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Abstract 

Numerous situations occur in engineering practice where I-section members must be designed for 

a combination of flexure, shear, torsion, and/or axial loadings. Particularly in metal buildings and 

horizontally curved I-girder bridges, these member types may have variable web depth and stepped 

cross-section transitions along their length. Design guidance for handling combined loadings on 

these member types has been limited. Modern software systems that can accurately calculate 

combined second-order elastic demands and elastic buckling loads for general I-section members 

in general framing systems are increasingly available. This paper discusses new AISC 360 Chapter 

F provisions under consideration in the 2027 Specification development cycle. These provisions 

provide an improved, streamlined calculation of the flexural resistance of general I-section 

members. The calculations address recent research findings regarding the influence of moment 

gradient and corresponding web shear. The discussion of the new AISC 360 procedures is followed 

by a brief presentation of recommended ways to verify a design where the member is also subjected 

to axial compression and/or torsion based on experiences from European and American practice. 

The focus of the paper is on the essential concepts. 

1. Introduction 

In recent years, many exciting developments have occurred in the AISC 360 and AASHTO LRFD 

Specifications and the Eurocode 3 Standard. The I-section member provisions in the AISC 360 

Specification (AISC 2022) have been the subject of intensive research and committee evaluation 

during the 2022 and 2027 Specification cycles. The AASHTO LRFD 9th and 10th Edition 

Specifications (AASHTO 2020 and 2024) have incorporated substantial developments addressing 

nonprismatic girder design and the design verification of bridge members for general flexure, 

shear, torsion, and/or axial loadings. In European practice, substantial developments have occurred 

in practical analysis-design software systems allowing for accurate geometric nonlinear analysis 

of I-section members and frames for general loadings using frame elements based on thin-walled 

open-section beam theory (ConSteel 2025). These software systems also support the design of 

nonprismatic members using the so-called General Method (CEN 2022; Vaszilievits-Sömjén et al. 

2023).  
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Section 2 of this paper discusses the recent AISC 360 Chapter F developments. Section 3 

elaborates on how the flexural resistance verifications in AISC 360 Chapter F can be extended 

most effectively to address combined axial compression and flexure in general I-section members. 

Section 4 then discusses combined flexure and torsion design with or without significant axial 

compression.  

2. AISC 360-27 Chapter F Developments  

Section F3 in the draft AISC 360-27 Standard under consideration by the AISC Specification 

Committee has consolidated the knowledge from the prior AISC 360 Sections F3 through F5 and 

substantive results from recent research into a single set of unified and streamlined procedures for 

the flexural design of general I-section members. The new Section F3 provisions are subdivided 

into three main subsections characterizing the following limit states: (1) Yielding and web local 

buckling (WLB), (2) Flange local buckling (FLB) and its potential interaction with yielding and 

WLB, and (3) Lateral-torsional buckling (LTB) and its potential interaction with yielding and 

WLB. The essential concepts and procedures employed to characterize these limit states are 

described in the following.  

 

2.1 Yielding and web local buckling (WLB) 

The draft AISC 360-27 Section F3 provisions define a “plateau” (i.e., maximum) strength for the 

FLB and LTB resistances by considering flexural yielding and its interaction with WLB. In many 

respects, the flexural yielding and WLB provisions are equivalent to the AISC 360-22 Section F4 

and F5 provisions involving the web plastification factors, Rpc and Rpt, and the web bend buckling 

strength reduction factor, Rpg; however, the new provisions are more direct: 

(a) For a compact web (w
 < pw)  

 
w pM M=  (1a) 

(b) For a noncompact web (pw < w
 < rw)  

 ( ) w pw

w p p yc

rw pw

M M M M
  −

= − −    − 

 (1b) 

and (c) For a slender web (w 
 > rw)  

 w b ycM R M=  (1c) 

where Mw is the plateau resistance, Mp is the traditional cross-section plastic moment, Myc is the 

moment at the nominal first yielding of the compression flange, w is the web slenderness defined 

as hcy / tw in which hcy is two times the depth of the web in flexural compression at the first yield 

of the compression flange and tw is the web thickness, pw and rw are the compact- and 

noncompact-web limits associated with w, and Rb is the web elastic bend buckling strength 

reduction factor written in terms of w. Figure 1 shows a representative variation of the "plateau" 

