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Abstract

The main objective of this study is to investigate the ability and application of mechanics-informed
neural network models to predict steel column strength. Steel column strength prediction involves
challenges associated with stability issues, buckling deformation, and initial geometric imperfec-
tions, and data-driven models informed by mechanics demonstrate significant potential for better
accuracy and efficiency. A multilayer perceptron neural network is trained and tested. The train-
ing data is generated by sampling from the classical ordinary differential equation for a simply-
supported steel column with an initial sweep imperfection combined with a first yield stress in-
teraction failure criterion consistent with the Perry-Robertson equation. Prediction accuracy is
evaluated for different network configurations and hyperparameters with the goal of establishing
a model protocol that can be generally followed for mechanics-informed data models. Finally,
governing equations are introduced to the loss function to further inform the neural network of
more mechanics-based information. The performance of the mechanics-informed artificial neural
network is discussed. This research develops high-quality data-driven models with mechanics-
informed protocol enabled, which can further advance state-of-the-art steel column design and
research.

1. Introduction

The application of Machine Learning (ML) methods to solve various structural engineering prob-
lems has become an area of active research in Civil Engineering in recent years, such as structural
health monitoring (Stephens et al. 1994, Wu et al. 1992, Huang et al. 2019, and Sun et al. 2020),
structural topology optimization (Berke et al. 1993, Kaveh 2024, and Shin et al. 2023), structural
design and analysis (Hajela and Berke 1991, Salehi and Burguefio 2018, Guo et al. 2021, and Thai
2022), and other applications (Kaveh et al. 2024). Recent advancements in the computing power
for Artificial Intelligence (Al), such as the emergence of highly efficient graphics processing units
(GPUs) and other new-generation chips, have been a key driver of the further progress for the
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application and research in machine learning-based numerical solutions, which empowers more
efficient and accurate prediction from ML models.

Current research in the application of structural design and analysis predominantly employs ML
regression algorithms, relying on large datasets (mainly numerically generated dataset through val-
idated models) to train various ML models, including random forest, support vector machine, and
artificial neural networks (ANNs). However, in practical structural engineering, data scarcity and
high acquisition costs (no matter through experimental studies or simulation) hinder the widespread
adoption of ML techniques in structural design and analysis. As a result, a novel machine learn-
ing technique, termed Physics-Informed Neural Networks (PINNs), has been recently proposed
by Raissi et al. (2019). This unsupervised learning approach demonstrates significant potential
for addressing intricate mechanical challenges through utilizing the physical information to guide
the learning process and lowering the data-intensive demands. By incorporating the knowledge of
physical laws during training, PINNs act as a form of regularization, restricting the search space
of possible solutions and thereby improving the model’s ability to generalize from limited data.
(Katsikis et al. 2022, Yuan et al. 2022, and Zhang et al. 2020). It excels in scenarios where
governing equations are known, eliminating the need for extensive pre-defined datasets and the
solution process can be remarkably fast when the PINN is pre-trained and applicable to a transfer
learning technique. The PINN application research of Chen et al. (2023) investigated its appli-
cability of second-order analysis of beam-columns. The successful application of PINNS to static
beam problems by Katsikis et al. (2022), where they accurately predicted linear behavior, supports
their feasibility as a potential next-generation alternative method for structural analysis and design.

The object of this research is to provide a mechanics-informed data-driven modeling protocol
to offer a promising approach to enhance accuracy, efficiency, and adaptability in the prediction
of column strength through ML-powered engines. This study employs a multilayer perceptron
neural network, trained and tested using data generated by sampling from the classical ordinary
differential equation governing a simply supported steel column with an initial sweep imperfec-
tion. The failure criterion is based on a first yield stress interaction, consistent with the Perry-
Robertson equation. The research investigates the impact of different network configurations and
hyperparameters on model accuracy to establish a robust and generalizable protocol for mechanics-
informed data-driven models. Furthermore, the study incorporates the Perry-Robertson equation
as the governing equation into the loss function, enhancing the neural network’s understanding of
underlying physics. The decent performance of this mechanics-informed artificial neural network
demonstrates its potential to advance the state-of-the-art in steel column design and research.

