇 (𝝋′′)𝑇], (14) 

 

with the auxiliary matrices, obtained from Eqs. (1-3), 

 

 𝚵𝐸
𝑀,𝐿 =

[
 
 
 
 
𝟎 𝒖̅𝑇 𝟎 𝟎 𝟎 𝟎 𝟎
𝑠𝒖̅𝑇

𝑟
𝟎

𝒗̅,𝜃
𝑇

𝑟
𝟎

𝑐𝒘̅𝑇

𝑟
𝟎 𝟎

𝒖̅,𝜃
𝑇

𝑟
𝟎

−𝑠𝒗̅𝑇

𝑟
𝒗̅𝑇 𝟎 𝟎 𝟎]

 
 
 
 

 (15)

 𝚵𝐸
𝐵,𝐿 = −

[
 
 
 
 
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝒘̅𝑇

𝟎 𝟎
−𝑐𝒗̅,𝜃

𝑇

𝑟2
𝟎

𝒘̅,𝜃𝜃
𝑇

𝑟2
𝑠𝒘̅𝑇

𝑟
𝟎

𝟎 𝟎
2𝑠𝑐𝒗̅𝑇

𝑟2
−2𝑐𝒗̅𝑇

𝑟

−2𝑠𝒘̅,𝜃
𝑇

𝑟2

2𝒘̅,𝜃
𝑇

𝑟
𝟎 ]
 
 
 
 

 (16) 

 𝚵𝑥𝑥
𝑀,𝑁𝐿 =

1

2
𝚵𝐴
𝑇𝚵𝐴, 𝚵𝜃𝜃

𝑀,𝑁𝐿 =
1

2𝑟2
𝚵𝐵
𝑇𝚵𝐵, 𝚵𝑥𝜃

𝑀,𝑁𝐿 =
1

𝑟
𝚵𝐶
𝑇𝚵𝐷 , (17) 

 

where U1 = [1 0 0]T, U2 = [0 1 0]T, U3  = [0 1 0]T are used to place the nonlinear components in the 

correct row and the following matrices are used to construct the NL components 

 

 𝚵𝐴 = [
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝒗̅
𝟎
 
𝟎
𝟎
 
𝟎
𝒘̅
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝒗̅
𝟎
] ,    𝚵𝐵 = [

𝟎
𝟎
 
𝟎
𝟎
 
𝒗̅𝑐
𝒗̅,𝜃
 
𝟎
𝟎
 
−𝒘̅,𝜃
𝒘̅𝑐

 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝒗̅𝑐
𝒗̅,𝜃
 
𝟎
𝟎
],   (18) 

 

 𝚵𝐶 = [
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
−𝒗̅
 
𝟎
𝟎
 
𝟎
𝟎
 
𝒘̅
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
−𝒗̅
 
𝟎
𝟎
],      𝚵𝐷 = [

𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝒘̅,𝜃
𝟎
 
𝟎
𝒘̅𝑐
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
 
𝟎
𝟎
].  (19) 

 

To construct the standard GBT Vlasov shell-type deformation modes, which satisfy 𝜀𝜃𝜃
𝑀 = 𝛾𝑥𝜃

𝑀 =
0 exactly for small displacements, the cross-section displacement components for the deformation 

mode k are defined using the basis functions 
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 𝜔2𝑚 = sin𝑚𝜃 ,𝜔2𝑚+1 = cos𝑚𝜃 , (20) 

 

where 𝑚 is the number of circumferential waves. The Vlasov modes are as follows 

 

 𝑢̅𝑘 = 𝜔𝑘,   𝑣̅𝑘 = −𝜔𝑘,𝜃,   𝑤̅𝑘 = −
𝜔𝑘

𝑐
. (21) 

 

The Vlasov (𝛾𝑥𝜃
𝑀 = 0) and null membrane transverse extension (𝜀𝜃𝜃

𝑀 = 0) assumptions lead to the 

following relations between the modal amplitude functions  

 