strength associated with yielding and WLB as a function of the web slenderness w.  
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For doubly-symmetric sections and singly-symmetric sections with the smaller flange in 

compression (such that the elastic section modulus to the tension flange is greater than or equal to 

the elastic section modulus to the compression flange, Sxt > Sxc), Myc and hcy are the traditional 

yield moment to the compression flange, Fy Sxc, and two times the elastic depth of the web in 

compression, hc. However, for sections with a larger flange in compression such that Sxt < Sxc, the 

nominal first yielding occurs in tension and Myc is the moment corresponding to a stress 

distribution such as that illustrated in Fig. 2. The Commentary of the draft Specification provides 

closed-form equations for the calculation of Myc and hcy for sections with these characteristics.  

 

Figure 1: Representative variation in the "plateau" strength versus the web slenderness w  

bfc x tfc

bft x tft

h x tw

Fy

Fy

hcy /2 dcy

dcy

 

Figure 2: Representative stress distribution corresponding to Myc for a section that yields first in tension 

Defining Myc as the "true" moment at the nominal first yielding of the compression flange and hcy 

as two times the depth of the web in compression at this moment level addresses the fundamental 

mechanics of the flexural behavior directly and accurately, removing any need for the AISC 

360-22 Tension Flange Yielding resistance calculations. In addition, the compact-web limit is 

defined using the general form given by Case 16 of the AISC 360-22 Table B4.1b, with hcy 

substituted for hc and Myc for My,  
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p
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h F

M

M

 =
 

−  
 

 (2) 

In Eq. 2, hp is two times the fully plastic depth of the web in compression. For a doubly-symmetric 

welded section, hcy = hc = hp = h, where hc is two times the elastic depth of the web in compression 

and h is the web depth between the insides of the flanges. Furthermore, the noncompact web limit  

is defined in the draft AISC 360-27 Specification as  

 rw rw

y

E
c

F
 =  (3) 

where crw varies between 4.6 and 5.7 as a function of aw = hcy
 tw / bfc

 tfc. The above equations provide 

an improved characterization of the compact- and noncompact-web limits, recognizing that cross-

sections where the neutral axis is close to the compression flange (and thus the web is loaded 

predominantly in flexural tension) can often develop the plastic moment (Slein et al. 2024) and 

recognizing the sensitivity of the noncompact-web limit to aw (Subramanian and White 2017).  

Lastly, the bend buckling strength reduction factor, Rb, is similar to the factor Rpg in AISC 360-22 

but using the above definitions of aw, w, and rw:  

 ( )1 1.0
1200 300

w
b w rw

w

a
R

a
= −  − 

+
 (4) 

2.2 Flange local buckling (FLB) 

The draft AISC 360-27 Section F3 provisions define the FLB resistance by increasing the ordinate 

of the FLB strength curve at the AISC 360-22 noncompact flange limit, rf
,, from 0.7Fy Sxc to 

0.75Fy Sxc and extending the linear equation for the noncompact flange strength into the slender 

flange range (see Fig. 3), i.e.,  

 ( ). 0.75
f pf

n FLB w w b yc

rf pf

M M M R M
  −

= − −    − 

 (5) 

where f
 = bfc/2tfc, pf and rf

  are the traditional AISC compact- and noncompact-flange slenderness 

limits, and Mw is the “plateau” strength defined by Eqs. 1. For f < pf, the FLB resistance is equal 

to the “plateau” strength, Mw.  

Equation 5 gives an accurate to conservative representation of the compression flange 

postbuckling strength in I-section members (Latif and White 2022). For extremely large f values, 

Eq. 5 can potentially give a strength smaller than the theoretical elastic FLB resistance. This 

occurrence is disallowed in the Specification provisions; however, f values this large are 
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extremely rare. For instance, the AASHTO LRFD Specifications disallow flanges with bf /tf > 24 

to ensure efficient use of the material and to facilitate fabrication and construction.  

 

Figure 3: FLB resistance as a function of the flange slenderness f
  

The FLB strength is addressed separately and independently from LTB in the proposed AISC 360 

Chapter F provisions, similar to the approach in the prior AISC 360 rules. Prior experimental test 

results have demonstrated the lack of any interaction between the FLB and LTB strengths in 

I-section members for f
  values employed in ordinary practice (White 2008; White and Jung 

2008).  

