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Abstract 
A relationship was discovered between the amplification factor and the number of load increments 
that are needed to limit the relative error to one percent in a second-order elastic analysis with a 
predictor-corrector solution scheme. Previous research by the authors proposed a design equation 
to determine the required minimum number of load increments based on an evaluation of the 
elastic critical buckling load ratio. Further research has shown that an approximate amplification 
factor equation that is based on the B2 multiplier equation produces similar results when the 
amplification factor is less than approximately four. Fifteen moment frames are used to verify the 
use of the new approximate amplification factor in the proposed design equation. Discussion is 
provided on when the new amplification factor can be used effectively to determine the required 
minimum number of load increments in a second-order elastic analysis. 
 
1. Introduction 
The strength requirements of frames are often evaluated considering geometric nonlinear effects, 
which requires the engineer to make decisions about the required modeling effort and its associated 
computational time to achieve a desired level of accuracy. For steel frames modeled with beam 
elements, these nonlinear effects are accounted for using a solution scheme that incrementally 
applies the loads to approximate the ‘exact’ equilibrium of the frame in the deformed configura-
tion. The accuracy in modeling the frame in this configuration is dependent upon the number of 
load increments that are used to apply the external loads. Increasing the number of load increments 
to improve accuracy often comes at the cost of increased computational time since frame models 
often have a large number of degrees of freedom and multiple load combinations to consider. The 
effects of nonlinear material behavior may also need to be considered, but since the majority of 
routine building design considers only elastic material behavior (Ziemian and Ziemian 2021), this 
other contributing influence on the number of load increments is ignored in the present study. 
 
The number of load increments that are necessary to achieve a 1% relative error in a second-order 
elastic analysis was previously evaluated by the authors (Faramawi and Rosson 2024). A total of 
26 frames were modeled with an initial geometric imperfection of H/500 and increment size of 
0.001 in a predictor-corrector solution scheme to obtain the ‘exact’ lateral displacement results at 
the top of the frame. It was found that the amplification factor (AF) of the frame can be used to 
determine the minimum number of load increments. Using the frame’s elastic buckling load factor 
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��� to approximate the amplification factor AF���
 (Merchant 1954, Eurocode EN 1993-1-1 2005, 

and AS 4100 2020), the displacement results using the number of increments equal to 5AF���
  – 2 

were compared with the ‘exact’ displacement results and found to be within a 1% relative error. 
 
This study explores the use of an alternative method to approximate the amplification factor using 
the B2 multiplier equation in AISC 360, Appendix 8 (2022). The approximate amplification factor 
AF	
 is calculated by performing a first-order analysis, then the interstory drift values are updated 
based on the appropriate B2 multiplier at each level to approximate the second-order displacement 
at the top of the frame. It also investigates larger amplification factors than previously studied by 
increasing the gravity loads on 11 multi-story benchmark frames. 
 
The frames were modeled in the MASTAN2 (2022) analysis software, which accounts for second-
order effects using an Updated Lagrangian formulation, and for this study, the predictor-corrector 
solution scheme. The software is also capable of performing a linear buckling analysis using the 
inverse iteration method (McGuire et al. 2000). All members were modeled as planar 6-dof line 
elements with elastic material behavior and all frame models have out-of-plumb geometries. 
 
2. Frame Amplification Factors 
Numerous second-order elastic analyses were conducted to determine the minimum number of 
load increments that were needed to limit the relative error to 1% or less. Frames were modeled 
with an initial geometric imperfection of H/500 and an increment size of 0.001 in a predictor-
corrector solution scheme to obtain the ‘exact’ results. The amplification factor was evaluated for 
each analysis condition using Eq. 1, where δ
� is the lateral displacement of the top left node 
from a second-order elastic analysis, and δ��� is the displacement at the same location from a first-
order analysis.  
 
 

(1) 
 
The ‘exact’ amplification factor AF can be approximated by AF���

 using the elastic buckling load 
ratio of the frame ��� as given in Eurocode EN 1993-1-1 (2005) and AS 4100 (2020). The critical 
buckling load P�� in Eq. 3 is obtained using closed-form equations for simple frames or from an 
eigenvalue analysis for more complex frames, and P is the applied load on the frame. When 
performing an elastic critical load analysis in MASTAN2, ��� is the Mode #1 Applied Load Ratio. 
 