 𝜓𝑘 = −𝑠𝜙𝑘 + 𝑟𝜙𝑘
′ ,   𝜑𝑘 = (𝑚

2 − 𝑠2)𝜙𝑘 + 𝑠𝑟𝜙𝑘
′ . (22) 

 

To allow for non-null membrane shear strains and transverse extensions, if required, the Vlasov 

modes are supplemented by two sets of deformation modes i and j, using the same basis functions, 

 

 𝑢 = ∑ 𝑢̅𝑖𝜓𝑖 ,      𝑢̅𝑖 = 𝜔𝑖,      𝑣̅𝑖 = 𝑤̅𝑖 = 0,
𝐷
𝑖=1  (23) 

 𝑣 = ∑ 𝑣̅𝑗𝜙𝑗 ,      𝑣̅1 = 1,       𝑣̅𝑗>1 = −𝜔𝑗,𝜃, 𝑢̅𝑗 = 𝑤̅𝑗 = 0
𝐷
𝑗=1 . (24) 

 

The axial extension mode corresponds to i = 1 and the torsion mode corresponds to j = 1. The 

axisymmetric (indicated by the subscript as) mode is introduced separately by considering 𝑤̅𝑎𝑠 =
1, 𝑢̅𝑎𝑠 = 𝑣̅𝑎𝑠 = 0.  

 

The virtual variation of the Green-Lagrange strain tensor becomes 

 

 𝛿𝑬 = (𝚵𝐸
𝐵,𝐿 + 𝚵𝐸

𝑀,𝐿 + 2𝑼1𝜱
𝑇𝚵𝑥𝑥

𝑀,𝑁𝐿 + 2𝑼2𝜱
𝑇𝚵𝜃𝜃

𝑀,𝑁𝐿 + 𝑼3𝜱
𝑇 (𝚵𝑥𝜃

𝑀,𝑁𝐿 + (𝚵𝑥𝜃
𝑀,𝑁𝐿)

𝑇
))

⏟                                                
𝚵𝛿𝐸

𝛿𝜱. (25) 

 

Introducing this expression into Eq. (6) and using Eqs. (11)-(13), one obtains 

 

𝛿𝑊𝑖𝑛𝑡 = −∫ 𝛿𝜱𝑇𝚵𝛿𝐸
𝑇 𝑪(𝚵𝐸

𝐵 + 𝚵𝐸
𝑀,𝐿 + 𝑼1𝜱

𝑇𝚵𝑥𝑥
𝑀,𝑁𝐿 + 𝑼2𝜱

𝑇𝚵𝜃𝜃
𝑀,𝑁𝐿 +

𝑉

                                                                𝑼3𝜱
𝑇𝚵𝑥𝜃

𝑀,𝑁𝐿)𝜱𝑟 d𝑥 d𝜃 d𝑧. (26) 

 

The external part, from Eq. (7), becomes 

 

 𝛿𝑊𝑒𝑥𝑡 = ∫ ∫ 𝛿𝜱𝑇𝚵𝑈̅
𝑇 𝒒̅ 𝑟 𝑑𝜃 𝑑𝑥

2𝜋

0

𝐿

0
, (27) 

 

with  

 

 𝑼̅ = 𝚵𝑈̅𝜱,       𝚵𝑈̅ = [
𝒖̅𝑻 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝒗̅𝑻 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝒘̅𝑻 𝟎 𝟎

]. (28) 

 

The finite element is obtained by approximating the amplitude functions in vector 𝜱 using quintic 

Hermite polynomials, since a clamped boundary condition requires setting 𝜙𝑘
′′ = 0 . The 

interpolation for a single element can be written as 
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 𝜱 = 𝒇𝒅𝑒, (29) 

 

where f contains the interpolation functions together with the relations between the Vlasov 

amplitude functions (𝜓𝑘 , 𝜙𝑘,  𝜑𝑘), given in Eq. (22) and vector 𝒅𝑒 collects the degrees of freedom. 