2.3 Lateral-torsional buckling (LTB) 

The draft AISC 360-27 Section F3 defines the LTB resistance using the following three equations 

as illustrated in Fig. 4:  

(a) When LT
 < pLT, the LTB resistance is given by the "plateau" strength 

 n wM M=  (6a) 

(b) When pLT < LT 
 < rLT, the LTB resistance is defined by the inelastic LTB equation  

 ( ) LT pLT

n w w b L b cr xc

rLT pLT

M M M R M R F S
  −

= − −    − 

 (6b) 

and (c) When LT 
 > rw, the LTB resistance is defined by the elastic LTB equation 

 n b cr xcM R F S=  (6c) 

where  

pf rf

0.75 RbMyc

0.7 RpgMyc

Mw

Mn.FLB

f

Compact       

flange region

Noncompact       

flange region

Slender       

flange region

AISC 360-27 (Eq. 5), recognizing 

postbuckling strength

AISC 360-22 
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y

LT

cr

F

F
 =  (7) 

is the nondimensional LTB slenderness, ML is the moment level at the onset of significant inelastic 

LTB effects, taken as 

  0.5L ycM M=  (8) 

for built-up I-section members and  

  0.7L ycM M=  (9) 

for rolled I-section members, and Fcr is the elastic critical moment for LTB.  

 

Figure 4: LTB resistance as a function of LTB slenderness LT 

The use of the nondimensional LTB slenderness LT allows for the streamlined quantification of 

the LTB resistance by Eqs. 6. Furthermore, LT is fundamental to the characterization of the LTB 

resistance as elastic, inelastic, or plastic buckling. For large LT, the LTB limit state is elastic and 

the strength can be written directly in terms of the elastic buckling resistance, whereas for smaller 

LT, it is characterized as inelastic or plastic leading to more significant reductions in the strength 

relative to the theoretical elastic LTB resistance.  

Anchor Points 1 and 2 of the LTB Strength Curve 

As shown in Fig. 4, the inelastic LTB Eq. 6b is simply a linear transition between two anchor 

points, Anchor Point 1 (pLT, Mw) and Anchor Point 2 ((rLT, RbML). Anchor Point 2 is the simpler 

of the two anchor points in characterizing the strengths. At Anchor Point 2, the elastic LTB 

resistance before applying the Rb factor, Mcr = Fcr
 Sxc, is equal to ML. Therefore, the abscissa for 

Anchor Point 2 is  

Mw

RbML

Mn

Anchor Point 2

λrLTλpLT λLT

Elastic LTB moment Mcr = Fcr Sxc

Region governed by Mcr

Anchor Point 1

Plateau region: Strength 

governed by yielding and 

its interaction with WLB

Inelastic 

LTB region
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/

y

rLT

L xc

F

M S
 =  (10) 

For doubly-symmetric sections and singly-symmetric sections with Sxt > Sxc, Eq. 10 gives 

rLT = 1.41 for ML = 0.5Myc and 1.20 for ML = 0.7Myc. For sections with Sxt < Sxc, rLT is greater 

than 1.41 since ML = 0.5Myc and Myc, defined at first yielding of the compression flange, is greater 

than Fyc Sxc.  

Engineers often interpret that ML = 0.5Myc or 0.7Myc implies an initial flange compressive residual 

stress of 0.5Fyc or 0.3Fyc. However, the onset of yielding and its effect on the LTB resistance is 

influenced significantly by amplified compression flange lateral bending as the elastic LTB 

strength limit state is approached in the vicinity of LT = rLT. The physical beam or girder is not 

just in major-axis bending as typically idealized for design.  

The abscissa for Anchor Point 1, which may be referred to as the plateau length, is a function of 

the web slenderness: 

(a) When w
 < 0.7 pw 

 pLT pLT
 =   (11a) 

(b) When 0.7pw < w
 < rw 

 ( )
0.7

0.35
0.7

w pw

pLT pLT pLT

rw pw

  − 
  =  −  −    −  

 (11b) 

and (c) When w 
 > rw  

 0.35pLT =  (11c) 

where 

 
( )( )

( )

1 1/ 0.351
0.35 0.8

1 /

b rLT

pLT

b L wb

C

R M MC

 −  −
 = +   − 

 (12) 