 

(2) 
 

 
(3) 

 
 

The B2 multiplier in Eq. 4 is from Appendix 8 of AISC 360 (2022) and is used to account for the 
P-∆ effect of each story. In this application, the B2 multiplier is calculated for each story, where α 
is taken as 1, Pstory is the total axial load supported by the story ( ΣPi ), and Pe story is the elastic 
critical buckling strength of the story in the direction of translation being considered.  

AF =
δ
�

δ���
 

��� =
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The elastic critical buckling load can be determined by an eigenvalue analysis or by using Eq. 5. 
In this equation, H represents the total story shear in the direction of translation ( ΣVi ), L is the 
height of the story, and ∆H is the first-order interstory drift. RM is taken as 0.85 for moment frames. 
Fig. 1 illustrates the components of Eqs. 4 and 5. 
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Figure 1: Frame with B2 equation components 
 
Using first-order analysis results of the applied loads on the frame, Eq. 6 is used to convert the 
lateral displacement at each level ( δi ) to the corresponding interstory drift values ( ∆i ). 
 

                                    

(6)

 
 
The Ci,i coefficients in Eq. 7 follow from the B2 multiplier equation and are used to convert the 
first-order drift values to approximate second-order interstory drift values. The variables in Eq. 7 
are illustrated in Fig. 1. 
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)*,* =
1

1 −
Σ�*Δ*

0.85Σ1*%*

                                                             (7) 

 
Multiplying the first-order drift values by a diagonal matrix of the Ci,i coefficients results in the 
approximate second-order interstory drift values ( ∆'i ). 
 

                       

(8)

 
 

The sum of the second-order drift values ( Σ∆'i ) gives an approximation for δ
� in Eq. 1, and 
since δ��� is the same as δ�, the approximate amplification factor AF3
 is given as 
 

AF3
 =
ΣΔ*

4

δ�
                                                                     (9) 

 
3. Minimum Number of Increments in a Second-Order Elastic Analysis 
All frames were modeled with an initial geometric imperfection of H/500 and an increment size 
of 0.001 in a predictor-corrector solution scheme to obtain the ‘exact’ results. Four different load 
magnitudes were modeled for each frame stiffness condition. Frames 1 through 3 use 6 = 1, 8, 24 
and correspond with frame designations A, B, and C, respectively. 
 

 (10) 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 2: Frame 1 properties 
 
As indicated in Fig. 3 with Frame 1, a linear relationship exists between the minimum number of 
load increments that are needed to keep the relative error below 1% and the ‘exact’ amplification 
factor AF. A regression analysis of the data revealed a very strong linear relationship (red line,        
r 2 = 0.9987). With a slope of approximately 5 and y-intercept of approximately 3, Eq. 11 was 
proposed for design purposes to determine the minimum number of load increments to use in a 

6 =
73%8

78%3
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second-order elastic analysis with the predictor-corrector solution scheme (Faramawi and Rosson 
2024). It conservatively uses 2 for the y-intercept because only the integer result is used, and it 
also ensures the relative errors remain below 1%. 

 
 (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Number of increments vs. amplification factor for Frame 1 (relative error ≤ 1%)  
 
As indicated by the dashed red line in Fig. 3, and the corresponding data associated with it using 
AF���

  and AF	
 in Eq. 11, the minimum number of load increments was found to produce second-
order elastic results that are within 1% of the ‘exact’ results. Fig. 3 and data in Appendix A reveal 
that all the required number of increments using Eq. 11 remain above the actual minimum number 
of increments. Thus, Eq. 11 is found to be conservative and can safely be used for this purpose. 
 
 
 

 
 
 
 
 
 
 
 

Figure 4: Frame 2 properties 

Number of Increments = 5AF − 2 
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As indicated in Fig. 5 with Frame 2, a similar linear relationship exists between the minimum 
number of load increments and the amplification factors as that given in Fig. 3 with Frame 1.              
A regression analysis of the data revealed a similar linear relationship (red line, r 2 = 0.9994) with 
approximately the same slope and y-intercept. As with Frame 1, the use of AF���

  and AF	
 in    
Eq. 11 was found to produce conservative results and can safely provide second-order elastic 
results that are within 1% of the ‘exact’ results. 
 