 

The element internal force vector can be written as 

 
(𝑭𝑖𝑛𝑡)𝑒 = 𝑲𝑆𝑒𝒅𝑒 ,  

 

where  𝑲𝑆 stands for the secant stiffness matrix, which has three components depending on the 

coupling between the linear and nonlinear strain components, 

 

 (𝑲𝑆)𝑒  = 𝑲𝐿 +𝑲𝑆
𝐿.𝑁𝐿 +𝑲𝑆

𝑁𝐿.𝑁𝐿, (30) 

 

where indices L represent the linear part and L.NL represent linear with non-linear couplings, while 

NL.NL represent non-linear with non-linear couplings. The linear stiffness matrix can be written 

as 

 

 𝑲𝐿 = ∫ 𝒇𝑇 ((𝚵𝐸
𝐵,𝐿)

𝑇
+ (𝚵𝐸

𝑀,𝐿)
𝑇
)𝑪(𝚵𝐸

𝐵 + 𝚵𝐸
𝑀,𝐿)𝒇𝑟 d𝑥 d𝜃 d𝑧

𝑉
. (31) 

 

The linear with non-linear combinations stiffness matrix will be 

 

 𝑲𝑆
𝐿.𝑁𝐿 = 𝑡(𝑲𝑆

𝐿.𝑁𝐿.𝑥𝑥 +𝑲𝑆
𝐿.𝑁𝐿.𝜃𝜃 +𝑲𝑆

𝐿.𝑁𝐿.𝑥𝜃), (32) 
 

with  

 

 𝑲𝑆
𝐿.𝑁𝐿.𝑥𝑥 = ∫∮(𝑷𝐿𝑥𝑥𝒅𝑒

𝑇𝑷𝑁𝐿𝑥𝑥 + 2𝑷𝑁𝐿𝑥𝑥
𝑇 𝒅𝑒𝑷𝐿𝑥𝑥

𝑇 )𝑟 d𝑥 d𝜃, (33) 

 𝑲𝑆
𝐿.𝑁𝐿.𝜃𝜃 = ∫∮(𝑷𝐿𝜃𝜃𝒅𝑒

𝑇𝑷𝑁𝐿𝜃𝜃 + 2𝑷𝑁𝐿𝜃𝜃
𝑇 𝒅𝑒𝑷𝐿𝜃𝜃

𝑇 )𝑟 d𝑥 d𝜃, (34) 

 𝑲𝑆
𝐿.𝑁𝐿.𝑥𝜃 = ∫∮(𝑷𝐿𝑥𝜃𝒅𝑒

𝑇𝑷𝑁𝐿𝑥𝜃1 + 𝑷𝑁𝐿𝑥𝜃2
𝑇 𝒅𝑒𝑷𝐿𝑥𝜃

𝑇 )𝑟 d𝑥 d𝜃, (35) 

 

and 

 

 𝑷𝐿𝑥𝑥 = 𝒇
𝑇(𝚵𝐸

𝑀,𝐿)
𝑇
𝑪𝑼1,      𝑷𝑁𝐿𝑥𝑥 =  𝒇

𝑇𝚵𝑥𝑥
𝑀,𝑁𝐿𝒇, (36) 

 𝑷𝐿𝜃𝜃 = 𝒇
𝑇(𝚵𝐸

𝑀,𝐿)
𝑇
𝑪𝑼2,      𝑷𝑁𝐿𝜃𝜃 =  𝒇

𝑇𝚵𝜃𝜃
𝑀,𝑁𝐿𝒇, (37) 

 𝑷𝐿𝑥𝜃 = 𝒇
𝑇(𝚵𝐸

𝑀,𝐿)
𝑇
𝑪𝑼3      𝑷𝑁𝐿𝑥𝜃1 =  𝒇

𝑇𝚵𝑥𝜃
𝑀,𝑁𝐿𝒇     𝑷𝑁𝐿𝑥𝜃2 =  𝒇

𝑇 (𝚵𝑥𝜃
𝑀,𝑁𝐿 + (𝚵𝑥𝜃

𝑀,𝑁𝐿)
𝑇
) 𝒇. (38) 

 