Equations 7 and 11c recognize that for slender-web members (i.e., for w 
 > rw), the mapping from 

the theoretical elastic LTB strength to the inelastic LTB resistance is relatively simple. The plateau 

resistance is reached when LT = pLT = 0.35, independent of moment gradient (i.e., for any value 

of the moment gradient modifier, Cb). The value pLT = 0.35 corresponds to a ratio of the elastic 

LTB stress to the yield strength of Fcr / Fy = (1/0.35)2 = 8.16. This ratio is the same as the Fcr / Fy 

specified for Anchor Point 1 in the AISC/MBMA Design Guide 25 (White et al. 2021). For 

uniform bending, pLT = 0.35 and Fcr / Fy = 8.16 also correspond to the equation for Lp in Sections 

F4 and F5 of the AISC 360-22 Specification.  
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For moment gradient, i.e., Cb > 1.0, the inelastic LTB strength increases due to the decrease in LT 

with increasing Fcr. However, the increase in strength is relatively minor compared to the 

aggressive rise in the LTB resistance with increasing Cb postulated by the traditional application 

of Cb in the AISC 360 Specification. 

Recent experimental and analytical studies (Phillips et al. 2023a and b, 2024a and b;  Deshpande 

et al. 2024) have demonstrated the accuracy of the above approach for slender-web members. 

However, the research shows that the Design Guide 25 approach tends to give a conservative 

representation of the plateau length for stocky-web members subjected to moment gradient. For 

members with w < 0.7pw, the traditional application of Cb employed in AISC 360-22 

Specification provides an accurate representation of the increased LTB resistance up to a 

maximum value of pLT = 0.8 (Phillips et al. 2024b).  

Figure 5 illustrates the effect of increasing pLT
 from 0.35 for uniform bending to a larger value for 

moment-gradient cases in members with noncompact- or compact-webs. For larger values of Cb, 

the linear transition between Anchor Point 2 (rLT, ML) and Anchor Point 1 (pLT, Mw) can give 

values greater than the elastic LTB resistance. Therefore, in Eq. 6b, the LTB resistance is taken as 

the smaller of the values from the linear interpolation between the anchor points and the elastic 

LTB resistance. In essence, this increases the moment level corresponding to the onset of 

significant yielding effects in certain instances. 

Figure 5 also illustrates the impact of the FLB resistance calculation for members with noncompact 

or slender flanges in the context of the LTB strength curve. In the new and prior AISC 360 

provisions, the FLB resistance is an independent calculation that works effectively as a cut-off on 

the LTB strength.  

 

Figure 5: Effect of increasing pLT from 0.35 for uniform bending to a larger value for moment-gradient cases in 

built-up I-section members with noncompact or compact webs 

Figure 6 illustrates the impact of Cb on the LTB strength in the traditional AISC 360 Specification 

approach, shown in terms of the effective unbraced length KLb and using the new Section F3 

parameters Mw and Rb. The base LTB resistance for uniform bending (Cb = 1.0) is represented by 

Mw

RbML= 0.5RbFy Sxc

Mn

Anchor 

Point 1

LTB strength curve 

for moment gradient

Anchor 

Point 2

LTB strength curve 

for uniform bending

λrLT = 1.41λpLT = 0.35 λpLT > 0.35 λLT

Elastic LTB moment Mcr = Fcr Sxc

Region governed by Mcr

Mn.FLB
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the dashed grey curve. In the traditional AISC 360 approach, the Cb factor, which is derived as the 

ratio of the elastic LTB resistance considering the moment gradient to the elastic LTB resistance 

for uniform bending, is applied as a multiplier on the entire LTB strength curve, irrespective of 

whether the resulting level of the moment might result in significant strength reductions due to 

yielding effects. The traditional AISC provisions limit the increase in strength due to Cb only by 

capping the maximum resistance by Mw. As such, the traditional approach results in anomalous 

situations in which the design resistance may be taken as the theoretical elastic LTB strength all 

the way up to Mw = Mp for compact-web members as shown in Fig. 5. Eetikala et al. (2025) show 

that the above AISC 360 idealization tends to over-estimate the available experimental results for 

cases where the resulting modified plateau length approaches Lr even for rolled I-section members. 

Phillips et al. (2023a and b, 2024b) show substantial overprediction by the traditional AISC 360 

approach for slender-web members.  

 

Figure 6: Traditional application of Cb in AISC 360. 