2. Dataset Generation and Processing

The data generation relies on the Perry-Robertson formula, as presented in Equation 1. To increase
the data veracity, a random noise with mean value of 0 and standard deviation of 1 is added to the
strength value P,.
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where:

* P, is the axial load-bearing capacity of the column (kip).
® Opre = iff is the critical buckling axial stress defined by Euler’s critical load equation
(kip).

o, is the yield strength of the column material (ksi).

o n = % is a factor considering the initial imperfection.

A
* 9, = WLoo is the initial imperfection or out-of-straightness of the column (inch).
c is the distance from the centroid to the outermost fiber of the column’s cross-section (inch).
I is the moment of inertia of the column’s cross-section (inch?).
A is the cross-sectional area of the column (inch?).
L is the effective length of the column (inch).

FE is the elastic modulus of the column material (ksi).

The Perry-Robertson equation is widely used in the design of structural elements subjected to
axial loads to consider stability, buckling deformation, and initial geometric imperfections. The
data generated has the size of 1,000,000 rows x 7 columns. The seven columns corresponds to
A (cross-sectional area), I (moment of inertia), ¢ (distance from centroid to the outermost fiber),
L (member length), f, (yield strength), J, (the initial imperfection or out-of-straightness of the
column), and P, (axial compression strength). The data set can be downloaded from Kaggle, an
open-source data science online community.
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Figure 1: Correlation heatmap of the dataset

The correlation between the input and output features are evaluated through the pearson correlation
coefficient (PCC), which implies a measure of the linear correlation between two sets of data. PCC
is defined as the ratio between the covariance of two variables and the product of their standard
deviations. To better present the PCC of the dataset, a heatmap is generated, as presented in
Figure 1. Strong correlations with axial strength P, exist for A (cross-sectional area), / (moment
of inertia), and c (distance from centroid to the outermost fiber), featuring PCC values as 0.86,
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0.72, and 0.54 respectively. f, (yield strength) demonstrates moderate positive correlation with P,
(0.36). In terms of the correlations between input features, strong positive correlations are found
between A and I, I and ¢, and A and ¢, which is reasonable in terms of section properties.

The generated dataset is stored in a comma-separated values (CSV) file and read in through a
DataFrame format. To pre-process the data before inputting them into the neural networks, it is
necessary to normalize the data to prevent dominance of certain features, improve gradient de-
scent (convergence), and increase regularization performance. The input features of the dataset
was scaled using the ’z-score normalization’ method. Another pre-processing operation herein is
the logarithmic normalization, which is applied to the output feature column axial strength P, be-
cause it will always be a positive value. There are two considerations for applying the logarithmic
normalization: (1) it can reduce and stabilize the variance and compress the range of P, values,
making the neural network model learn patterns within the dataset better and more efficiently; and
(2) it ensures P, is more aligned with a Gaussian distribution, which handles the skewness well
and further improves model performance. Subsequently, the data was divided into a training set
(85%) and a test set (15%) and input into the neural network models.

3. PINN Model Formulation
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Figure 2: The architecture of a multilayer perceptron neural network

As shown in Figure 2, a multilayer perceptron neural network model is a basic architecture for an
artificial neural network, which consists of multiple layers of neurons. There are input, output,
and hidden layers in the main architecture frame. Weights (w;) and biases (b) are defined at each
neuron. Additionally, neuron values from the former layer are employed to generate the neuron
value at the current layer using nonlinear transformation functions. Within the transformation
function, activation functions introduce nonlinearity to the network, enabling it to learn complex
patterns. Overall, the model learns patterns or representations from the input data at hidden layers.



For the training process of the multilayer perceptron neural network model, there are three main
steps: forward propagation, loss evaluation, and backpropagation. Forward propagation involves
sequentially feeding the input through the network’s layers. Each layer processes the input by
applying its unique set of weights, biases, and activation function, generating an output that serves
as the input for the subsequent layer. The loss evaluation refers to the calculation of the loss
function, which quantifies the discrepancy between the network’s predictions and the ground truth.
The backpropagation process involves iteratively refining the model’s parameters (weights and
biases) by minimizing the loss function. This optimization process is typically achieved through
gradient descent or its variants. The training mainly happens at the backpropagation step when the
weights and biases are updated and saved based on the optimization algorithms.