The non-linear with non-linear combinations stiffness matrix will be 

 

 𝑲𝑆
𝑁𝐿.𝑁𝐿 = 𝑡(𝑲𝑆

𝑁𝐿.𝑁𝐿.𝑥𝑥.𝑥𝑥 +𝑲𝑆
𝑁𝐿.𝑁𝐿.𝜃𝜃.𝜃𝜃 +𝑲𝑆

𝑁𝐿.𝑁𝐿.𝑥𝑥.𝜃𝜃 +𝑲𝑆
𝑁𝐿.𝑁𝐿.𝑥𝜃.𝑥𝜃), (39) 

 

with 
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 𝑲𝑆
𝑁𝐿.𝑁𝐿.𝑥𝑥.𝑥𝑥 = 2𝑄11 ∫∮𝑷𝑁𝐿𝑥𝑥

𝑇 𝑫𝑷𝑁𝐿𝑥𝑥𝑟 d𝑥 d𝜃, (40) 

 𝑲𝑆
𝑁𝐿.𝑁𝐿.𝜃𝜃.𝜃𝜃 = 2𝑄22 ∫∮𝑷𝑁𝐿𝜃𝜃

𝑇 𝑫𝑷𝑁𝐿𝜃𝜃𝑟 d𝑥 d𝜃, (41) 

 𝑲𝑆
𝑁𝐿.𝑁𝐿.𝑥𝑥.𝜃𝜃 = 2𝑄12 ∫∮(𝑷𝑁𝐿𝑥𝑥

𝑇 𝑫𝑷𝑁𝐿𝜃𝜃 + 𝑷𝑁𝐿𝜃𝜃
𝑇 𝑫𝑷𝑁𝐿𝑥𝑥)𝑟 d𝑥 d𝜃, (42) 

 𝑲𝑆
𝑁𝐿.𝑁𝐿.𝑥𝜃.𝑥𝜃 = 𝑄33 ∫∮𝑷𝑁𝐿𝑥𝜃2

𝑇 𝑫𝑷𝑁𝐿𝑥𝜃1𝑟 d𝑥 d𝜃, (43) 

 

where 𝑫 = 𝒅𝑒𝒅𝑒
𝑇.  

 

The element tangent stiffness matrix, which is required to perform Newton-Raphson iterations, 

has a similar form, 

 

 (𝑲𝑇)𝑒  = 𝑲𝐿 +𝑲𝑇
𝐿.𝑁𝐿 +𝑲𝑇

𝑁𝐿.𝑁𝐿 , (44) 

with  

 

 𝑲𝑇
𝐿.𝑁𝐿 = 𝑡(𝑲𝑇

𝐿.𝑁𝐿.𝑥𝑥 +𝑲𝑇
𝐿.𝑁𝐿.𝜃𝜃 +𝑲𝑇

𝐿.𝑁𝐿.𝑥𝜃),  (45) 

 𝑲𝑇
𝐿.𝑁𝐿.𝑥𝑥 = ∫∮(𝑷𝐿𝑥𝑥𝒅𝑒

𝑇𝑷𝑁𝐿𝑥𝑥
𝑇 + 2𝑷𝑁𝐿𝑥𝑥

𝑇 (𝒅𝑒
𝑇𝑷𝐿𝑥𝑥))𝑟 d𝑥 d𝜃, (46) 

 𝑲𝑇
𝐿.𝑁𝐿.𝜃𝜃 = ∫∮ (𝑷𝐿𝜃𝜃𝒅𝑒

𝑇𝑷𝑁𝐿𝜃𝜃
𝑇 + 2𝑷𝑁𝐿𝜃𝜃

𝑇 (𝒅𝑒
𝑇𝑷𝐿𝜃𝜃)) 𝑟 d𝑥 d𝜃, (47) 