For cases where the resulting plateau length, shown as Lp' in Fig. 6, is less than or equal to Lr, the 

plateau length may be written algebraically as 

 
( )( )
( )

1 1/

1 /

b r p

p p

b L w

C L L
L L

R M M

− −
 = +

−
 (13) 

Equation 12 is the same as Eq. 13 but is written in terms of the nondimensional slenderness LT 

and it has a maximum limit on the corresponding nondimensional plateau length of 0.8. A simpler 

approximate expression is proposed for pLT' in the current Ballot 2 draft of the new Section F3. 

Equation 12 is recommended since it matches the behavior of the traditional AISC equations for 

members with w < 0.7pw. Equation 11b is a linear interpolation between Eqs. 11a (equal to Eq. 

12) and 11c for members with intermediate web slenderness.  
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In the new Section F3 provisions, the web bend buckling strength reduction factor is applied to the 

entire LTB strength curve to approximate both the effects of loss of effectiveness of the slender 

web due to local bend buckling under flexural compression at the plateau strength (which is the 

case from which the equation for Rb is derived), and the effects of lateral distortion of the cross-

section on the inelastic and elastic LTB resistances for the base uniform moment case, irrespective 

of the moment gradient or the web shear (see Eqs. 1c, 5, 6b, and 6c). For noncompact or compact 

webs, Rb = 1.0.  

Impact of Web Shear on the Elastic LTB Resistance 

In addition to the above improvements, the proposed Section F3 provisions recognize a significant 

impact of the web shear force on the elastic LTB resistance for slender- and noncompact-web 

I-section members (Liang et al. 2021 and 2024). The AISC 360-22 Specification Section F5 uses 

J = 0 for slender-web I-section members to calculate the elastic LTB resistance. Liang et al. show 

this idealization can result in substantial conservatism in some cases while not sufficiently 

accounting for the cross-section distortion and strength reduction caused by the web shear in other 

cases.  

For slender-web members, the impact of shear on the elastic LTB resistance is addressed by 

applying a reduction factor  

 
1

1

cr
mv mvs

cr st

V
C C

V V
= = 

+ +
 (14) 

along with Cb in calculating the elastic LTB resistance, where Vcr is the elastic shear buckling 

strength of the web, Vst is the average web shear within the unbraced length under consideration 

at the elastic LTB moment obtained from thin-walled open-section beam theory, i.e., not 

considering any web distortion effects), but not greater than the web shear associated with the 

moment level RbML: 

 .
b L

st cr st avg avg

max

R M
V V V

M
=    (15) 

where cr.st is the ratio of the elastic LTB moment to the factored moment from thin-walled open-

section beam theory (not considering web distortion effects), Vavg is the average shear within the 

unbraced length for the factored loading condition being evaluated, and Mmax is the maximum 

moment within the unbraced length under consideration for the factored loading condition.  

The subscript “st” in Vst and cr.st emphasizes that the thin-walled open-section beam theory 

solution corresponds to a web that is fully “stiffened” such that any cross-section distortions due 

to shear effects are prevented.  

The last term in Eq. 15 is recommended as a limit to avoid an over-conservative application of 

Cmvs
 within the inelastic LTB range.  

The elastic buckling load ratio may be calculated as  
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 .
.

max

cr st
cr st

M

M
 =  (16) 

where Mcr.st  can be determined from the equation 

 

2
2

. 2
1 0.078b b

cr st xc

xc o T
b

T

C E KLJ
M S

S h rKL

r

 
= +  
   
 
 

 (17) 

for prismatic unbraced lengths or by an elastic buckling analysis based on thin-walled open-section 

beam theory. In Eq. 17, KLb is the effective unbraced length for LTB, rT is the radius of gyration 

of the compression flange plus one-third of the depth of the web in flexural compression, J is the 

St. Venant torsion constant, and ho is the distance between the mid-thickness of the flanges. 

Lastly, the term  in Eq. 14 is defined as  

 0.11 /b w fcC A A =  (18) 

where Aw = dtw, Afc = bfc tfc, and d is the total cross-section depth. By inspecting the combined Eqs. 

14 and 18, one can observe that the largest reductions in the elastic LTB resistance due to web 

shear occur in unbraced lengths with large Cb, large Aw /
 Afc, and large Vst /Vcr.  