 
Figure 5: Number of increments vs. amplification factor for Frame 2 (relative error ≤ 1%)  

 
 

 
 
 
 
 
 
 
 
 
 

Figure 6: Frame 3 properties 
 

Frame 3 in Fig. 6 is very similar to Frame 2, the only difference is the internal hinge at the top of 
the middle column. This frame was used to determine if the hinge had any effect on the results. A 
similar linear relationship exists between the minimum number of load increments and the 
amplification factor. The results in Fig. 7, and the corresponding data in Appendix B, reveal that 
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the internal hinge has no effect on the use of Eq. 11, and it can safely be used to determine the 
minimum number of load increments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Number of increments vs. amplification factor for Frame 3 (relative error ≤ 1%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Frame 4 properties 
 

Frame 4 in Fig. 8 was developed to evaluate the effectiveness of Eq. 11 on a more complex 
unbraced frame. A linear buckling analysis was conducted using MASTAN2 on six different beam 
and column stiffness configurations as indicated in Table 1. Six configurations (A through F) were 
used to conduct second-order elastic analyses with four magnitudes of external load for each 
configuration.   
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 (13) 
 
 

Table 1: Analysis conditions and results for Frame 4 

 
 
As indicated in Fig. 9, a similar linear relationship exists between the minimum number of load 
increments and the amplification factor as that given in Figs. 3, 5, and 7 for Frames 1, 2, and 3, 
respectively. A regression analysis of the data revealed a similar linear relationship (red line, r 2 = 
0.9961) with approximately the same slope and y-intercept. As with the previous frames, the use 
of AF���

  and AF	
 in Eq. 11 for Frame 4 was found to produce second-order elastic results that 
were within 1% of the ‘exact’ results. 
 

 
   

Figure 9: Number of increments vs. amplification factor for Frame 4 (relative error ≤ 1%)  
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4. Validation Study with 11 Benchmark Frames 
With the successful utilization of Eq. 11 in the previous section, 11 moment frames that were 
developed by Lu et al. 1977, Vogel 1985, and Statler et al. 2011 were used to test the validity of 
this expression to determine the minimum number of load increments in a second-order elastic 
analysis using the predictor-corrector solution scheme. An overview description of Frames 5 
through 15 is given in Fig. 10, and the analysis results for these frames are given in Appendix C. 
Frame designation A indicates the original stiffness and loads as those given in the Benchmark 
Problems file of MASTAN2 (2022). Frame designation B indicates the same stiffness conditions 
but with increased gravity loads to produce larger amplification factors for all 11 frames. This was 
necessary because the original loads resulted in AF values between 1.153 and 1.686, but with the 
increased loads the AF values ranged between 1.755 and 3.373. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Overview of benchmark Frames 5 − 15 

As indicated in Fig. 11, a similar linear relationship exists between the minimum number of load 
increments and the amplification factor (red line, r 2 = 0.9914); however, there is a steeper slope 
to the line than before. Nonetheless, Eq. 11 was still found to produce results for all 11 frames that 
were within 1% of the ‘exact’ results. Fig. 12 illustrates the reason why this remains the case. The 
AF���

 and AF	
 values are always slightly larger than the actual AF values. This results in higher 
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values for the minimum number of increments in Eq. 11 compared with the ‘exact’ results; thus 
they are conservative and always within 1% of the required minimum number of load increments. 
Fig. 12 also illustrates that using AF	
 to determine the number of increments results in slightly 
higher values than those produced using AF���

, especially for amplification values greater than 
approximately 2. 
 

 
Figure 11: Number of increments vs. amplification factor for Frames 5 − 15 (relative error ≤ 1%)  

Figure 12: Comparison of amplification factors and number of increments with ‘exact’ results (Frames 5 − 15) 
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5. Conclusions 
Based on the displacement results of the four unbraced frames and 11 benchmark moment frames, 
a linear relationship was discovered between the amplification factor and the number of load 
increments that are needed to limit the relative error to 1% in a second-order elastic analysis with 
a predictor-corrector solution scheme. The integer result of 5AF – 2 is proposed for routine design 
purposes to determine the minimum number of load increments. Since a linear buckling analysis 
is required to calculate AF���

, an amplification factor based on the B2 multiplier equation was 
investigated as an alternative. The use of AF	
 was found to produce reliable and accurate results 
up to an amplification factor of approximately 4. The AF	
 results were very comparable to those 
using AF���

, especially for amplification factors below approximately 2. It is recommended to 
limit the use of AF	
 to amplification factors below 4; however, since most design conditions have 
amplification factors well below this threshold, using AF	
 to determine the minimum number of 
load increments in a second-order elastic analysis can be confidently and widely used in practice. 
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Appendix A (Results for Frames 1 and 2) 
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Appendix B (Results for Frames 3 and 4) 
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Appendix C (Results for Frames 5 through 15) 

 

 