 𝑲𝑇
𝐿.𝑁𝐿.𝑥𝜃 = ∫∮ (𝑷𝐿𝑥𝜃𝒅𝑒

𝑇𝑷𝑁𝐿𝑥𝜃1
𝑇 + 2𝑷𝑁𝐿𝑥𝜃2

𝑇 (𝒅𝑒
𝑇𝑷𝐿𝑥𝜃)) 𝑟 d𝑥 d𝜃, (48) 

 𝑲𝑇
𝑁𝐿.𝑁𝐿 = 𝑡(𝑲𝑇

𝑁𝐿.𝑁𝐿.𝑥𝑥.𝑥𝑥 +𝑲𝑇
𝑁𝐿.𝑁𝐿.𝜃𝜃.𝜃𝜃 +𝑲𝑇

𝑁𝐿.𝑁𝐿.𝑥𝑥.𝜃𝜃 +𝑲𝑇
𝑁𝐿.𝑁𝐿.𝑥𝜃.𝑥𝜃), (49) 

 𝑲𝑇
𝑁𝐿.𝑁𝐿.𝑥𝑥.𝑥𝑥 = 2𝑄11 ∫∮ (𝑷𝑁𝐿𝑥𝑥

𝑇 𝑫𝑷𝑁𝐿𝑥𝑥
𝑇 + 𝑷𝑁𝐿𝑥𝑥

𝑇(𝒅𝑒
𝑇𝑷𝑁𝐿𝑥𝑥𝒅𝑒)) 𝑟 d𝑥 d𝜃, (50) 

 𝑲𝑇
𝑁𝐿.𝑁𝐿.𝜃𝜃.𝜃𝜃 = 2𝑄22 ∫∮ (𝑷𝑁𝐿𝜃𝜃

𝑇 𝑫𝑷𝑁𝐿𝜃𝜃
𝑇 + 𝑷𝑁𝐿𝜃𝜃

𝑇(𝒅𝑒
𝑇𝑷𝑁𝐿𝜃𝜃𝒅𝑒)) 𝑟 d𝑥 d𝜃, (51) 

 𝑲𝑇
𝑁𝐿.𝑁𝐿.𝑥𝑥.𝜃𝜃 = 2𝑄12 ∫∮ (𝑷𝑁𝐿𝜃𝜃

𝑇 𝑫𝑷𝑁𝐿𝜃𝜃
𝑇 + 𝑷𝑁𝐿𝑥𝑥

𝑇 (𝒅𝑒
𝑇𝑷𝑁𝐿𝜃𝜃𝒅𝑒) + 𝑷𝑁𝐿𝜃𝜃

𝑇 𝑫𝑷𝑁𝐿𝑥𝑥
𝑇 +

𝑷𝑁𝐿𝜃𝜃
𝑇 (𝒅𝑒

𝑇𝑷𝑁𝐿𝜃𝜃𝒅𝑒)) 𝑟 d𝑥 d𝜃, (52) 

 𝑲𝑇
𝑁𝐿.𝑁𝐿.𝑥𝜃.𝑥𝜃 = 𝑄33 ∫∮(𝑷𝑁𝐿𝑥𝜃2

𝑇 𝑫𝑷𝑁𝐿𝑥𝜃1
𝑇 + 𝑷𝑁𝐿𝑥𝜃2

𝑇 (𝒅𝑒
𝑇𝑷𝑁𝐿𝑥𝜃1𝒅𝑒)) 𝑟 d𝑥 d𝜃. (53) 

 

The stiffness matrices are obtained by performing numerical integration using 6 Gauss points along 

x, which suffices to mitigate locking effects. Since for deformation modes with many waves, the 

numerical integration with respect to θ requires a high number of Gauss points, which can be 

computationally expensive, the integration was performed analytically. This process is challenging 

for the nonlinear stiffness matrices due to their dependence of the degrees of freedom vector de, 

which changes at each iteration. In the present formulation each element of de (and D) is multiplied 

with an influence matrix, different for each nonlinear stiffness matrix. These influence matrices 

are calculated by analytical integration along θ, before the starting of the Newton-Raphson iterative 

process.  

 

The boundary conditions require special constraints between the degrees of freedom related with 

the supports, which are presented in detail in (Gonçalves & Nedelcu, 2024).  