Given the Cmv factor, the elastic LTB stress in Eq. 7 is calculated as 

 . /cr mv cr st xcF C M S=  (19) 

It should be noted that it is always conservative to design using the uniform bending LTB strength 

with Cb = 1.0, in which case Cmv is also equal to 1.0. In addition, it is recommended that Cmv be 

taken equal to 1.0 in all situations where Cb < 1.4 to simplify the design calculations, avoiding 

situations where the engineer would perform the additional calculations only to find that the final 

Mn
 from Eqs. 6 is practically unaffected. Also, for noncompact-web members, the Section F3 

provisions define a linear interpolation between Cmv = Cmvs at the noncompact-web limit and 

Cmv = 1.0 at the compact-web limit, discounting any theoretical strength reduction from Cmvs in the 

limit that the web is compact.  

2.4 Representative Results – Three-Point Bending Tests  

Figure 7 compares the predictions by the AISC 360-22 Section F5, the new AISC Section F3, and 

the second-generation Eurocode 3 (CEN 2022) provisions, Section 8.3.2.3(3), to the results from 

FEA test simulation for a representative suite of welded I-section members studied experimentally 

and analytically by Phillips et al. (2023a and b; 2024b). The members in this demonstration are 

doubly symmetric with nominal 6 in. x 3/8 in. flanges and 36 in. x 5/16 in. webs. The members 

were loaded in three-point bending, they had torsionally and flexurally simply-supported end 

conditions (i.e., fork end conditions), and they were braced at the mid-span load point. The 

simulations were conducted using an expected yield strength of Fy = 60 ksi for the design of the 
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experimental testing. Experimental testing confirmed the substantial overprediction of the LTB 

resistance by the AISC 360-22 provisions and the accuracy of the new AISC 360 Section F3 

approach (Phillips et al. 2023a). The recommended Section F3 provisions and the second-

generation Eurocode 3 provisions successfully capture the test simulation results with some degree 

of conservatism. The reader is referred to Phillips et al. (2023a and b; 2024b) for detailed 

discussions of the results. 

 

Figure 7: Comparison of AISC 360-22, new AISC Section F3, and second-generation Eurocode 3 predictions to 

FEA test simulation results for representative welded I-section members in three-point bending 

2.5 Nonprismatic member design 

The new AISC 360 Section F3 provisions easily accommodate the design of nonprismatic I-section 

members for flexural loading. For nonprismatic members, the AISC 360 provisions may be applied 

to check the LTB resistance by utilizing an essential concept introduced in the AISC/MBMA 

Design Guide 25 (White et al. 2021) and illustrated by Fig. 8.  

Given a potentially critical cross-section, the strength verification is conducted by considering a 

hypothetical "equivalent" prismatic member having the same Mu/Mw
 and the same cr.st as the 

general nonprismatic member. The elastic buckling load ratio, cr.st, may be determined by various 

hand-calculation procedures as discussed by Design Guide 25; however, cr.st is also fundamentally 

the eigenvalue obtained from an elastic buckling analysis considering the member with its actual 

end or continuity conditions in a larger structure. Software such as ConSteel (2025) can be 

employed to accurately model a general framing system composed of general nonprismatic 

members and to calculate cr.st. Given cr.st, the engineer first calculates Fcr = cr.st fbu at the cross-

section under consideration, where fbu = Mu
 /Sxc. They then determine the member demand-to-

capacity ratio (DCR) corresponding to that cross-section, DCR = Mu/bMn in LRFD, by performing 

the AISC 360 calculations for the hypothetical equivalent prismatic member that has the same 

Mu/Mw and cr.st.  

Generally, a nonprismatic member’s LTB resistance must be checked by considering several 

potentially critical cross-sections. The concept is the same as generally needing to check each 

member in a frame composed of multiple members. The governing member DCR is the largest 

one from the various checks. If all the cross-sections in the unbraced length under consideration 

have noncompact to compact webs, the LTB resistance is critical at the cross-section where Mu/Mw 

is the largest. However, if the nonprismatic member has slender-web sections, the behavior of the 
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equations is such that the engineer may need to check several slender-web cross-sections with 

large Mu/Mw. If one applies the smallest Rb of all the cross-sections under consideration in the 

calculation of Mw for all the cross-sections, then the cross-section with the largest Mu/Mw is ensured 

to govern.  