Before the development of a PINN model, we started with constructing a multilayer perceptron
neural network model, and the accuracy of different network configurations and hyperparameters
were evaluated. After the multilayer perceptron neural network model with best performance was
determined, the loss function was then modified to include the mechanics-based information. The
best performance neural network configuration demonstrates five layers, 2048 neurons in the hid-
den layers, Relu activation function (maxz(0,z)). Other parameters for the best neural network
configuration include batch size, dropout, and batch normalization. Batch size implies the number
of training examples utilized in one iteration, where larger batch sizes demonstrate more stable
gradients, faster computation, but may generalize less; and smaller batch sizes feature noisier gra-
dients, slower computation, but may generalize better. The batch size in the best model is set to be
256 demonstrating stable gradient and computational efficient. The dropout functionality is a reg-
ularization technique, where randomly selected neurons are ignored during training. This dropout
functionality can force the network to learn redundant representations, reduces interdependence
among neurons, and make the model more robust and less likely to overfit the dataset. The batch
normalization technique can improve the speed, performance, and stability of neural networks,
which normalizes the activations of each layer and reduces internal covariate shift. The model
with best performance adopts both dropout and batch normalization modules.

As discussed in the Introduction section, a PINN demonstrates advantages including better accu-
racy and requiring a smaller data volume. As presented in Equation 2, the main difference between
a PINN and a traditional multilayer perceptron neural network lies in the definition of loss func-
tion. The loss function for a PINN adds one more physical loss term in addition to the tradition loss
term. The mean squared error (MSE) is adopted for the traditional loss function term. The Physi-
cal loss term herein refers to the difference between predicted value based on the Perry-Robertson
equation and the ground truth value. The adjustment factor « for the physical loss term is taken as
1 herein.

PINN Loss = Traditional Loss + a * Physical Loss 2)

As shown in Figure 3, after modifying the loss function based on Equation 2 of the configuration
of the multilayer perceptron neural network with best performance, the loss function value of the
training and validation process of the model through 400 epoches exhibits the overall convergence
trend of the model.
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4. Results and Discussion

The preliminary results of the trained model’s prediction is presented in Figure 4. The diagonal line
of the figure implies that the horizontal axis value (the compressive strength F,,) and vertical axis
e strength P,) are identical. The data points aligns with the diagonal
data points demonstrating variance from the line. This shows that the
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Figure 3: Train and validation loss curve

PINN model learns the pattern behind the training dataset well.

Predicted Compressive Strength Pn (kip)

Figure 4: The comparision between prediction and ground truth values for P, (kips)

To further explore the prediction performance of the trained PINN model, the prediction-to-ground
truth values are plotted against the column slenderness (), as depicted in Figure 5. This shows that
the overall prediction accuracy is acceptable along various scenarios with a wide range of column
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slenderness, but there still exists prediction error to be improved.



Prediction-to-Truth Ratio

Figure 5: The distribution of prediction-to-truth ratio over column slenderness

5. Next Steps

The research reported in this paper is a preliminary study on the application of PINN for predicting
steel column strength. Further fine tuning on the PINN model to improve its performance and
accuracy is necessary. The next main research work is to compare the performance of PINN and
traditional neural network to validate the PINN’s performance on training efficiency and accuracy
of prediction. At the same time, it is also an interesting topic to incorporate more governing
equations into the physcial loss function to better guide the learning process of the neural network.
Last but not least, further study on the appropriate adjustment factor « value to have better model
performance is expected.

6. Conclusion

A multilayer perceptron neural network informed by mechanics is trained and tested in this re-
search to predict the strength of steel columns. The dataset was generated by sampling from the
classical ordinary differential equation consistent with the Perry-Robertson equation. Additionally,
the Perry-Robertson equation was introduced to the loss function to further enhance the neural net-
work’s understanding of underlying physics. This mechanics-informed artificial neural network
demonstrates decent performance in terms of column strength prediction. The reported work is
still ongoing and more fine-tuning and comparison work will be completed in the near future. The
mechanics-informed data-driven prediction model framework in this study exhibits great potential
to advance the state-of-the-art in steel column design and research.
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