 

The finite element analysis was written in MATLAB (MathWorks Inc., 2024), together with post-

processing scripts to enable the visualization of deformed configurations and buckling modes. 
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4. Numerical examples 

To provide evidence of the potential of the proposed formulation,  several numerical examples are 

presented next. The results are compared with shell finite element analysis (SFEA) results 

conducted in ADINA (Bathe, 2019) and ABAQUS (Hibbit et al., 2002), using MITC4 and S4 shell 

elements, respectively. The number of shell finite elements are set after sensitivity studies revealed 

the best discretizations. In all the presented cases the shell is made of steel, with E = 210000 MPa 

and μ=0.3.  

 

4.1 Shell subjected to a distortional-type load 

A shell with the following geometric setting is considered: top radius (X = 0)  r1 = 100 mm, semi-

vertex angle α = 45◦, meridian length L = 3000 mm, thickness t = 1 mm. The top end is simply 

supported (u = v = w = 0) and the other end is free. A distortional-type distributed load is applied 

at the end section, along the local z axis, triggering the m = 2 distortional deformation mode pair. 

The GBT model involves 30 finite elements, whereas the shell model involves approximately 9600 

shell elements.  

 

A linear (first-order) analysis is carried out and the results are shown in Fig. 2.  An excellent 

agreement between the GBT and shell model deformed configurations is observed, with a 

negligible error in terms of the maximum displacement along Y. The predominant GBT 

deformation mode is the k = 5 Vlasov distortional mode, with a small end effect from the i = 5 

shear mode. 

 

A geometrically non-linear analysis was also performed, and the results are shown in Fig. 3. The 

shell results reveal a complex snap-back behaviour at a load factor of 0.102. Until this point the 

GBT and the shell nonlinear curves virtually overlap, showing that the proposed GBT formulation 

is capable of providing very accurate solutions for small to moderate displacements. Since only 

load control was implemented, without branch switching techniques, the GBT analysis is not able 

to detect the snap-back path and follows the initial path.  
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Figure 2: Linear analysis of a shell subjected to a distortional-type (m = 2) distributed load 

 

 

For the load factor of 0.102  the predominant deformation mode remains the k = 5 Vlasov mode, 

but the axisymmetric mode also plays an important role, together with the k = 9 Vlasov mode. The 

i, j = 5 modes have substantial contributions in representing the end effects.  
    

 
 

Figure 3: Geometrically non-linear analysis of a shell subjected to a distortional-type (m = 2) distributed load: a) 

equilibrium paths; b) mode amplitudes for the load factor of 0.102   

 

4.2 Shell subjected to concentrated loads 

For the linear (first-order) analysis the shell has the same geometry as in the previous example, 

except the length is changed to L = 1000 mm. The shell is subjected to a concentrated radial load 

(in Z direction) causing severe local deformations. Due to the increased complexity of the problem 

the analysis is carried out with 363 modes, because modes with a large number of circumferential 

waves are required to accurately represent the concentrated deformation near the load application 
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point. Nevertheless, there is only a dozen of modes with significant contributions. The mode 

amplitude graph makes it possible to identify several relevant modes: eight Vlasov (k = 2, 5, 6, 9, 

10, 13, 14, 17), the modes i, j = 2 now play a global role and the end effects involve many modes, 

particularly i = 5, 6. 

 

For the geometrically nonlinear analysis the thickness was modified to t = 2 mm, and the length is 

set to L = 3000 mm. The load was reversed to produce compression, thus making the model more 

flexible. The number of GBT modes is 303, and the number of finite elements is 20. The deformed 

configurations and the mode amplitude graph pertain to a load factor equal to 1. As seen from the 

equilibrium paths in Fig. 5, the GBT model is very accurate up to a maximum displacement of 83 

mm, which corresponds to fairly large displacements (approximately 40 times the thickness), and 

afterwards becomes stiffer than the shell one. The mode amplitude graph reveals major 

contributions of modes k, i = 3, 5, 7, 9, 11, the axisymmetric mode, and j = 3 as end effects. 