 

Figure 8: Concept of an equivalent prismatic member having the same Mu/Mw as the potentially critical cross-section 

and the same elastic buckling eigenvalue cr.st  

Nonprismatic members generally require the calculation of a different Cb than prismatic members. 

Design Guide 25 provides guidance. The alternative calculation of Cb is necessary since the 

compression flange stresses vary along the unbraced length as a function of the nonprismatic 

geometry. Applying prismatic member Cb equations to nonprismatic members can yield 

significantly unconservative results. Fortunately, in many situations involving nonprismatic 

members, Cb is less than 1.4; therefore, Cmv may be taken equal to 1.0 without any significant 

impact on the results.  

The reader is reminded that the FLB check is a separate and independent strength evaluation. For 

nonprismatic members, the FLB evaluation amounts to cross-section-by-cross-section checks. 

3. Combined Axial Compression and Flexure  

The General Method is recommended to address the strength verification for cases involving 

combined axial loading and flexure. Vaszilievits-Sömjén et al. (2023) provide a detailed discussion 
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of the method in the context of the AISC 360 Specification. The following is a brief outline of the 

steps: 

(a) Perform an in-plane geometric nonlinear analysis to determine the force demands. In the 

context of the AISC 360 Specification, the Direct Analysis Method rules are recommended 

for these calculations, thereby addressing the global in-plane structural stability 

considerations.  

(b) Determine the member demand-to-capacity ratios (DCR) for the various potentially critical 

cross-sections. Per AISC 360 
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where Pu is the cross-section axial force demand, and cPn is the axial compressive 

resistance, which is calculated for a nonprismatic member in a manner similar to that 

discussed in Section 2.5 for determining Mux/bMnx. That is, given the cross-section 

strength ratio Pu
 /Pye and the member elastic buckling load ratio cr, one calculates the cPn  

of an equivalent prismatic member having the same Pu
 /Pye and cr. In this calculation, Pye

  is 

the yield load for the effective cross-section used in determining the axial compressive 

resistance, Pye = Fy Ae, where Ae is the effective cross-sectional area. The AISC 360 column 

strength formula is defined explicitly in terms of 2 = Py /Pcr  = Fy /Fcr, where Py is the yield 

load on the gross cross-sectional area, Py = Fy Ag, and Pcr = cr Pu at the cross-section under 

consideration, which facilitates the calculations. Design Guide 25 provides guidance for 

the hand calculation of cr; however, modern software systems can be employed to 

determine cr in a more automated and rigorous manner. The ratio Mux/bMnx is calculated 

as discussed in Section 2. (It is implied throughout these discussions that the in-plane 

bending is about the cross-section’s major axis, and the LTB limit state involves twisting 

and out-of-plane bending about the cross-section’s minor axis.)  

AASHTO LRFD (AASHTO 2024) recommends a more conservative DCR calculation for 

members containing any slender cross-section elements: 

 u ux

c n b nx

P M
DCR

P M
= +
 

    (20c) 

(c) The General Method simplifies and streamlines the elastic buckling analysis and the 

strength evaluation by directly determining the out-of-plane member elastic buckling load 

ratio cr.op from a computational model of the structure. This ratio is combined with the 

gross cross-section demand-to-capacity ratio at a potentially critical cross-section, 
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to calculate the member's out-of-plane nondimensional slenderness  
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cr op csDCR
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The member’s op is then employed for  in the column axial capacity equations and LT 

in the LTB resistance Eqs. 6 to determine the cPn and bMnx values. These capacities are 

then substituted with the demands Pu and Mux into the appropriate Eq. 20 to determine the 

member DCR values.  

 

It should be noted that the FLB flexural resistance also needs to be addressed in the above 

calculations. The FLB flexural resistance is considered as a cap on bMn when performing the 

DCR calculation in Eqs. 20.  

In addition, it should be noted that for members subjected to significant major-axis bending shear 

in combination with axial loading, the axial compressive resistance should be reduced to account 

for its interaction with shear. AASHTO LRFD Article 6.9.2.2.2 addresses this interaction in a 

practical, simplified way.   

4. Combined Torsion and Flexure  

The AASHTO LRFD (AASHTO 2024) Specifications provide the most succinct and 

straightforward guidance for handling general combinations of torsion and flexure, with or without 

axial force, in I-section members. Article C6.9.2.2.2 of these Specifications states: 

“In I- and H-section members subjected to torsion, the flanges may be subjected to significant 

additional lateral bending due to the restraint of warping. The additional flange lateral bending 

may be considered by calculating Muy/Mry considering each of the individual flanges as a separate 

component, then combining the larger of these Muy/Mry values with the strength ratios in the 

appropriate strength interaction equations. Alternatively, for I-section members subjected to 

major- and minor-axis bending plus torsion, the one-third rule provisions of Article 6.10 may be 

employed to assess these combined effects.” 

The term Mry is a shortened notation in AASHTO LRFD for bMny. The reader is referred to Article 

6.10 of the AASHTO LRFD Specification for a discussion of the so-called one-third rule, a useful 

streamlined characterization of the strength of I-girders subjected to major-axis bending and flange 

lateral bending. For more general cases, AASHTO LRFD extends Eqs. 20 to the consideration of 

combined major-axis and minor-axis bending by substituting 

uyux

b nx b ny

MM

M M
+

 
 for each of the occurrences of ux

b nx

M

M
 in the equations.  



 16 

The strength bMny in the AISC 360 and AASHTO LRFD Specifications is either a yielding or a 

flange local buckling calculation. It should be noted that the compact-flange limit for minor-axis 

bending has been increased in the draft AISC 360-27 Specification to recognize better the limit 

states behavior in minor-axis bending. When considering the bMny based on an individual flange 

as recommended in the above AASHTO LRFD excerpt, the resistance is calculated based on the 

individual flange plastic and yield moment Mpf  = Fy tf bf 
2/4 and Myf

  = Fy tf bf 
2/6, respectively. 

Also, the elastic weak-axis bending moment demand on the entire cross-section should be 

apportioned to the individual flanges in proportion to their lateral bending moments of inertia,       

Iyf  = tf bf 
3/12.  

Various approximate calculations are recommended in AASHTO LRFD for the first-order flange 

lateral bending moment due to warping torsion (see Articles C4.6.1.2.4b and C6.10.3.4.1). 

Generally, these first-order lateral bending moments are amplified by the second-order effects 

from the flexural compression from the major-axis bending moment, Mux, plus any axial 

compression, Pu, supported by the member. AASHTO Article 6.10.1.6 gives simple amplification 

factors based on idealizing the compression flange as a beam-column subjected to axial 

compression from the major-axis bending. These equations can be applied to estimate the 

maximum second-order elastic flange lateral bending moments given the first-order moments. 

However, these equations only consider the amplification caused by the major-axis bending 

moments. The engineer can perform similar idealizations of the flange as an equivalent beam-

column to incorporate the effect of member axial compression.  

 

More rigorous second-order elastic solutions can be obtained for the flange lateral bending moment 

Muyf using three-dimensional frame analysis capabilities based on thin-walled open-section beam 

theory, such as provided by ConSteel (ConSteel 2025). Given the second-order bimoment at a 

cross-section calculated by the software, the flange lateral bending moment in a general singly-

symmetric I-section member may be determined as follows: 

 
y yf

uyf

w

Ba I
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C
=     (23) 

where B is the bimoment, ay is the distance from the cross-section shear center to the mid-thickness 

of the flange under consideration, Iyf = tf bf 
3/12 is the lateral bending moment of inertia of the 

flange, and 
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where Iyf 1 and Iyf 2 are the two flanges’ respective lateral bending moments of inertia.  

For problems involving flange lateral bending moments, Muyf, in addition to Pu and/or Mux, it 

should be noted that Muyf commonly has negligible influence on the elastic eigenvalue cr.op.  

Therefore, cr.op can be calculated considering just Pu and Mux. However, Muyf  can have significant 

second-order amplification due to the stability effects associated with cr.op.  
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4. Conclusions 

The AISC 360 new Section F3 provisions under consideration during the 2027 Specification 

development cycle provide an improved, streamlined calculation of the flexural resistance of 

general I-section members. The calculations address significant attributes related to moment 

gradient and corresponding web shear that previously have not been understood and addressed. 

The new AISC 360 provisions may be combined with concepts from the General Method (CEN 

2022) plus simplified strength interaction equations for axial force, flexure, shear, and flange 

lateral bending due to warping torsion to address the wide range of potential loadings encountered 

in engineering practice.  
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