 

 
Figure 4: Linear analysis of a wide shell subjected to a radial load 
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Figure 5: Geometrically nonlinear analysis of a wide shell subjected to a radial load (the deformed configurations 

and mode amplitude graph correspond to a load factor equal to 1) 

 

4.3 Linear buckling of cantilever shells under axial compression 

For the last example the thickness is set to t = 1 mm and the shell length is LX = 1200 mm (length 

along X). The top radius is r1= 50 mm, while the bottom radius r2 varies between 50 mm and 1000 

mm. These conical shells are analysed under an axial compressive force of P0 = 1 kN. The end X 

= L is clamped and the X =0 end is free for all displacements and rotations. The number of GBT 

finite elements varies from 20 to 40 depending on radius size. For the shell models, the average 

size of the S4 finite elements is 5 mm, and their numbers greatly varies from 15120, for the 

cylinder, up to 205920, for the conical shell with the largest radius. 

 

To obtain the bifurcation loads and corresponding buckling modes, a very small load step is carried 

out, to obtain the pre-buckling stresses, and the eigenvalue problem [𝑲𝐿 + 𝜆(𝑲𝑇
𝐿.𝑁𝐿 +

𝑲𝑇
𝑁𝐿.𝑁𝐿)]𝒅 = 𝟎 is solved (see Eq. (44)). Fig. 6 and Table 1 present the results in terms of critical 

buckling factors (λc) and mode shapes, which are in excellent agreement with the shell model 

results, having a percentage relative difference below 1%. For this special case of pure axial 

compression, there is no coupling between the GBT modes having different numbers of 

circumferential waves (m). Therefore, the critical shapes are represented by a single Vlasov mode 

(k) coupled with the corresponding shear and transverse extension modes (i, j) — no such insight 

is possible with shell finite element models.  The mode amplitude graph given in Fig.7, shows that 
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for every case there is one dominant Vlasov mode but its i and j mode counterparts have non-

negligible contributions .  

 

 
Figure 6: Buckling modes of cantilever members, obtained with the proposed GBT formulation 

 
Table 1: GBT results vs. SFEA results for buckling of shells under axial compression 

r2  

[mm] 

λc 

GBT 

Difference GBT 

vs SFEA (%) 

Modes k, i , j 

50 139.84 0.01 3 

60 204.64 0.64 3 

70 220.36 0.71 5 

90 214.65 0.08 5 

100 212.76 0.20 5 

120 190.10 0.05 7 

150 162.12 0.21 9 

200 128.60 0.38 9 

300 89.83 0.19 9 

400 68.33 0.43 9 

500 54.96 0.47 9 

1000 25.85 0.70 9 
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Figure 7: Mode amplitudes for the buckling modes of four shells under axial compression 

 

5. Conclusions 

This paper presented the first GBT formulation for the geometrically non-linear analysis of thin 

truncated conical shells with circular cross-sections, undergoing complex cross-section 

deformation. Compared with the previous GBT formulations (available for the linear and 

linearized buckling analyses cases only), this study considers all the membrane strain components 

in the kinematic relations and is able to perform first-order, linearized buckling and second-order 

analyses. Even though the formulation is necessarily complex, due to the intricate kinematics of 

conical shells, all expressions required to implement a suitable displacement-based finite element 

were provided in a straightforward vector-matrix format. The examples provided in the paper 

provide solid evidence that the formulation is extremely accurate for linear and linearized stability 

analyses, while it is quite accurate up to fairly large displacements. Moreover, the GBT modal 

solution is capable of providing insightful information, while the analyses generally trigger a 

relatively small number of deformation modes and require only a few finite elements. 

 

This proposal lays the groundwork for more extensive research into the structural behavior of 

conical shells, especially when it comes to stability and vibration. Work is under way to cover not 

only these aspects, but also to allow tracing complex equilibrium paths, include imperfections and 

calculate true collapse loads involving elastoplastic material behavior. 
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